Tag: immediately (page 2 of 8)

UFO-Alien Abduction Still Haunts Travis Walton

Excerpt from huffingtonpost.comClose encounters of the FOURTH kind. That's when a person claims to have been kidnapped by a UFO and its reportedly otherworldly occupants.Of course, there's no tangible evidence that anyone has ever been taken aboard ...

View Article Here Read More

Roswell Alien Slides Unveiled: You be the judge

Alien or mummy? A screenshot of one of the 2 slides which have not yet been released to the public. Excerpt from mirror.co.uk Two photographs of a "dead alien" were unveiled at a big money event last night - and immediately dismissed as fake. A s...

View Article Here Read More

The Messenger of fate: NASA spacecraft smashes into planet Mercury

Excerpt from usatoday.comIts fuel tanks empty and its options gone, NASA's Messenger spacecraft smashed into planet Mercury on Thursday afternoon after valiantly fighting off the inevitable.Engineers calculated that the spacecraft, traveling a scorc...

View Article Here Read More

An Alien Radio Beacon? Possibly Not This Time



An Alien Radio Beacon? Possibly Not This Time.

Excerpt from postpioneer.com


For practically a decade, astronomers have puzzled over strong bursts of radio energy that appear to be hailing from billions of light years away. Recently, we received reports of a new wrinkle to this mystery: The bursts seem to comply with a mathematical...

For practically a decade, astronomers have puzzled over strong bursts of radio energy that appear to be hailing from billions of light years away. Recently, we received reports of a new wrinkle to this mystery: The bursts seem to comply with a mathematical pattern, one that does not line up with something we know about cosmic physics.

And, of course, when we hear “mathematical pattern,” “radio transmission,” and “outer space,” all strung collectively, we straight away jump to our preferred explanation—aliens! (Or, you know, a decaying pulsar star, an unmapped spy satellite, or a cell telephone tower.)

It’s also probable that the pattern doesn’t basically exist.

Because 2007, telescopes have picked up almost a dozen so-known as “fast radio bursts,” pulses that last for mere milliseconds, but erupt with as a great deal power as the sun releases in a month. Where could they be coming from? To come across out, a group of researchers took advantage of a basic principle: That higher frequency radio waves encounter less interference as they traverse space, and are detected by our telescopes earlier than reduce frequency waves. The time delay, or “dispersion measure”, in between larger and reduce frequency radio waves from the very same pulse event can be applied to figure out the distance those waves traveled.

Here’s where things got weird. When researchers calculated the dispersion distance for each and every of eleven rapid radio bursts, they identified that every distance is an integer many of a single number: 187.5. When plotted on a graph, as the researchers show us in Figure 1 of their paper, the points type a striking pattern.

A single explanation is that the bursts are coming from distinctive sources, all at on a regular basis spaced intervals from the Earth, billions of light years away. They could also be brought on by a smaller cosmic object a lot closer to residence, such as a pulsar star, behaving according to some sort of physics we don’t yet understand. And then there’s the possibility that aliens are trying to communicate, by blasting simple numeric patterns into space.

But no matter how you slice it, eleven data points is a tiny sample set to draw any meaningful conclusions from. A handful of deviant observations could bring about the complete pattern to unravel.

And that is precisely what seems to be happening. As Nadia Drake reports for National Geographic, newer observations, not integrated in the most up-to-date scientific report or other well known media articles, don’t fit:

“There are 5 quickly radio bursts to be reported,” says Michael Kramer of Germany’s Max Planck Institute for Radioastronomy. “They do not fit the pattern.”
Rather of aliens, unexpected astrophysics, or even Earthly interference, the mysterious mathematical pattern is probably an artifact produced by a little sample size, Ransom says. When working with a limited quantity of data – say, a population of 11 quickly radio bursts – it’s straightforward to draw lines that connect the dots. Usually, on the other hand, these lines disappear when much more dots are added.
“My prediction is that this pattern will be washed out quite immediately after a lot more fast radio bursts are located,” says West Virginia University’s Duncan Lorimer, who reported the very first burst in 2007. “It’s a great instance of how apparently considerable final results can be identified in sparse information sets.”

That is a bit of a bummer, but nevertheless, these radio bursts are fascinating, and what could be causing them remains as a lot of a mystery as ever. It could even nonetheless be aliens, if not an alien beacon. As SETI Institute Director Seth Shostak told me in an e mail:

“If it is a signal, nicely, it is surely NOT a message — except perhaps to say ‘here we are’. There’s not actual bandwidth to it, which suggests these speedy radio bursts can not encode several bits. But there are so many other possibilities, I feel that automatically attributing one thing in the sky that we don’t (at very first) understand to the operate of aliens is … premature!”

If there’s 1 point that is clear in this whole organization, it is that we’ve nonetheless got plenty to discover about the patterns woven into the universe around us.

View Article Here Read More

Why the U.S. Gave Up on the Moon

Moon nearside



Excerpt from spacenews.com


Recently, several space advocacy groups joined forces to form the Alliance for Space Development. Their published objectives include a mention of obvious near-term goals such as supporting the commercial crew program, transitioning from use of the International Space Station to future private space stations and finding ways to reduce the cost of access to space.  What is notably missing from these objectives and those of many other space agencies, companies and advocacy groups is any mention of building a permanent settlement on the moon. It’s as if the lunar surface has become our crazy uncle that we all acknowledge exists but we’d prefer not to mention (or visit).  What made the next logical step in mankind’s progression beyond the bounds of Earth such a taboo subject?  If, as the Alliance for Space Development suggests, our nation wishes to move toward a path of permanent space settlements, the most logical step is our own planet’s satellite.

Lunar base conception
A 2006 NASA conception of a lunar base. Credit: NASA


A base on the lunar surface is a better place to study space settlement than a space station or Mars for many reasons. Unlike a space station, the base does not have to contend with aerodynamic drag, attitude control issues or contamination and impingement from its own thrusters. Unlike a space station, which exists in a total vacuum and resource void, a lunar base has access to at least some surface resources in the forms of minerals, albeit fewer than might be available on Mars.  Many people naturally want to go directly to Mars as our next step. Even SpaceX has publicly stated this as its ultimate goal, with SpaceX President Gwynne Shotwell noting that “we’re not moon people.” However, Mars makes sense only if we think the technology is ready to safely support humans on another surface for long periods of time. Furthermore, budget restrictions make an ambitious goal like going immediately to Mars an unlikely prospect. Why are we afraid to take the seemingly necessary baby steps of developing the technology for a long-term base on a surface that can be reached in mere days instead of months?  The tendency to want to skip a lunar settlement is not a new phenomenon. Even before the first landing on the moon, U.S. and NASA political leadership was contemplating the future of manned space, and few of the visions involved a lunar base. The early space program was driven by Cold War competition with Moscow, and the kinds of ideas that circulated at the time involved milestones that seemed novel such as reusable spaceplanes, nuclear-powered rockets, space stations and missions to Mars. 

When the United States was on the verge of a series of landings on the moon, building a permanent base just didn’t seem like much of a new giant leap. NASA's ConstellationNASA’s Constellation program, featuring the Orion manned capsule set atop the Ares 1 launch vehicle, was meant to send astronauts back to the moon. Credit: NASA  The idea of a lunar landing mission was not reintroduced seriously until the George W. Bush administration and the introduction of the Constellation program. This program came at a complex time for NASA: The space shuttle was recovering from the Columbia disaster, the space station was in the midst of construction and the United States found itself with large budget deficits. However, despite its budgetary and schedule problems, which are common in any serious aerospace development project from space programs to jumbo-jet development, it provided NASA with a vision and a goal that were reasonable and sensible as next steps toward a long-term future of exploration beyond Earth. 

Constellation was nevertheless canceled, and we have since returned to a most uncommon sense.  The decision to avoid any sort of lunar activity in current space policy may have been biased by the Obama administration’s desire to move as far away as possible from the policies of the previous administration. 

Regardless of the cause, discussion of returning to the moon is no longer on the table.  Without the moon, the only feasible mission that NASA could come up with that is within reach given the current technology and budget is the Asteroid Redirect Mission.  
Even planetary scientists have spoken out against the mission, finding that it will provide little scientific value. It will also provide limited engineering and technology value, if we assume that our long-term goal is to permanently settle space. The experience gained from this sort of flight has little applicability to planetary resource utilization, long-term life support or other technologies needed for settlement.  

If we are to have a program of manned space exploration, we must decide what the long-term goals of such a program should be, and we should align our actions with those goals. When resources such as funding are limited, space agencies and political leaders should not squander these limited resources on missions that make no sense. Instead, the limited funding should be used to continue toward our long-term goals, accepting a slower pace or slight scale-back in mission scope.  Establishing a permanent human settlement in space is a noble goal, one that will eventually redefine humanity. Like explorers before us, it is also not a goal that will be achieved in a short period of time. We would be wise to keep our eyes on that goal and the road needed to get us there. And the next likely stop on that road is a permanent home just above our heads, on the surface of the brightest light in the night sky.  

Paul Brower is an aerospace systems engineer on the operations team for the O3b Networks satellite fleet. He previously worked in mission control at NASA for 10 years.
Recently, several space advocacy groups joined forces to form the Alliance for Space Development. Their published objectives include a mention of obvious near-term goals such as supporting the commercial crew program, transitioning from use of the International Space Station to future private space stations and finding ways to reduce the cost of access to space.
What is notably missing from these objectives and those of many other space agencies, companies and advocacy groups is any mention of building a permanent settlement on the moon. It’s as if the lunar surface has become our crazy uncle that we all acknowledge exists but we’d prefer not to mention (or visit).
What made the next logical step in mankind’s progression beyond the bounds of Earth such a taboo subject?
If, as the Alliance for Space Development suggests, our nation wishes to move toward a path of permanent space settlements, the most logical step is our own planet’s satellite.
Lunar base conception
A 2006 NASA conception of a lunar base. Credit: NASA
A base on the lunar surface is a better place to study space settlement than a space station or Mars for many reasons. Unlike a space station, the base does not have to contend with aerodynamic drag, attitude control issues or contamination and impingement from its own thrusters. Unlike a space station, which exists in a total vacuum and resource void, a lunar base has access to at least some surface resources in the forms of minerals, albeit fewer than might be available on Mars.
Many people naturally want to go directly to Mars as our next step. Even SpaceX has publicly stated this as its ultimate goal, with SpaceX President Gwynne Shotwell noting that “we’re not moon people.” However, Mars makes sense only if we think the technology is ready to safely support humans on another surface for long periods of time. Furthermore, budget restrictions make an ambitious goal like going immediately to Mars an unlikely prospect. Why are we afraid to take the seemingly necessary baby steps of developing the technology for a long-term base on a surface that can be reached in mere days instead of months?
The tendency to want to skip a lunar settlement is not a new phenomenon. Even before the first landing on the moon, U.S. and NASA political leadership was contemplating the future of manned space, and few of the visions involved a lunar base. The early space program was driven by Cold War competition with Moscow, and the kinds of ideas that circulated at the time involved milestones that seemed novel such as reusable spaceplanes, nuclear-powered rockets, space stations and missions to Mars. When the United States was on the verge of a series of landings on the moon, building a permanent base just didn’t seem like much of a new giant leap.
NASA's Constellation
NASA’s Constellation program, featuring the Orion manned capsule set atop the Ares 1 launch vehicle, was meant to send astronauts back to the moon. Credit: NASA
The idea of a lunar landing mission was not reintroduced seriously until the George W. Bush administration and the introduction of the Constellation program. This program came at a complex time for NASA: The space shuttle was recovering from the Columbia disaster, the space station was in the midst of construction and the United States found itself with large budget deficits. However, despite its budgetary and schedule problems, which are common in any serious aerospace development project from space programs to jumbo-jet development, it provided NASA with a vision and a goal that were reasonable and sensible as next steps toward a long-term future of exploration beyond Earth.
Constellation was nevertheless canceled, and we have since returned to a most uncommon sense.
The decision to avoid any sort of lunar activity in current space policy may have been biased by the Obama administration’s desire to move as far away as possible from the policies of the previous administration. Regardless of the cause, discussion of returning to the moon is no longer on the table.
Without the moon, the only feasible mission that NASA could come up with that is within reach given the current technology and budget is the Asteroid Redirect Mission.
Even planetary scientists have spoken out against the mission, finding that it will provide little scientific value. It will also provide limited engineering and technology value, if we assume that our long-term goal is to permanently settle space. The experience gained from this sort of flight has little applicability to planetary resource utilization, long-term life support or other technologies needed for settlement.
Advertisement
If we are to have a program of manned space exploration, we must decide what the long-term goals of such a program should be, and we should align our actions with those goals. When resources such as funding are limited, space agencies and political leaders should not squander these limited resources on missions that make no sense. Instead, the limited funding should be used to continue toward our long-term goals, accepting a slower pace or slight scale-back in mission scope.
Establishing a permanent human settlement in space is a noble goal, one that will eventually redefine humanity. Like explorers before us, it is also not a goal that will be achieved in a short period of time. We would be wise to keep our eyes on that goal and the road needed to get us there. And the next likely stop on that road is a permanent home just above our heads, on the surface of the brightest light in the night sky.

Paul Brower is an aerospace systems engineer on the operations team for the O3b Networks satellite fleet. He previously worked in mission control at NASA for 10 years.
- See more at: http://spacenews.com/op-ed-why-the-u-s-gave-up-on-the-moon/#sthash.czfTscvg.dpuf

View Article Here Read More

Minnesota Twins Provide Intriguing Evidence of Incarnate Road Map


The Jim's.jpg
Minnesota Twins (not the baseball team) James & James, whose similar stories defy chance and coincidence.

Excerpt from people.com 
May 7th, 1979

One of science's so far uncrackable mysteries is the comparative impact of heredity vs. environment. An obvious experimental method would be to raise identical twins separately, but that could hardly be done with humans. So for the last 10 years University of Minnesota psychologist Thomas Bouchard, 41, has been studying twins under less than ideal, lab-controlled conditions—until, eureka, he ran into the stuff of social scientists' dreams. Identical twin males, who had been separated by adoption at three weeks, suddenly rediscovered each other in Ohio at age 39.

Within two weeks after reading about them in the press, Dr. Bouchard had the twins in his Minneapolis lab for tests. At the outset of his investigation the psychologist said, "I think there are going to be all kinds of differences that will surprise even the twins." But what was immediately apparent were eerie similarities that left even Bouchard "flabbergasted."

Curiously, both had been christened James by their adoptive parents, the Jess Lewises of Lima and the Ernest Springers of Piqua, 40 miles away. As schoolboys, both enjoyed math and carpentry—but hated spelling. Both pursued similar adult occupations: Lewis is a security guard at a steel mill, and Springer was a deputy sheriff (though he is now a clerk for a power company). Both married women named Linda, only to divorce and remarry—each a woman named Betty. Both have sons: James Alan Lewis and James Allan Springer.

The two men shared one other fact in common. As Jim Springer put it, "I always felt an emptiness." Neither the Springers nor the Lewises ever met the 15-year-old (unwed) mother of their sons, and both couples were told that their adoptive child had a twin who died at birth. Then one day, when Jim Lewis was 16 months old, his mother visited the Miami County courthouse to settle the adoption paperwork, and an official remarked offhandedly, "They named the other little boy 'Jim' too."

For 37 years that hint tugged at Mrs. Lewis, who occasionally urged her son to find out if it was true. Finally, last Thanksgiving, he agreed to search—though he says he doesn't know why. Jim Lewis wrote the probate court, which had a record of the adoption, and contacted the Springer parents in Piqua. "I came home one day," Lewis recounts, "and had this message to call 'Jim Springer.' " When he phoned Springer, Lewis blurted out: "Are you my brother?" "Yup," Springer replied. Four days later, last Feb. 9, Lewis drove to meet his twin for an emotional reunion.

Dr. Bouchard offered expenses and a small honorarium to get them to Minneapolis for a week of extensive physical and psychological tests. He wanted to begin as soon as possible to preclude their reminiscing together too long and thus "contaminating" the evidence. Though not the first such separated twins—the records show 19 previous sets in the U.S. among some 75 worldwide—Lewis and Springer were believed to have been apart by far the longest.

The detailed results of Bouchard's textbook case will be revealed to the twins themselves, but to protect their privacy will be buried among other data in the professor's book on differential psychology now in progress. There has been one development that may leave the twins still puzzling over heredity and environment. On Feb. 28 Jim Lewis, having divorced his second wife, Betty, married a woman named Sandy Jacobs. Betty and Jim Springer were present, with Jim serving as his newfound brother's best man.

View Article Here Read More

Fresh fossil studies push the dawn of man back to 2.8 million years

(Reuters) - A 2.8-million-year-old jawbone fossil with five intact teeth unearthed in an Ethiopian desert is pushing back the dawn of humankind by about half a million years.Scientists said on Wednesday the fossil represents the oldest known repres...

View Article Here Read More

‘Firefly’ Starship to Blaze a Trail to Alpha Centauri?

The Icarus Interstellar 'Firefly' starship concept could use novel nuclear fusion techniques to power its way to Alpha Centauri within 100 years.Adrian MannExcerpt from news.discovery.com As part of Icarus Interstellar's continuing series ...

View Article Here Read More

New internet neutrality: FCC chairman proposes strong new rules

Excerpt from mercurynews.comThe federal government's top communications regulator on Wednesday called for strong new rules to bar Internet and wireless providers from blocking, slowing or discriminating against consumers' access to particular websi...

View Article Here Read More

Strange rock containing 30,000 diamonds baffles scientists


Strange rock containing 30,000 diamonds baffles scientists
© Getty Images Strange rock containing 30,000 diamonds baffles scientists

msn.com

When Russian miners pulled a strange red and green stone out of the ground, they immediately knew it was different to the thousands of tons of ore they process every day. 

In fact, what workers at Alrosa 's Udachnaya diamond mine had unearthed was a 30mm rock that contained 30,000 diamonds - a conentration 1m times higher than normal. 

However, despite the rare find the company donated the rock to the Russian Academy of Sciences, as the diamonds are so small that they cannot be used as gems. 

After scanning the rock with X-rays, scientists found that the diamonds inside measure just 1mm and are octahedral in shape - similar to two pyramids stuck together at the base. The red and green colouring comes from larger crystals of garnet, olivine and pyroxene. 

"The exciting thing for me is there are 30,000 itty-bitty, perfect octahedrons, and not one big diamond," said Larry Taylor, a geologist at the University of Tennessee, who presented the findings at the American Geophysical Union 's annual meeting. "It's like they formed instantaneously. This rock is a strange one indeed."

Scientists are excited at the finding as they hope it will shed further light on how diamonds are made. They know diamonds are crystals of pure carbon that form under crushing pressures and intense heat, mostly formed in the Earth's mantle, the layer beneath the crust or surface layer, at a depth of about 150km. However, certain processes in their creation remain a mystery. 

"The [chemical] reactions in which diamonds occur still remain an enigma," Mr Taylor told Live Science, which first reported the story. 

View Article Here Read More

Top 10 Ridiculously Common Science Myths






listverse.com
There is nothing better than a bit of mythbusting (which accounts for the popularity of the television program of the same name), so here we are again, presenting you with a new list of terribly common misconceptions and myths – this time about science.

10
Evolutionary Improvements
Evolution Std.Jpg
The Myth: Evolution causes something to go from “lower” to “higher”
While it is a fact that natural selection weeds out unhealthy genes from the gene pool, there are many cases where an imperfect organism has survived. Some examples of this are fungi, sharks, crayfish, and mosses – these have all remained essentially the same over a great period of time. These organisms are all sufficiently adapted to their environment to survive without improvement.
Other taxa have changed a lot, but not necessarily for the better. Some creatures have had their environments changed and their adaptations may not be as well suited to their new situation. Fitness is linked to their environment, not to progress.

9
Humans Pop In Space
Ed-White.Jpg
The Myth: When exposed to the vacuum of space, the human body pops
This myth is the result of science fiction movies which use it to add excitement or drama to the plot. In fact, a human can survive for 15 – 30 seconds in outer space as long as they breathe out before the exposure (this prevents the lungs from bursting and sending air into the bloodstream). After 15 or so seconds, the lack of oxygen causes unconsciousness which eventually leads to death by asphyxiation.
8
Brightest Star
800Px-Sirius A And B Artwork.Jpg
The Myth: Polaris is the brightest star in the northern hemisphere night sky
Sirius is actually brighter with a magnitude of ?1.47 compared to Polaris’ 1.97 (the lower the number the brighter the star). The importance of Polaris is that its position in the sky marks North – and for that reason it is also called the “North Star”. Polaris is the brightest star in the constellation Ursa Minor and, interestingly, is only the current North Star as pole stars change over time because stars exhibit a slow continuous drift with respect to the Earth’s axis.
7
Five Second Rule
5Seconds1.Jpg
The Myth: Food that drops on the floor is safe to eat if you pick it up within five seconds
This is utter bunkum which should be obvious to most readers. If there are germs on the floor and the food lands on them, they will immediately stick to the food. Having said that, eating germs and dirt is not always a bad thing as it helps us to develop a robust immune system. I prefer to have a “how-tasty-is-it” rule: if it is something really tasty, it can sit there for ten minutes for all I care – I will still eat it.
6
Dark side of the Moon
179077120 (1)
The Myth: There is a dark side of the moon
Actually – every part of the moon is illuminated at sometime by the sun. This misconception has come about because there is a side of the moon which is never visible to the earth. This is due to tidal locking; this is due to the fact that Earth’s gravitational pull on the moon is so immense that it can only show one face to us. Wikipedia puts it rather smartly thus: “Tidal locking occurs when the gravitational gradient makes one side of an astronomical body always face another; for example, one side of the Earth’s Moon always faces the Earth. A tidally locked body takes just as long to rotate around its own axis as it does to revolve around its partner. This synchronous rotation causes one hemisphere constantly to face the partner body.”


5
Brain Cells
Brain Cell.Jpg
The Myth: Brain cells can’t regenerate – if you kill a brain cell, it is never replaced
The reason for this myth being so common is that it was believed and taught by the science community for a very long time. But in 1998, scientists at the Sweden and the Salk Institute in La Jolla, California discovered that brain cells in mature humans can regenerate. It had previously been long believed that complex brains would be severely disrupted by new cell growth, but the study found that the memory and learning center of the brain can create new cells – giving hope for an eventual cure for illnesses like Alzheimer’s.
4
Pennies from Heaven
Empirestatebuilding.Jpg
The Myth: A penny dropped from a very high building can kill a pedestrian below
This myth is so common it has even become a bit of a cliche in movies. The idea is that if you drop a penny from the top of a tall building (such as the Empire State Building) – it will pick up enough speed to kill a person if it lands on them on the ground. But the fact is, the aerodynamics of a penny are not sufficient to make it dangerous. What would happen in reality is that the person who gets hit would feel a sting – but they would certainly survive the impact.
3
Friction Heat
20050825-Meteor-Artist-Impression-110436.Jpg
The Myth: Meteors are heated by friction when entering the atmosphere
When a meteoroid enters the atmosphere of the earth (becoming a meteor), it is actually the speed compressing the air in front of the object that causes it to heat up. It is the pressure on the air that generates a heat intense enough to make the rock so hot that is glows brilliantly for our viewing pleasure (if we are lucky enough to be looking in the sky at the right time). We should also dispel the myth about meteors being hot when they hit the earth – becoming meteorites. Meteorites are almost always cold when they hit – and in fact they are often found covered in frost. This is because they are so cold from their journey through space that the entry heat is not sufficient to do more than burn off the outer layers.
2
Lightning
Lightning.Jpg
The Myth: Lightning never strikes the same place twice
Next time you see lightning strike and you consider running to the spot to protect yourself from the next bolt, remember this item! Lightning does strike the same place twice – in fact it is very common. Lightning obviously favors certain areas such as high trees or buildings. In a large field, the tallest object is likely to be struck multiple times until the lightning moves sufficiently far away to find a new target. The Empire State Building gets struck around 25 times a year.
1
Gravity in Space
Astronaut Banjo.Jpg
The Myth: There is no gravity in space
In fact, there is gravity in space – a lot of it. The reason that astronauts appear to be weightless because they are orbiting the earth. They are falling towards the earth but moving sufficiently sideways to miss it. So they are basically always falling but never landing. Gravity exists in virtually all areas of space. When a shuttle reaches orbit height (around 250 miles above the earth), gravity is reduced by only 10%.
Inspired by an excellent LiveScience Article. This article is licensed under the GFDL because it contains quotations from Wikipedia.

View Article Here Read More

Is a trip to the moon in the making?





Excerpt from bostonglobe.com

Decades after that first small step, space thinkers are finally getting serious about our nearest neighbor By Kevin Hartnett

This week, the European Space Agency made headlines with the first successful landing of a spacecraft on a comet, 317 million miles from Earth. It was an upbeat moment after two American crashes: the unmanned private rocket that exploded on its way to resupply the International Space Station, and the Virgin Galactic spaceplane that crashed in the Mojave Desert, killing a pilot and raising questions about whether individual businesses are up to the task of operating in space.  During this same period, there was one other piece of space news, one far less widely reported in the United States: On Nov. 1, China successfully returned a moon probe to Earth. That mission follows China’s landing of the Yutu moon rover late last year, and its announcement that it will conduct a sample-return mission to the moon in 2017.  With NASA and the Europeans focused on robot exploration of distant targets, a moon landing might not seem like a big deal: We’ve been there, and other countries are just catching up. But in recent years, interest in the moon has begun to percolate again, both in the United States and abroad—and it’s catalyzing a surprisingly diverse set of plans for how our nearby satellite will contribute to our space future.  China, India, and Japan have all completed lunar missions in the last decade, and have more in mind. Both China and Japan want to build unmanned bases in the early part of the next decade as a prelude to returning a human to the moon. In the United States, meanwhile, entrepreneurs are hatching plans for lunar commerce; one company even promises to ferry freight for paying customers to the moon as early as next year. Scientists are hatching more far-out ideas to mine hydrogen from the poles and build colonies deep in sky-lit lunar caves.  This rush of activity has been spurred in part by the Google Lunar X Prize, a $20 million award, expiring in 2015, for the first private team to land a working rover on the moon and prove it by sending back video. It is also driven by a certain understanding: If we really want to launch expeditions deeper into space, our first goal should be to travel safely to the moon—and maybe even figure out how to live there.
Entrepreneurial visions of opening the moon to commerce can seem fanciful, especially in light of the Virgin Galactic and Orbital Sciences crashes, which remind us how far we are from having a truly functional space economy. They also face an uncertain legal environment—in a sense, space belongs to everyone and to no one—whose boundaries will be tested as soon as missions start to succeed. Still, as these plans take shape, they’re a reminder that leaping blindly is sometimes a necessary step in opening any new frontier.
“All I can say is if lunar commerce is foolish,” said Columbia University astrophysicist Arlin Crotts in an e-mail, “there are a lot of industrious and dedicated fools out there!”

At its height, the Apollo program accounted for more than 4 percent of the federal budget. Today, with a mothballed shuttle and a downscaled space station, it can seem almost imaginary that humans actually walked on the moon and came back—and that we did it in the age of adding machines and rotary phones.

“In five years, we jumped into the middle of the 21st century,” says Roger Handberg, a political scientist who studies space policy at the University of Central Florida, speaking of the Apollo program. “No one thought that 40 years later we’d be in a situation where the International Space Station is the height of our ambition.”

An image of Earth and the moon created from photos by Mariner 10, launched in 1973.
NASA/JPL/Northwestern University
An image of Earth and the moon created from photos by Mariner 10, launched in 1973.
Without a clear goal and a geopolitical rivalry to drive it, the space program had to compete with a lot of other national priorities. The dramatic moon shot became an outlier in the longer, slower story of building scientific achievements.

Now, as those achievements accumulate, the moon is coming back into the picture. For a variety of reasons, it’s pretty much guaranteed to play a central role in any meaningful excursions we take into space. It’s the nearest planetary body to our own—238,900 miles away, which the Apollo voyages covered in three days. It has low gravity, which makes it relatively easy to get onto and off of the lunar surface, and it has no atmosphere, which allows telescopes a clearer view into deep space.
The moon itself also still holds some scientific mysteries. A 2007 report on the future of lunar exploration from the National Academies called the moon a place of “profound scientific value,” pointing out that it’s a unique place to study how planets formed, including ours. The surface of the moon is incredibly stable—no tectonic plates, no active volcanoes, no wind, no rain—which means that the loose rock, or regolith, on the moon’s surface looks the way the surface of the earth might have looked billions of years ago.

NASA still launches regular orbital missions to the moon, but its focus is on more distant points. (In a 2010 speech, President Obama brushed off the moon, saying, “We’ve been there before.”) For emerging space powers, though, the moon is still the trophy destination that it was for the United States and the Soviet Union in the 1960s. In 2008 an Indian probe relayed the best evidence yet that there’s water on the moon, locked in ice deep in craters at the lunar poles. China landed a rover on the surface of the moon in December 2013, though it soon malfunctioned. Despite that setback, China plans a sample-return mission in 2017, which would be the first since a Soviet capsule brought back 6 ounces of lunar soil in 1976.

The moon has also drawn the attention of space-minded entrepreneurs. One of the most obvious opportunities is to deliver scientific instruments for government agencies and universities. This is an attractive, ready clientele in theory, explains Paul Spudis, a scientist at the Lunar and Planetary Institute in Houston, though there’s a hitch: “The basic problem with that as a market,” he says, “is scientists never have money of their own.”

One company aspiring to the delivery role is Astrobotic, a startup of young Carnegie Mellon engineers based in Pittsburgh, which is currently positioning itself to be “FedEx to the moon,” says John Thornton, the company’s CEO. Astrobotic has signed a contract with SpaceX, the commercial space firm founded by Elon Musk, to use a Falcon 9 for an inaugural delivery trip in 2015, just in time to claim the Google Lunar X Prize. Thornton says most of the technology is in place for the mission, and that the biggest remaining hurdle is figuring out how to engineer a soft, automated moon landing.

Astrobotic is charging $1.2 million per kilogram—you can, in fact, place an order on its website—and Thornton says the company has five customers so far. They include the entities you might expect, like NASA, but also less obvious ones, like a company that wants to deliver human ashes for permanent internment and a Japanese soft drink manufacturer that wants to place its signature beverage, Pocari Sweat, on the moon as a publicity stunt. Astrobotic is joined in this small sci-fi economy by Moon Express out of Mountain View, Calif., another company competing for the Google Lunar X Prize.
Plans like these are the low-hanging fruit of the lunar economy, the easiest ideas to imagine and execute. Longer-scale thinkers are envisioning ways that the moon will play a larger role in human affairs—and that, says Crotts, is where “serious resource exploitation” comes in.
If this triggers fears of a mined-out moon, be reassured: “Apollo went there and found nothing we wanted. Had we found anything we really wanted, we would have gone back and there would have been a new gold rush,” says Roger Launius, the former chief historian of NASA and now a curator at the National Air and Space Museum.

There is one possible exception: helium-3, an isotope used in nuclear fusion research. It is rare on Earth but thought to be abundant on the surface of the moon, which could make the moon an important energy source if we ever figure out how to harness fusion energy. More immediately intriguing is the billion tons of water ice the scientific community increasingly believes is stored at the poles. If it’s there, that opens the possibility of sustained lunar settlement—the water could be consumed as a liquid, or split into oxygen for breathing and hydrogen for fuel.

The presence of water could also open a potentially ripe market providing services to the multibillion dollar geosynchronous satellite industry. “We lose billions of dollars a year of geosynchronous satellites because they drift out of orbit,” says Crotts. In a new book, “The New Moon: Water, Exploration, and Future Habitation,” he outlines plans for what he calls a “cislunar tug”: a space tugboat of sorts that would commute between the moon and orbiting satellites, resupplying them with propellant, derived from the hydrogen in water, and nudging them back into the correct orbital position.

In the long term, the truly irreplaceable value of the moon may lie elsewhere, as a staging area for expeditions deeper into space. The most expensive and dangerous part of space travel is lifting cargo out of and back into the Earth’s atmosphere, and some people imagine cutting out those steps by establishing a permanent base on the moon. In this scenario, we’d build lunar colonies deep in natural caves in order to escape the micrometeorites and toxic doses of solar radiation that bombard the moon, all the while preparing for trips to more distant points.
gical hurdles is long, and there’s also a legal one, at least where commerce is concerned. The moon falls under the purview of the Outer Space Treaty, which the United States signed in 1967, and which prohibits countries from claiming any territory on the moon—or anywhere else in space—as their own.
“It is totally unclear whether a private sector entity can extract resources from the moon and gain title or property rights to it,” says Joanne Gabrynowicz, an expert on space law and currently a visiting professor at Beijing Institute of Technology School of Law. She adds that a later document, the 1979 Moon Treaty, which the United States has not signed, anticipates mining on the moon, but leaves open the question of how property rights would be determined.

There are lots of reasons the moon may never realize its potential to mint the world’s first trillionaires, as some space enthusiasts have predicted. But to the most dedicated space entrepreneurs, the economic and legal arguments reflect short-sighted thinking. They point out that when European explorers set sail in the 15th and 16th centuries, they assumed they’d find a fortune in gold waiting for them on the other side of the Atlantic. The real prizes ended up being very different—and slow to materialize.
“When we settled the New World, we didn’t bring a whole lot back to Europe [at first],” Thornton says. “You have to create infrastructure to enable that kind of transfer of goods.” He believes that in the case of the moon, we’ll figure out how to do that eventually.
Roger Handberg is as clear-eyed as anyone about the reasons why the moon may never become more than an object of wonder, but he also understands why we can’t turn away from it completely. That challenge, in the end, may finally be what lures us back.

View Article Here Read More

Has Amelia Earhart’s plane finally been found? Not so fast


 


Excerpt from

A small group of wreckage hunters purports to have found a bit of Earhart’s Lockheed Electra aircraft. It’s a good story, but critics of the find are more vocal than ever.


A metal sheet, some small bones and an “ointment pot” may be the final artifacts of Amelia Earhart’s failed 1937 journey around the world, if a small group of wreckage hunters is to be believed. They could also be the remains of some other plane, a turtle and trash. 

But the International Group for Historic Aircraft Recovery (Tighar), which first found the warped bit of aluminum on a 1991 trip to the tiny atoll of Nikumaroro, in the Republic of Kiribati, says the 19in-by-23in slab has to be part of Earhart’s Lockheed Electra aircraft, which disappeared while she was flying over the Pacific. 

Tighar’s executive director Ric Gillespie made headlines this week by announcing “new research” into the 1991 fragment that he says answers earlier critics and proves it is from Earhart’s plane. 

The story he proposes is not implausible: the metal’s rivets don’t match with the Electra’s design, but that’s because because it’s actually a patch made to repair the aircraft after a bad landing in Miami, earlier on Earhart’s trip. Gillespie’s team managed to find a Miami Herald photo from 1937 which shows, over the place where a window should be, a particularly shiny piece of metal. In fact, a lab tested the metal back in 1996 and found it to be “essentially the same” 24ST Alclad aluminum that was to cover most aircraft of the 30s, including Earhart’s Electra. Gillespie says that “the patch was as unique to her particular aircraft as a fingerprint is to an individual … [the aluminum] matches that fingerprint in many respects”.
Metal fragment believed to be from Amelia Earhart's plane
The aluminium fragment believed to be from Amelia Earhart’s aircraft.Photograph: Tighar/Reuters

Under Gillespie’s theory, Earhart made it to the island, sent radio signals “for at least five nights before the Electra was washed into the ocean”, and eventually died there.

But Gillsepie’s been here before, and his critics are not quiet, with one saying: “Everybody should have facts to back up [their] opinions, and Mr Gillespie, well, he doesn’t.” (A second, more concisely, says: “He’s very creative.”) After discovering the metal, Gillespie gave a 1992 press conference to say that “every possibility has been checked, every alternative eliminated … We found a piece of Amelia Earhart’s aircraft.”

Objectors immediately pointed out that he had not checked the fragment’s rivets, which did not match Earhart’s Electra. Now, 22 years later, the photo could indeed explain the discrepancy – but Gillespie still lacks a wreck to compare the pattern to. As a substitute, Gillespie’s team went to a Kansas facility that’s restoring an Electra and claims to have found – by holding the patch up alongside the restored plane – that the rivets seemed consistent with the pattern. No independent researchers have confirmed their findings.

To be fair, Tighar realizes they know less about the scrap than they’d like: “If the artifact is not the scab patch from NR16020, then it is a random piece of aircraft wreckage from some unknown type involved in an unknown accident that just happens to match the dozens of material and dimensional requirements of the patch.”

Considering the vastness of the Pacific Ocean and the sheer amount of wreckage scattered across it over the past century, this actually seems pretty reasonable, but Tighar doubles down on its implication of certainty: “[That would mean] this incredibly specific, but random, piece of debris just happened to end up on Nikumaroro, the atoll where so much other evidence points to Earhart.”

What evidence does Tighar present? In 2011 they tested three bones found near a turtle shell, which could perhaps have been human or that of a turtle. DNA tests were inconclusive. (Gillespie says “the door is still open for it to be a human finger bone.”)

Gillespie told the Miami Herald earlier this year that “the key to it is her final message, where she says ‘line of position 157 dash 337’ … That’s a line that Noonan calculated from the sunrise, running 337 degrees to the north-west and 157 degrees to the south-east. And if you follow it far enough, there are two deserted islands on it, McKeon Island and Gardner Island.” 

It’s a good story, just like the one ex-marine Floyd Kilts used to tell about how a tribesman told him about a partial human skeleton and a woman’s shoe, which ended up with a British official and disappeared afterward. (Micronesians settled on the island a year after Earhart vanished.) But despite all the story and circumstantial evidence, no expedition in the past 70 years has found the Electra on or near either island.

But Tighar of course thinks it might. It found a “sonar streak” 600ft below the surface “the right size, the right shape … in the right place to be part of the Electra”, which the group has so far had neither the time nor funding to investigate. Gillespie admits it could also be part of a reef, a geological formation or any number of things once lodged into the seabed and now drifted away. He intends to explore the site in a 2015 expedition. Whether he turns up with Earhart’s lost Electra or something else entirely, he will have a new story.

View Article Here Read More
Older posts Newer posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑