Tag: instance (page 2 of 6)

Radio bursts from space reveal strange mathematical pattern





Excerpt from foxnews.com

Eleven fast radio bursts from space seem to follow a strange mathematical pattern, according to a new study – and it has researchers scratching their heads. 

According to study co–authors Michael Hippke of the Institute of Data Analysis in Neukirchen-Vluyn,  Germany, and John Learned of the University of Hawaii in Manoa, the bursts– which were first detected in 2001 – all had dispersion measures that were integer multiples of the same number: 187.5. “The astronomers that found [the bursts] have not seen such things before and do not understand them,” Learned told FoxNews.com.

Nobody knows what causes fast radio bursts, known as FRBs. They only last a few milliseconds, and only one so far has been captured live (by the Parkes Telescope in Australia last year). Though the bursts release just as much energy in a few milliseconds as the sun does in a month, their brevity indicates that the source must be small, with estimates being several hundred miles across at most.

Researchers use dispersion measures, which records how much “space gunk” the burst has passed through, to estimate the distance an FRB has travelled. For instance, a low frequency FRB will have more gunk on it, indicating a longer trip, whereas a high frequency FRB will be cleaner, indicating it came from closer to Earth.
The fact that all of the FRBs’ dispersion measures are integer multiples of 187.5 has, according to Hippke and Learned’s team’s calculations, a 5 in 10,000 chance of being coincidental. The dispersion measures also indicate that their origin is relatively close to Earth, but unlikely from within our own galaxy.

There are numerous theories on where these bursts came from, including speculation that the messages are from extraterrestrial intelligence. To the scientific community, however, this theory doesn’t really hold water, and is seen as more of a last resort only after all other avenues have been exhausted.

“We think these are likely from some very energetic process, like a burst from a high magnetic field neutron star or energy released [when] two neutron stars merge,” Professor Maura McLaughlin of the West Virginia University Center for Astrophysics explained. “The thing that made people think they were possibly from ETs was a recent paper that showed that one fundamental property is quantized in a way that wouldn't be expected if the signals were naturally occurring. However, I imagine that correlation will totally go away once more are discovered.”

Learned himself is dubious of an alien source as well, noting that he and Hippke only noted the dispersion measures’ “peculiar” pattern, and that they may even be coming from Earth. “We are now leaning more towards a terrestrial, anthropogenic interpretation,” he said. “At this point I would place my money on some sort of governmental satellite, not a natural phenomena, but I would not bet much.  More data, which reportedly [is] being analyzed but which we have no insider information about yet, will be most interesting and refute or confirm our hypotheses.” He also noted that he’d only look to an ETI interpretation once all other possibilities have been eliminated.

As for McLaughlin, she believes there’s no way the FRBs could be messages from aliens, as the signals are very broadband and emitted over a wide range of radio frequencies. “It would take a LOT of energy for an alien civilization to produce these bursts - they'd need to harness the energy of many, many suns - and there's no real advantage for communication to send a signal over such a large bandwidth.”

View Article Here Read More

An Alien Radio Beacon? Possibly Not This Time



An Alien Radio Beacon? Possibly Not This Time.

Excerpt from postpioneer.com


For practically a decade, astronomers have puzzled over strong bursts of radio energy that appear to be hailing from billions of light years away. Recently, we received reports of a new wrinkle to this mystery: The bursts seem to comply with a mathematical...

For practically a decade, astronomers have puzzled over strong bursts of radio energy that appear to be hailing from billions of light years away. Recently, we received reports of a new wrinkle to this mystery: The bursts seem to comply with a mathematical pattern, one that does not line up with something we know about cosmic physics.

And, of course, when we hear “mathematical pattern,” “radio transmission,” and “outer space,” all strung collectively, we straight away jump to our preferred explanation—aliens! (Or, you know, a decaying pulsar star, an unmapped spy satellite, or a cell telephone tower.)

It’s also probable that the pattern doesn’t basically exist.

Because 2007, telescopes have picked up almost a dozen so-known as “fast radio bursts,” pulses that last for mere milliseconds, but erupt with as a great deal power as the sun releases in a month. Where could they be coming from? To come across out, a group of researchers took advantage of a basic principle: That higher frequency radio waves encounter less interference as they traverse space, and are detected by our telescopes earlier than reduce frequency waves. The time delay, or “dispersion measure”, in between larger and reduce frequency radio waves from the very same pulse event can be applied to figure out the distance those waves traveled.

Here’s where things got weird. When researchers calculated the dispersion distance for each and every of eleven rapid radio bursts, they identified that every distance is an integer many of a single number: 187.5. When plotted on a graph, as the researchers show us in Figure 1 of their paper, the points type a striking pattern.

A single explanation is that the bursts are coming from distinctive sources, all at on a regular basis spaced intervals from the Earth, billions of light years away. They could also be brought on by a smaller cosmic object a lot closer to residence, such as a pulsar star, behaving according to some sort of physics we don’t yet understand. And then there’s the possibility that aliens are trying to communicate, by blasting simple numeric patterns into space.

But no matter how you slice it, eleven data points is a tiny sample set to draw any meaningful conclusions from. A handful of deviant observations could bring about the complete pattern to unravel.

And that is precisely what seems to be happening. As Nadia Drake reports for National Geographic, newer observations, not integrated in the most up-to-date scientific report or other well known media articles, don’t fit:

“There are 5 quickly radio bursts to be reported,” says Michael Kramer of Germany’s Max Planck Institute for Radioastronomy. “They do not fit the pattern.”
Rather of aliens, unexpected astrophysics, or even Earthly interference, the mysterious mathematical pattern is probably an artifact produced by a little sample size, Ransom says. When working with a limited quantity of data – say, a population of 11 quickly radio bursts – it’s straightforward to draw lines that connect the dots. Usually, on the other hand, these lines disappear when much more dots are added.
“My prediction is that this pattern will be washed out quite immediately after a lot more fast radio bursts are located,” says West Virginia University’s Duncan Lorimer, who reported the very first burst in 2007. “It’s a great instance of how apparently considerable final results can be identified in sparse information sets.”

That is a bit of a bummer, but nevertheless, these radio bursts are fascinating, and what could be causing them remains as a lot of a mystery as ever. It could even nonetheless be aliens, if not an alien beacon. As SETI Institute Director Seth Shostak told me in an e mail:

“If it is a signal, nicely, it is surely NOT a message — except perhaps to say ‘here we are’. There’s not actual bandwidth to it, which suggests these speedy radio bursts can not encode several bits. But there are so many other possibilities, I feel that automatically attributing one thing in the sky that we don’t (at very first) understand to the operate of aliens is … premature!”

If there’s 1 point that is clear in this whole organization, it is that we’ve nonetheless got plenty to discover about the patterns woven into the universe around us.

View Article Here Read More

NASA puts Mars on back shelf, sets sight on asteroid mission

Excerpt from newsmaine.netNational Aeronautics and Space Administration (NASA) has always given priority to Mars mission but an announcement that NASA made showed that the agency will first begin work on an asteroid mission before it plans for Mars ...

View Article Here Read More

Young Jupiter wiped out solar system’s early inner planets, study says


Ganymede
(Photo : NASA/ESA) In early days of solar system, Jupiter destroyed everything that came in its way, researchers have found.


Excerpt from latimes.com

Before Mercury, Venus, Earth and Mars occupied the inner solar system, there may have been a previous generation of planets that were bigger and more numerous – but were ultimately doomed by Jupiter, according to a new study.

If indeed the early solar system was crowded with so-called super-Earths, it would have looked a lot more like the planetary systems found elsewhere in the galaxy, scientists wrote Monday in the Proceedings of the National Academy of Sciences.


Inner planets
As NASA’s Kepler space telescope has found more than 1,000 planets in orbit around other stars, along with more than 4,000 other objects that are believed to be planets but haven’t yet been confirmed. Kepler finds these planets by watching their host stars and registering tiny drops in their brightness – a sign that they are being ever-so-slightly darkened by a planet crossing in front of them.

In addition, ground-based telescopes have detected hundreds of exoplanets by measuring the wiggles of distant stars. Those stars wiggle thanks to the gravitational pull of orbiting planets, and the Doppler effect makes it possible to estimate the size of these planets.

The more planetary systems astronomers discovered, the more our own solar system looked like an oddball. Exoplanets – at least the ones big enough for us to see – tended to be bigger than Earth, with tight orbits that took them much closer to their host stars. In multi-planet systems, these orbits tended to be much closer together than they are in our solar system. For instance, the star known as Kepler-11 has six planets closer to it than Venus is to the sun.

Why does our solar system look so different? Astrophysicists Konstantin Batygin of Caltech and Greg Laughlin of UC Santa Cruz summed it up in one word: Jupiter.

Here’s what could have happened, according to their models:

In Solar System 1.0, the region closest to the sun was occupied by numerous planets with masses several times bigger than that of Earth. There were also planetesimals, “planetary building blocks” that formed within the first million years after the birth of the sun, Batygin and Laughlin wrote.

This is how things might have stayed if the young Jupiter had stayed put at its initial orbit, between 3 and 10 astronomical units away from the sun. (An astronomical unit, or AU, is the distance between the Earth and the sun. Today, Jupiter’s orbit ranges between 5 and 5.5 AUs from the sun.)

But Jupiter was restless, according to a scenario known as the “Grand Tack.” In this version of events, Jupiter was swept up by the currents of gas that surrounded the young sun and drifted toward the center of the solar system.

Jupiter, however, was too big to travel solo. All manner of smaller objects would have been dragged along too. With so many bodies in motion, there would have been a lot of crashes.

The result was “a collisional cascade that grinds down the planetesimal population to smaller sizes,” the astrophysicists wrote. For the most part, these planetary crumbs were swept toward the sun and ultimately destroyed, like disintegrating satellites falling back to Earth.

The planetesimals wouldn’t have been Jupiter’s only victims. Assuming the early solar system resembled the planetary systems spied by Kepler and other telescopes, there would have been “a similar population of first-generation planets,” the pair wrote. “If such planets formed, however, they were destroyed.”

Jupiter probably got about as close to the sun as Mars is today before reversing course, pulled away by the gravity of the newly formed Saturn. That would have ended the chaos in the inner solar system, allowing Earth and the other rocky planets to form from the debris that remained.

“This scenario provides a natural explanation for why the inner Solar System bears scant resemblance to the ubiquitous multi-planet systems” discovered by Kepler and other survey efforts, Batygin and Laughlin wrote.

Although their models show that this is what might have happened, they don’t prove that it actually did. But there may be a way to get closer to the truth.

The scientists’ equations suggest that if a star is orbited by a cluster of close-in planets, there won’t be a larger, farther-out planet in the same system. As astronomers find more exoplanetary systems, they can see whether this prediction holds up.

Also, if far-away solar systems are experiencing a similar series of events, telescopes ought to be able to detect the extra heat thrown off by all of the planetesimal collisions, they added.

Sadly for those hoping to find life on other planets, the pair’s calculations also imply that most Earth-sized planets are lacking in water and other essential compounds that can exist in liquid or solid form. As a result, they would be “uninhabitable,” they wrote.

View Article Here Read More

Biologists fear DNA editing procedure can alter human DNA




Excerpt from themarketbusiness.com

A group of biologists was alarmed with the use a new genome-editing technique to modify human DNA in a way that it can become hereditary.
The biologists worry that the new technique is so effective and easy to use that some physicians may push ahead with it before its safety can be weigh up. They also want the public to understand the ethical issues surrounding the technique, which could be used to cure genetic diseases, but also to enhance qualities like beauty or intelligence. The latter is a path that many ethicists believe should never be taken.


“You could exert control over human heredity with this technique, and that is why we are raising the issue,” said David Baltimore, a former president of the California Institute of Technology and a member of the group whose paper on the topic was published in the journal Science.

Ethicists have been concerned for decades about the dangers of altering the human germ line — meaning to make changes to human sperm, eggs or embryos that will last through the life of the individual and be passed on to future generations. Until now, these worries have been theoretical. But a technique invented in 2012 makes it possible to edit the genome precisely and with much greater ease. The technique has already been used to edit the genomes of mice, rats and monkeys, and few doubt that it would work the same way in people.

The new genome-editing technique holds the power to repair or enhance any human gene. “It raises the most fundamental of issues about how we are going to view our humanity in the future and whether we are going to take the dramatic step of modifying our own germline and in a sense take control of our genetic destiny, which raises enormous peril for humanity,” said George Daley, a stem cell expert at Boston Children’s Hospital and a member of the group.

The biologists writing in Science support continuing laboratory research with the technique, and few if any scientists believe it is ready for clinical use. Any such use is tightly regulated in the United States and Europe. American scientists, for instance, would have to present a plan to treat genetic diseases in the human germline to the Food and Drug Administration.

The paper’s authors, however, are concerned about countries that have less regulation in science. They urge that “scientists should avoid even attempting, in lax jurisdictions, germ line genome modification for clinical application in humans” until the full implications “are discussed among scientific and governmental organizations.”

Though such a moratorium would not be legally enforceable and might seem unlikely to exert global sway, there is a precedent. In 1975, scientists worldwide were asked to refrain from using a method for manipulating genes, the recombinant DNA technique, until rules had been established.

“We asked at that time that nobody do certain experiments, and in fact nobody did, to my knowledge,” said Baltimore, who was a member of the 1975 group. “So there is a moral authority you can assert from the U.S., and that is what we hope to do.”

Recombinant DNA was the first in a series of ever-improving steps for manipulating genetic material. The chief problem has always been one of accuracy, of editing the DNA at precisely the intended site, since any off-target change could be lethal. Two recent methods, known as zinc fingers and TAL effectors, came close to the goal of accurate genome editing, but both are hard to use. The new genome-editing approach was invented by Jennifer Doudna of the University of California, Berkeley, and Emmanuelle Charpentier of Umea University in Sweden.

Their method, known by the acronym Crispr-Cas9, co-opts the natural immune system with which bacteria remember the DNA of the viruses that attack them so they are ready the next time those same invaders appear. Researchers can simply prime the defense system with a guide sequence of their choice and it will then destroy the matching DNA sequence in any genome presented to it. Doudna is the lead author of the Science article calling for control of the technique and organized the meeting at which the statement was developed.

Though highly efficient, the technique occasionally cuts the genome at unintended sites. The issue of how much mistargeting could be tolerated in a clinical setting is one that Doudna’s group wants to see thoroughly explored before any human genome is edited.

Scientists also say that replacing a defective gene with a normal one may seem entirely harmless but perhaps would not be.
“We worry about people making changes without the knowledge of what those changes mean in terms of the overall genome,” Baltimore said. “I personally think we are just not smart enough — and won’t be for a very long time — to feel comfortable about the consequences of changing heredity, even in a single individual.”
Many ethicists have accepted the idea of gene therapy, changes that die with the patient, but draw a clear line at altering the germline, since these will extend to future generations. The British Parliament in February approved the transfer of mitochondria, small DNA-containing organelles, to human eggs whose own mitochondria are defective. But that technique is less far-reaching because no genes are edited.

There are two broad schools of thought on modifying the human germline, said R. Alta Charo, a bioethicist at the University of Wisconsin and a member of the Doudna group. One is pragmatic and seeks to balance benefit and risk. The other “sets up inherent limits on how much humankind should alter nature,” she said. 
Some Christian doctrines oppose the idea of playing God, whereas in Judaism and Islam there is the notion “that humankind is supposed to improve the world.” She described herself as more of a pragmatist, saying, “I would try to regulate such things rather than shut a new technology down at its beginning.”

Other scientists agree with the Doudna group’s message.
“It is very clear that people will try to do gene editing in humans,” said Rudolf Jaenisch, a stem cell biologist at the Whitehead Institute in Cambridge, Massachusetts, who was not a member of the Doudna group. “This paper calls for a moratorium on any clinical application, which I believe is the right thing to do.”
Writing in Nature last week, Edward Lanphier and other scientists involved in developing the rival zinc finger technique for genome editing also called for a moratorium on human germline modification, saying that use of current technologies would be “dangerous and ethically unacceptable.”

The International Society for Stem Cell Research said Thursday that it supported the proposed moratorium.

The Doudna group calls for public discussion but is also working to develop some more formal process, such as an international meeting convened by the National Academy of Sciences, to establish guidelines for human use of the genome-editing technique.

“We need some principled agreement that we want to enhance humans in this way or we don’t,” Jaenisch said. “You have to have this discussion because people are gearing up to do this.”

View Article Here Read More

Does the Past Exist Yet? Evidence Suggests Your Past Isn’t Set in Stone


thumbnail



Excerpt from robertlanza.com
By Robert Lanza 

Recent discoveries require us to rethink our understanding of history. “The histories of the universe,” said renowned physicist Stephen Hawking “depend on what is being measured, contrary to the usual idea that the universe has an objective observer-independent history.”

Is it possible we live and die in a world of illusions? Physics tells us that objects exist in a suspended state until observed, when they collapse in to just one outcome. Paradoxically, whether events happened in the past may not be determined until sometime in your future – and may even depend on actions that you haven’t taken yet.

In 2002, scientists carried out an amazing experiment, which showed that particles of light “photons” knew — in advance — what their distant twins would do in the future. They tested the communication between pairs of photons — whether to be either a wave or a particle. Researchers stretched the distance one of the photons had to take to reach its detector, so that the other photon would hit its own detector first. The photons taking this path already finished their journeys — they either collapse into a particle or don’t before their twin encounters a scrambling device.
Somehow, the particles acted on this information before it happened, and across distances instantaneously as if there was no space or time between them. They decided not to become particles before their twin ever encountered the scrambler. It doesn’t matter how we set up the experiment. Our mind and its knowledge is the only thing that determines how they behave. Experiments consistently confirm these observer-dependent effects.

More recently (Science 315, 966, 2007), scientists in France shot photons into an apparatus, and showed that what they did could retroactively change something that had already happened. As the photons passed a fork in the apparatus, they had to decide whether to behave like particles or waves when they hit a beam splitter. 
Later on – well after the photons passed the fork – the experimenter could randomly switch a second beam splitter on and off. It turns out that what the observer decided at that point, determined what the particle actually did at the fork in the past. At that moment, the experimenter chose his history.

Of course, we live in the same world. Particles have a range of possible states, and it’s not until observed that they take on properties. So until the present is determined, how can there be a past? According to visionary physicist John Wheeler (who coined the word “black hole”), “The quantum principle shows that there is a sense in which what an observer will do in the future defines what happens in the past.” Part of the past is locked in when you observe things and the “probability waves collapse.” But there’s still uncertainty, for instance, as to what’s underneath your feet. If you dig a hole, there’s a probability you’ll find a boulder. Say you hit a boulder, the glacial movements of the past that account for the rock being in exactly that spot will change as described in the Science experiment.

But what about dinosaur fossils? Fossils are really no different than anything else in nature. For instance, the carbon atoms in your body are “fossils” created in the heart of exploding supernova stars. 
Bottom line: reality begins and ends with the observer. “We are participators,” Wheeler said “in bringing about something of the universe in the distant past.” Before his death, he stated that when observing light from a quasar, we set up a quantum observation on an enormously large scale. It means, he said, the measurements made on the light now, determines the path it took billions of years ago.

Like the light from Wheeler’s quasar, historical events such as who killed JFK, might also depend on events that haven’t occurred yet. There’s enough uncertainty that it could be one person in one set of circumstances, or another person in another. Although JFK was assassinated, you only possess fragments of information about the event. But as you investigate, you collapse more and more reality. According to biocentrism, space and time are relative to the individual observer – we each carry them around like turtles with shells.

History is a biological phenomenon — it’s the logic of what you, the animal observer experiences. You have multiple possible futures, each with a different history like in the Science experiment. Consider the JFK example: say two gunmen shot at JFK, and there was an equal chance one or the other killed him. This would be a situation much like the famous Schrödinger’s cat experiment, in which the cat is both alive and dead — both possibilities exist until you open the box and investigate.

“We must re-think all that we have ever learned about the past, human evolution and the nature of reality, if we are ever to find our true place in the cosmos,” says Constance Hilliard, a historian of science at UNT. Choices you haven’t made yet might determine which of your childhood friends are still alive, or whether your dog got hit by a car yesterday. In fact, you might even collapse realities that determine whether Noah’s Ark sank. “The universe,” said John Haldane, “is not only queerer than we suppose, but queerer than we can suppose.”

View Article Here Read More

This Alien Color Catalog May Help Us Spot Life on Other Planets






Excerpt from smithsonianmag.com


In the hunt for alien life, our first glimpse of extraterrestrials may be in the rainbow of colors seen coming from the surface of an exoplanet.

That's the deceptively simple idea behind a study led by Siddharth Hegde at the Max Planck Institute for Astronomy in Germany. Seen from light-years away, plants on Earth give our planet a distinctive hue in the near-infrared, a phenomenon called red edge. That's because the chlorophyll in plants absorbs most visible light waves but starts to become transparent to wavelengths on the redder end of the spectrum. An extraterrestrial looking at Earth through a telescope could match this reflected color with the presence of oxygen in our atmosphere and conclude there is life here.


exoplanets palette
Eight of the 137 microorganism samples used to measure biosignatures for the catalog of reflection signatures of Earth life forms. In each panel, the top is a regular photograph of the sample and the bottom is a micrograph, a version of the top image zoomed-in 400 times.



Plants, though, have only been around for 500 million years—a relative blip in our planet's 4.6-billion-year history. Microbes dominated the scene for some 2.5 billion years in the past, and some studies suggest they will rule the Earth again for much of its future. So Hegde and his team gathered 137 species of microorganisms that all have different pigments and that reflect light in specific ways. By building up a library of the microbes' reflectance spectra—the types of colors those microscopic critters reflect from a distance—scientists examining the light from habitable exoplanets can have a plethora of possible signals to search for, the team argues this week in the Proceedings of the National Academy of Sciences.

"No one had looked at the wide range of diverse life on Earth and asked how we could potentially spot such life on other planets, and include life from extreme environments on Earth that could be the 'norm' on other planets," Lisa Kaltenegger, a co-author on the study, says via email. "You can use it to model an Earth that is different and has different widespread biota and look how it would appear to our telescopes."

To make sure they got enough diversity, the researchers looked at temperate-dwelling microbes as well as creatures that live in extreme environments like deserts, mineral springs, hydrothermal vents or volcanically active areas.

While it might seem that alien life could take a huge variety of forms—for instance, something like the silicon-based Horta from Star Trek—it's possible to narrow things down if we restrict the search to life as we know it. First, any life-form that is carbon-based and uses water as a solvent isn't going to like the short wavelengths of light far in the ultraviolet, because this high-energy UV can damage organic molecules. At the other end of the spectrum, any molecule that alien plants (or their analogues) use to photosynthesize won't be picking up light that's too far into the infrared, because there's not enough energy at those longer wavelengths.

In addition, far-infrared light is hard to see through an Earth-like atmosphere because the gases block a lot of these waves, and whatever heat the planet emits will drown out any signal from surface life. That means the researchers restricted their library to the reflected colors we can see when looking at wavelengths in the visible part of the spectrum, the longest wavelength UV and short-wave infrared.

The library won't be much use if we can't see the planets' surfaces in the first place, and that's where the next generation of telescopes comes in, Kaltenegger says. The James Webb Space Telescope, scheduled for launch in 2018, should be able to see the spectra of relatively small exoplanet atmospheres and help scientists work out their chemical compositions, but it won't be able to see any reflected spectra from material at the surface. Luckily, there are other planned telescopes that should be able to do the job. The European Extremely Large Telescope, a 40-meter instrument in Chile, will be complete by 2022. And NASA's Wide Field Infrared Survey Telescope, which is funded and in its design stages, should be up and running by the mid-2020s.

Another issue is whether natural geologic or chemical processes could look like life and create a false signal. So far the pigments from life-forms look a lot different from those reflected by minerals, but the team hasn't examined all the possibilities either, says Kaltenegger. They hope to do more testing in the future as they build up the digital library, which is now online and free for anyone to explore at biosignatures.astro.cornell.edu.

View Article Here Read More

When did humans first begin to wear clothes?



Excerpt from todayifoundout.com

Determining exactly when humans began wearing clothes is a challenge, largely because early clothes would have been things like animal hides, which degrade rapidly. Therefore, there’s very little archaeological evidence that can be used to determine the date that clothing started being worn. 

There have been several different theories based on what archaeologists have been able to find. For instance, based on genetic skin-coloration research, humans lost body hair around one million years ago—an ideal time to start wearing clothes for warmth. The first tools used to scrape hides date back to 780,000 years ago, but animal hides served other uses, such as providing shelter, and it’s thought that those tools were used to prepare hides for that, rather than clothing. Eyed needles started appearing around 40,000 years ago, but those tools point to more complex clothing, meaning clothes had probably already been around for a while.
All that being said, scientists have started gathering alternative data that might help solve the mystery of when we humans started covering our bits.

A recent University of Florida study concluded that humans started wearing clothes some 170,000 years ago, lining up with the end of the second-to-last ice age. How did they figure that date out? By studying the evolution of lice.

Scientists observed that clothing lice are, well, extremely well-adapted to clothing. They hypothesized that body lice must have evolved to live in clothing, which meant that they weren’t around before humans started wearing clothes. The study used DNA sequencing of lice to calculate when clothing lice started to genetically split from head lice.

The findings of the study are significant because they show that clothes appeared some 70,000 years before humans started to migrate north from Africa into cooler climates. The invention of clothing was probably one factor that made migration possible.
This timing also makes sense due to known climate factors in that era.  As Ian Gilligan, a lecturer at the Australian National University, said that the study gave “an unexpectedly early date for clothing, much earlier than the earliest solid archaeological evidence, but it makes sense. It means modern humans probably started wearing clothes on a regular basis to keep warm when they were first exposed to Ice Age conditions.”

As to when humans moved on from animal hides and into textiles, the first fabric is thought to have been an early ancestor of felt. From there, early humans took up weaving some 27,000 years ago, based on impressions of baskets and textiles on clay. Around 25,000 years ago, the first Venus figurines—little statues of women—appeared wearing a variety of different clothes that pointed to weaving technology being in place by this time.
From there, more recent ancient civilizations discovered many materials they could fashion into clothing. For instance, Ancient Egyptians produced linen around 5500 BC, while the Chinese likely started producing silk around 4000 B.C.

As for clothing for fashion, instead of just keeping warm, it is thought that this occurred relatively early on. The first example of dyed flax fibers were found in a cave in the Republic of Georgia and date back to 36,000 years ago. That being said, while they may have added colour, early clothes seem to have been much simpler than the clothing we wear today—mostly cloth draped over the shoulder and pinned at the waist.

Around the mid-1300s in certain regions of the world, with some technological advances in previous century, clothing fashion began to change drastically from what it was before. For instance, clothing started to be made to form fit the human body, with curved seams, laces, and buttons. Contrasting colours and fabrics also became popular in England. From this time, fashion in the West began to change at an alarming rate, largely based on aesthetics, whereas in other cultures fashion typically changed only with great political upheaval, meaning changes came more slowly in most other cultures.

The Industrial Revolution, of course, had a huge impact on the clothing industry. Clothes could now be made en mass in factories rather than just in the home and could be transported from factory to market in record time. As a result, clothes became drastically cheaper, leading to people having significantly larger wardrobes and contributing to the constant change in fashion that we still see today.

View Article Here Read More

Earth’s address within a massive supercluster of 100,000 galaxies ~ Video





Excerpt from cnet.com


Astronomers have mapped the Milky Way's position to the outskirts of a supercluster of galaxies, newly dubbed Laniakea, meaning "Immense Heaven".

The distribution of galaxies throughout the universe is not more-or-less even; instead, galaxies tend to cluster together, bound together by the pull of each other's gravity. These groups can be a variety of sizes. The Milky Way Galaxy, for instance, is part of what is called the Local Group, which contains upwards of 54 galaxies, covering a diameter of 10 megalight-years (10 million light-years).

Click to zoom

But this Local Group is just a small part of a much, much bigger structure, which researchers at the University of Hawai'i Mānoa have now mapped in detail. Coming in at over 100,000 galaxies, the massive supercluster has been given the name Laniakea -- "immense heaven" in Hawaiian.
The new 3D map was created by examining the positions and movements of the 8000 closest galaxies to the Milky Way. After calculating which galaxies were being pulled away from us and which were being pulled towards us -- accounting for the universe's expansion -- the team, led by astronomer R. Brent Tully, was able to map the paths of galactic migration -- and define the boundaries of Laniakea.

Traditionally, the borders of galactic superclusters have been difficult to map, but studying the gravitational force acting on our neighbouring galaxies has provided some important clues. All objects inside Laniakea are being slowly but surely drawn to a single point -- a force known as the Great Attractor, a gravitational anomaly with a mass tens of thousands of times the mass of the Milky Way.

Everything that is being pulled towards the Great Attractor is part of Laniakea -- although it's possible that Laniakea itself might in turn be part of a structure that is larger still.

"We probably need to measure to another factor of three in distance to explain our local motion," Tully said. "We might find that we have to come up with another name for something larger than we're a part of -- we're entertaining that as a real possibility."

The full paper, "The Laniakea supercluster of galaxies", can be read online in the journal Nature.

View Article Here Read More

Warp in spacetime lets astronomers watch the same star explode four times



Excerpt from csmonitor.com

Thanks to a phenomenon known as gravitational lensing, the Hubble Space Telescope has captured four images of the same supernova explosion.

For the first time, a cosmic magnifying glass has allowed scientists to see the same star explosion four times, possibly offering a revealing glimpse into these explosive stellar deaths and the nature of the accelerating universe.

Astronomers using the Hubble Space Telescope have captured four images of a supernova explosion in deep space thanks to a galaxy located between Earth and the massive star explosion. You can see how Hubble saw the supernova in this NASA video. The galaxy cluster warped the fabric of space and time around it — like a bowling ball placed on a bed sheet — allowing scientists to see the supernova in four images.

"It was predicted 50 years ago that a supernova could be gravitationally lensed like this, but it's taken a long time for someone to find an example," lead study author Patrick Kelly, an astronomer at the University of California, Berkeley told Space.com. "It's fun to have been able to find the first one." 

The supernova, which was discovered on Nov. 11, 2014, is located about 9.3 billion light-years away from Earth, near the edge of the observable universe. The researchers have named the distant supernova SN Refsdal in honor of the late Norwegian astrophysicist Sjur Refsdal, a pioneer of gravitational lensing studies. Due to gravitational lensing, "the supernova appears 20 times brighter than its normal brightness," study co-author Jens Hjorth, head of the Dark Cosmology Centre at the Niels Bohr Institute at the University of Copenhagen, said in a statement.
The lensing galaxy, which is about 5 billion light-years from Earth, is part of a large cluster of galaxies known MACS J1149.6+2223. In 2009, astronomers discovered that this cluster was the source of the largest known image of a spiral galaxy ever seen through a gravitational lens.

The four images of the supernova each appeared separately over the course of a few weeks. This is because light can take various paths around and through a gravitational lens, arriving at Earth at different times.

Using gravity as a lens

Gravity is created when matter warps the fabric of reality. The greater the mass of an object, the more space-time curves around that object and the stronger its gravitational pull, the discovery enshrined in Einstein's theory of general relativity, which celebrates its centennial this year.

As a result, gravity can also bend light like a lens, meaning objects see n behind powerful gravitational fields, such as those of massive galaxies, are magnified. Gravitational lensing was first discovered in 1979, and today gravitational lenses can help astronomers see features otherwise too distant and faint to detect with even the largest telescopes.

"These gravitational lenses are like a natural magnifying glass. It's like having a much bigger telescope," Kelly said in a statement. "We can get magnifications of up to 100 times by looking through these galaxy clusters."

When light is far from a gravitationally lensing mass, or if the gravitationally lensing mass is not especially large, only "weak lensing" occurs, barely distorting the light. However, when the light comes from almost exactly behind the gravitationally lensing mass, "strong lensing" can happen. 

When a strongly lensed object occupies a large patch of space — for instance, if it's a galaxy — it can get smeared into an "Einstein ring" surrounding a gravitationally lensing mass. However, strong lensing of small, pointlike items — for instance, super-bright objects known as quasars — often produces multiple images surrounding the gravitationally lensing mass, resulting in a so-called "Einstein cross."

The observations of SN Refsdal mark the first time astronomers on Earth have witnessed strong lensing of a  supernova, with four images of an exploding star arrayed as an Einstein cross.

An expanding universe

These new findings could help scientists measure the accelerating rate at which the universe is expanding, researchers say.

A computer model of the lensing cluster suggests the scientists missed chances to see the lensed supernova 50 and 10 years ago. However, the model also suggests more images of the explosion will repeat again within the next 10 years.

The timing of when all these images of the supernova arrive depends on the gravitational pull of the matter generating the gravitational lens. So, by measuring those times, the researchers hope to map how visible normal matter and invisible dark matter is distributed in the lensing galaxy.

Dark matter is currently one of the greatest mysteries in science, a poorly understood substance thought to make up five-sixths of all matter in the universe. A better understanding of how dark matter is behaving in this gravitationally lensing cluster might help shed light on the material's nature, Kelly said.

Analyzing when the images arrive could also help scientists pinpoint the rate at which the universe is expanding. Although there are already several ways to measure the cosmic expansion rate, "there has been a lot of heated debate between different methods, so it'd be interesting to see how this new technique might affect the area," Kelly said. "It's always nice to have completely independent measurements of the same quantity."

The scientists detailed their findings in the March 6 issue of the journal Science.

View Article Here Read More

Monster Black Hole Is the Largest and Brightest Ever Found



Largest and Brightest Black Hole
An artist's illustration of a monster supermassive black hole at the heart of a quasar in the distant universe. Scientists say the newfound black hole SDSS J010013.02+280225.8 is the largest and brightest ever found.

Excerpt from space.com

Astronomers have discovered the largest and most luminous black hole ever seen — an ancient monster with a mass about 12 billion times that of the sun — that dates back to when the universe was less than 1 billion years old.

It remains a mystery how black holes could have grown so huge in such a relatively brief time after the dawn of the universe, researchers say.

Supermassive black holes are thought to lurk in the hearts of most, if not all, large galaxies. The largest black holes found so far in the nearby universe have masses more than 10 billion times that of the sun. In comparison, the black hole at the center of the Milky Way is thought to have a mass only 4 million to 5 million times that of the sun. 


Although not even light can escape the powerful gravitational pulls of black holes — hence, their name — black holes are often bright. That's because they're surrounded by features known as accretion disks, which are made up of gas and dust that heat up and give off light as it swirl into the black holes. Astronomers suspect that quasars, the brightest objects in the universe, contain supermassive black holes that release extraordinarily large amounts of light as they rip apart stars.
So far, astronomers have discovered 40 quasars — each with a black hole about 1 billion times the mass of the sun — dating back to when the universe was less than 1 billion years old. Now, scientists report the discovery of a supermassive black hole 12 billion times the mass of the sun about 12.8 billion light-years from Earth that dates back to when the universe was only about 875 million years old.

This black hole — technically known as SDSS J010013.02+280225.8, or J0100+2802 for short — is not only the most massive quasar ever seen in the early universe but also the most luminous. It is about 429 trillion times brighter than the sun and seven times brighter than the most distant quasar known.

The light from very distant quasars can take billions of years to reach Earth. As such, astronomers can see quasars as they were when the universe was young.

This black hole dates back to a little more than 6 percent of the universe's current age of 13.8 billion years.

"This is quite surprising because it presents serious challenges to theories of black hole growth in the early universe," said lead study author Xue-Bing Wu, an astrophysicist at Peking University in Beijing.

Accretion discs limit the speed of modern black holes' growth. First, as gas and dust in the disks get close to black holes, traffic jams slow down any other material that's falling into them. Second, as matter collides in these traffic jams, it heats up, emitting radiation that drives gas and dust away from the black holes.

Newfound Quasar SDSS J0100+2802
The newfound quasar SDSS J0100+2802 has the most massive black hole and the highest luminosity among all known distant quasars, as shown in this comparison chart of the black hole's mass and brightness.


Scientists still do not have a satisfactory theory to explain how these supermassive objects formed in the early universe, Wu said.

"It requires either very special ways to quickly grow the black hole or a huge seed black hole," Wu told Space.com. For instance, a recent study suggested that because the early universe was much smaller than it is today, gas was often denser, obscuring a substantial amount of the radiation given off by accretion disks and thus helping matter fall into black holes.

The researchers noted that the light from this black hole could help provide clues about the dark corners of the distant cosmos. As the quasar's light shines toward Earth, it passes through intergalactic gas that colors the light. By deducing how this intergalactic gas influenced the spectrum of light from the quasar, scientists can deduce which elements make up this gas. This knowledge, in turn, can provide insight into the star-formation processes that were at work shortly after the Big Bang that produced these elements.

"This quasar is the most luminous one in the early universe, which, like a lighthouse, will provide us chances to use it as a unique tool to study the cosmic structure of the dark, distant universe," Wu said.
The scientists detailed their findings in the Feb. 26 issue of the journal Nature.

View Article Here Read More

Yes, that 3D-printed mansion is safe to live in


WinSun claims that their new 3D printed five-story building is the tallest of its kind in the world. Credit: 3ders.org
WinSun claims that their new 3D printed five-story building is the tallest of its kind in the world. 


Excerpt from

Back in April, a team of Chinese construction workers used a 3D printer to construct houses. By day’s end, there were 10 standing. They were compact and fairly bare bones — nothing much to look at besides the “wow!” factor of there being as many as — count them — 10. But this time around, those same builders have taken the wraps off an achievement that’s roundly more impressive.
In Suzhou Industrial Park, adjacent to Shanghai, stands a five-story structure that the WinSun Decoration Design Engineering firm claims is “the world’s tallest 3D-printed building.” Next to it is the equally massive 3D-printed mansion, which measures 11,840 square feet. Like the previous buildings, the walls are comprised of a mix of concrete and recycled waste materials, such as glass and steel, and formed layer by printed layer. The company stated that the total cost for the mansion was roughly $161,000. 
In a broader sense, this latest feat is yet another indication of how rapidly additive manufacturing techniques are advancing. Once used primarily as a means to quickly render miniature model versions of products, the technology has reached a point where large-scale printers are now capable of making life-sized working creations, such as automobiles, in mere days. For instance, it took less than 48 hours for start-up Local Motors to print a two-seater called the Strati into existence and drive it off the showroom.
Many of these designs, however, typically don’t amount to much beyond being passion projects meant to push 3D printing into new frontiers and drum up some publicity along the way. One example of this is the massive 3D Print Canal House that’s being constructed entirely on-site along a canal in Amsterdam, a process that’s slated to take longer and is less feasible than standard construction, Phil Reeves of UK-based 3D printing research firm Econolyst recently told CNN.
More promising, though, is a system developed by Behrokh Khoshnevis, a University of Southern California engineering professor. His concept machine, called Contour Crafting, involves a clever combination of mechanical cranes and 3D layering to print and assemble entire homes simultaneously — complete with insulation and indoor plumbing — in less than a day. 

Assembling 3D printed buildings is quite similar to erecting prefab homes. Credit: 3ders.org
Assembling 3D printed buildings is quite similar to erecting prefab homes. 


The approach employed by WinSun isn’t anywhere near that level of sophistication, but it may well prove to be the most practical – at least thus far. There is some labor and equipment costs that comes from trucking in and piecing together the various sections on-site, though the manner in which it all comes together is comparable to the ease of prefab assembly. It’s also reportedly greener thanks to the addition of recycled materials. 
To pitch the advantages of their technology, the company held a news conference to announce that they had taken on orders for 20,000 smaller units as well as highlight some significant cost-cutting figures. According toindustry news site 3Der:
The sheer size of the printer allows for a 10x increase in production efficiency. WinSun estimates that 3D printing technology can save between 30 and 60 percent of building materials and shortens production times by 50 to even 70 percent, while decreasing labor costs by 50 up to even 80 percent. Future applications include 3D printed bridges or tall office buildings that can be built right on site.
WinSun did not respond to a request to disclose how they arrived at those numbers, but Enrico Dini, an Italian civil engineer and chairman of competing start-up Monolite, says that he suspects the calculations may be a tad bit inflated. Still, he emphasized that his own data does back up the claim that, compared to conventional methods, layering may boost overall efficiency. 
“It would be very difficult to fabricate such large sections with traditional concrete casting,” he says. “With 3D printing, you have a lot less waste because you’re only printing out as much material as you need and you can custom shape whole sections on the spot, which can be a big challenge.”

WinSuns 3D printed villa has several rooms and has been deemed to be up to Chinas national safety standards. Credit: 3ders.org
WinSun’s 3D-printed villa has several rooms and has been deemed to be up to China’s national safety standards.

One major concern is whether these large-scale dwellings can hold up over time against the elements. According to 3Der, Ma Rongquan, chief engineer of China Construction Bureau, inspected the building’s structural integrity and found them to be up to code, but was careful to note that state officials have yet to establish specific criteria for assessing the long-term safety of 3D printed architecture.   
And as Dini, who supports the technology, points out, there is the possibility that the use of additive manufacturing may pose some degree of risk. “The only issue is that as the layers of concrete are bonded together, they’re drying at slightly different rates and that’s not very ideal,” he explains. “So there’s maybe a higher chance of it fracturing at the contact point if there’s a strong enough force at play.” 
Regardless, Dini says he’d feel completely safe going inside any floor of either building since construction materials used today are likely to contain special additives to enhance strength and resistance. One such formulation, fiber-reinforced Ductal, has been shown in some tests to be 10 times stronger and last twice as long as regular concrete. He stressed that walls should also be tested to ensure that other properties, such as acoustics, ventilation and thermal insulations are on par with existing buildings.
“In Italy, building standards are extremely strict,” he noted. “But I can’t say I can say the same about China.”

View Article Here Read More

Eight New Goldilocks Planets that May Host Alien Life Found



Eight New Goldilocks Planets that May Host Alien Life Found


Excerpt from utahpeoplespost.com
By Frank Smith

Scientists from the Harvard-Smithsonian Center for Astrophysics (CfA) recently reported that they identified eight new exoplanets orbiting their host stars in the so-called “Goldilocks” zone. Researchers also said that many of these objects have an increased chance to be Earth-like, rocky planets with a high potential of hosting alien life.
The “Goldilocks zone,” or the habitable zone, is a patch of space around a Sun-like star that allow planets orbiting within it hold liquid water on their surface if they also have the necessary atmospheric pressure for it. Most Goldilocks planets are Earth-sized so scientists hope that one of them may host life, even microbial forms of life.
The new discovery of the exoplanets doubles the number of known planets located in the habitable zone of their host stars. Scientists explain that the habitable zone implies that the planets within it receive as much solar as our planet does. Too much radiation and heat would boil the water on their surface and even blow away their atmosphere. Too little radiation would lead to a small icy world.
The authors of the discovery also reported that two of the newly found planets are the most akin to Earth than any other known exoplanets to this date. The two planets were named Kepler-438b and Kepler-442b after the space telescope that had discovered them.
Kepler-438b is located 470 light-years from our planet, while Kepler-442b stands in the constellation Lyra at a 1,120 light-year-long distance away from Earth. Kepler-442b is also the most remote exoplanet of the eight.
The two planets have also an extremely short orbit because they are very close to their host stars. On Kepler-438b, which has a diameter only 12 percent than the Earth’s, a year lasts only 35 days, while on Kepler-442b, which is nearly one third larger than our planet, a year passes every 112 days.
Scientists estimate that Kepler-438b has a 70 percent increased chance of having a rocky core, while Kepler-442b has only a 60 percent chance.

However, the two planets being in the habitable zone of their host stars is not a certain fact. For instance, astronomers estimate that Kepler-438b has only a 70 percent chance of being located in the Goldilocks zone, while Kepler-442b has a 97 percent chance of being a Goldilocks planet.
We don’t know for sure whether any of the planets in our sample are truly habitable. All we can say is that they’re promising candidates,”
David Kipping of the CfA and co-author of the discovery said.

View Article Here Read More
Older posts Newer posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑