Tag: hot (page 1 of 8)

UFO Headline News Weekend of Saturday June 10th/Sunday June 11th, 2017

In case you missed it here is the UFO Headline News for today

The post UFO Headline News Weekend of Saturday June 10th/Sunday June 11th, 2017 appeared first on Inception Radio Network | UFO & Paranormal Talk Radio.

View Article Here Read More

Lois Lane

Lois Lane Saves the World!

The post Lois Lane appeared first on Inception Radio Network | UFO & Paranormal Talk Radio.

View Article Here Read More

UFO Headline News Friday June 9th, 2017

In case you missed it here is the UFO Headline News for today

The post UFO Headline News Friday June 9th, 2017 appeared first on Inception Radio Network | UFO & Paranormal Talk Radio.

View Article Here Read More

Rare Quartet of Quasars Found in the Early Universe


This image shows a rare view of four quasars, indicated by white arrows, found together by astronomers using the Keck Observatory in Hawaii. The bright galactic nuclei are embedded in a giant nebula of cool, dense gas visible in the image as a blue haze. Hennawi & Arrigoni-Battaia, MPIA


Excerpt from smithsonian.com

The odds of success would make a Vegas bookie sit up and take notice. But in a one-in-10 million chance, astronomers surveying the sky have found a group of four tightly packed quasars in one of the most distant parts of the universe. The rare grouping may be a nascent galaxy cluster, and its unusually cold cradle of gas could prompt a re-think of how we model the early universe.

Quasars are among the brightest objects known—according to NASA, each one gives off more energy than 100 mature galaxies combined. But quasars are found only in the far reaches of the universe and can't be seen with the naked eye. Because of the time it takes light to travel that far, detecting such distant objects is akin to seeing back in time, so astronomers think quasars are the seeds of young galaxies, powered by gases falling into the supermassive black holes at their cores. As matter falls inward and gets close to the speed of light, it emits radiation that we can pick up with telescopes.

The quasar phase doesn't last long, only about a thousandth of a galaxy's lifetime. After that, the brightness dies down as the inflow of matter slows, says study leader Joseph Hennawi, an astrophysicist at the Max Planck Institute in Germany. Seeing any two quasars close together while they are still bright is a chancy business, so his team wasn't sure what they'd find when they set out to survey quasars using the W.M. Keck Observatory in Hawaii. To their surprise, they quickly pinpointed four of them in close proximity, cosmically speaking. The quartet is huddled up in an area of sky less than 600,000 light-years across that sits about 10 billion light-years from Earth.

"The authors found it by investigating the environment of just 29 bright quasars," says Michele Trenti, a senior lecturer at the University of Melbourne's School of Physics. "So at face value it seems like winning the lottery with a handful of tickets."
That's not all that was strange about this quasar quartet. The foursome was found inside a cloud of cold, dark gas, and the team's observations suggest that similar clouds surround about 10 percent of the tens of thousands of known quasars. That's odd, because according to current theories, quasars in groups like this should be surrounded by hot plasma, or ionized gas, at a temperature of about 10 million degrees.

“What this means is that there is some physical process that the models aren’t capturing,” says Hennawi, whose team reports the discovery this week in Science.



View Article Here Read More

Astrophysicists Can Now Make Weather Forecasts For Distant Planets


Exoplanet day/night cycle
Cloudy mornings and scorching hot afternoons: the Kepler space telescope has provided weather forecasts for some distant exoplanets.


Excerpt from techtimes.com

A telescope observing distant planets has found evidence of weather patterns, allowing astrophysicists to "forecast" their conditions.

Analyzing data from NASA's Kepler space telescope, a team of astrophysicists at universities in Canada and Great Britain has identified signs of daily weather variations on six exoplanets.
They observed phase variations as different parts of the planets reflected light from their host stars, in much the same way that our moon cycles though different phases.

"We determined the weather on these alien worlds by measuring changes as the planets circle their host stars, and identifying the day-night cycle," said Lisa Esteves from the Department of Astronomy and Astrophysics at the University of Toronto.

"We traced each of them going through a cycle of phases in which different portions of the planet are illuminated by its star, from fully lit to completely dark," added Esteves, who the led the team on the study.

The scientists have offered up "forecasts" of cloudy mornings for four of the planets, and clear but scorching hot afternoons on two others.

They based their predictions on the planets' rotations, which produce an eastward motion of their atmospheric winds. That would blow clouds that formed over the cooler side of one of the planets around to its morning side — thus producing the "cloudy" morning forecast.

"As the winds continue to transport the clouds to the day side, they heat up and dissipate, leaving the afternoon sky cloud-free," said Esteves. "These winds also push the hot air eastward from the meridian, where it is the middle of the day, resulting in higher temperatures in the afternoon."

The Kepler telescope has proven to be the ideal instrument for studying phase variations on distant exoplanets, according to the researchers.

The massive amounts of data and the extremely precise measurements that the telescope is capable of permits them to detect even tiny, subtle signals coming from the distant world, and to separate them from the almost overwhelming light coming from their host stars.

"The detection of light from these planets hundreds to thousands of light years away is on its own remarkable," said co-author Ernst de Mooij from the Astrophysics Research Centre from the School of Mathematics and Physics at Queen's University, Belfast.
"But when we consider that phase cycle variations can be up to 100,000 times fainter than the host star, these detections become truly astonishing."

There may come a day when a weather report for a distant planet is a common and unremarkable event, the researchers added.
"Someday soon we hope to be talking about weather reports for alien worlds not much bigger than Earth, and to be making comparisons with our home planet," said Ray Jayawardhana of York University in England.

This study was published in The Astrophysical Journal.

View Article Here Read More

US Government Admits Americans Have Been Overdosed on Fluoride

Dr. MercolaThe US government has finally admitted they’ve overdosed Americans on fluoride and, for first time since 1962, are lowering its recommended level of fluoride in drinking water.1,2,3About 40 percent of American teens have dental fluorosis,4 a condition referring to changes in the appearance of tooth enamel—from chalky-looking lines and splotches to dark staining and pitting—caused by long-term ingestion of fluoride during the time teeth are forming.In some areas, fluoro [...]

View Article Here Read More

Hubble Finds Giant Halo Around the Andromeda Galaxy





 Excerpt from hubblesite.org

Scientists using NASA's Hubble Space Telescope have discovered that the immense halo of gas enveloping the Andromeda galaxy, our nearest massive galactic neighbor, is about six times larger and 1,000 times more massive than previously measured. The dark, nearly invisible halo stretches about a million light-years from its host galaxy, halfway to our own Milky Way galaxy. This finding promises to tell astronomers more about the evolution and structure of majestic giant spirals, one of the most common types of galaxies in the universe.

"Halos are the gaseous atmospheres of galaxies. The properties of these gaseous halos control the rate at which stars form in galaxies according to models of galaxy formation," explained the lead investigator, Nicolas Lehner of the University of Notre Dame, Indiana. The gargantuan halo is estimated to contain half the mass of the stars in the Andromeda galaxy itself, in the form of a hot, diffuse gas. If it could be viewed with the naked eye, the halo would be 100 times the diameter of the full Moon in the sky. This is equivalent to the patch of sky covered by two basketballs held at arm's length.

The Andromeda galaxy, also known as M31, lies 2.5 million light-years away and looks like a faint spindle, about 6 times the diameter of the full Moon. It is considered a near-twin to the Milky Way galaxy.

Because the gas in Andromeda's halo is dark, the team looked at bright background objects through the gas and observed how the light changed. This is a bit like looking at a glowing light at the bottom of a pool at night. The ideal background "lights" for such a study are quasars, which are very distant bright cores of active galaxies powered by black holes. The team used 18 quasars residing far behind Andromeda to probe how material is distributed well beyond the visible disk of the galaxy. Their findings were published in the May 10, 2015, edition of The Astrophysical Journal.

Earlier research from Hubble's Cosmic Origins Spectrograph (COS)-Halos program studied 44 distant galaxies and found halos like Andromeda's, but never before has such a massive halo been seen in a neighboring galaxy. Because the previously studied galaxies were much farther away, they appeared much smaller on the sky. Only one quasar could be detected behind each faraway galaxy, providing only one light anchor point to map their halo size and structure. With its close proximity to Earth and its correspondingly large footprint on the sky, Andromeda provides a far more extensive sampling of a lot of background quasars.
"As the light from the quasars travels toward Hubble, the halo's gas will absorb some of that light and make the quasar appear a little darker in just a very small wavelength range," explains co-investigator J. Christopher Howk, also of Notre Dame. "By measuring the dip in brightness in that range, we can tell how much halo gas from M31 there is between us and that quasar."

The scientists used Hubble's unique capability to study the ultraviolet light from the quasars. Ultraviolet light is absorbed by Earth's atmosphere, which makes it difficult to observe with a ground-based telescope. The team drew from about 5 years' worth of observations stored in the Hubble data archive to conduct this research. Many previous Hubble campaigns have used quasars to study gas much farther away than — but in the general direction of — Andromeda, so a treasure trove of data already existed.

But where did the giant halo come from? Large-scale simulations of galaxies suggest that the halo formed at the same time as the rest of Andromeda. The team also determined that it is enriched in elements much heavier than hydrogen and helium, and the only way to get these heavy elements is from exploding stars called supernovae. The supernovae erupt in Andromeda's star-filled disk and violently blow these heavier elements far out into space. Over Andromeda's lifetime, nearly half of all the heavy elements made by its stars have been expelled far beyond the galaxy's 200,000-light-year-diameter stellar disk.

What does this mean for our own galaxy? Because we live inside the Milky Way, scientists cannot determine whether or not such an equally massive and extended halo exists around our galaxy. It's a case of not being able to see the forest for the trees. If the Milky Way does possess a similarly huge halo, the two galaxies' halos may be nearly touching already and quiescently merging long before the two massive galaxies collide. Hubble observations indicate that the Andromeda and Milky Way galaxies will merge to form a giant elliptical galaxy beginning about 4 billion years from now.

View Article Here Read More

What astronomers learned when Messenger space probe crashed into Mercury



Excerpt from statecolumn.com


On April 30, NASA concluded an historic voyage known as the Mercury Surface, Space Environment, Geochemistry and Ranging mission. The mission came to an end when the spacecraft carrying analytical instruments, Messenger, crashed into the planet’s surface after consuming all of its fuel.
The mission was far from a waste, however, as NASA rarely expects to see the majority of the spacecraft they launch ever again. According to Discovery, The probe sent back a spectacular photo of the surface of Mercury, using the craft’s Narrow Angle Camera in tandem with the Mercury Dual Imaging System. The photo shows a mile-wide view of the nearby planet’s surface in 2.1 meters per pixel resolution.
Right after the probe delivered the photo to NASA’s Deep Space Network, which is a collection of global radio antennae that tracks data on the agency’s robotic missions around the solar system, the signal was lost in what scientists assume was the craft’s final contact with the closest planet to the sun.
The four-year mission came to an end when the craft could no longer maintain its orbit around the solar system’s innermost planet due to lack of fuel. Mercury is just 36 miles from the sun, compared to Earth, which is 93 million miles away from the center of the solar system. Mercury is a peculiar world, with both frigid and extremely hot temperatures. Messenger also revealed that Mercury has a magnetic field similar to that of Earth’s, created by the motion of metallic fluids within the planet’s core.
The main challenge the Messenger mission faced was getting the space probe into orbit around Mercury. Due to the planet’s proximity to the sun, it was extremely difficult for flight engineers to avoid its gravitational pull. In addition to the challenge of catching Mercury’s comparatively weak gravitational force, high temperatures also made things tricky. Messenger was equipped with a sunshield designed to protect the spaceship cool on the side that faced the sun. NASA engineers also attempted to chart a long, elliptical orbit around Mercury, giving Messenger time to cool off as it rounded the backside of the planet.
Messenger made over 4,000 orbits around Mercury between 2011 and 2015, many more than the originally planned one-year mission would allow.
With the close-up shots of Mercury’s surface provided by Messenger, NASA scientists were able to detect trace signals of magnetic activity in Mercury’s crust. Using clues from the number of impact craters on the surface, scientists figured that Mercury’s magnetized regions could be as old as 3.7 billion years. Astronomers count the craters on a planet in order to estimate its age – the logic being that younger surfaces should have fewer impact sites than older surfaces.
The data sent back by Messenger has caused astronomers to reconsider their understanding of Mercury’s magnetic history. They now date the beginning of magnetism on Mercury to about 700 million years after the planet was formed. They cannot say for sure, however, if the magnetic field has been consistently active over this timeframe.
According to Messenger guest investigator Catherine Johnson, geophysicist at the University of British Columbia in Vancouver, that it was possible the magnetic field has been active under constant conditions, though she suspects it might also oscillate over time, like Earth’s. Information for the time period between 4 billion years ago and present day is sparse, though Johnson added that additional research is in the pipeline.
Johnson was pleased, however, with the insight offered into Mercury’s formation provided by these new magnetic clues. Magnetism on a planetary scale typically indicates a liquid metal interior. Since Mercury is so tiny, scientists originally believed that its center would be solid, due to the rate of cooling. The presence of liquid in the planet’s center suggests other materials’ presence, which would lower the freezing point. This suggests that a totally solid core would be unlikely.
Mercury’s magnetic field offers valuable insight into the formation of the planet, the solar system, and even the universe. Magnetism on Mercury indicates that it has a liquid iron core, according to Messenger lead scientist Sean Solomon of Columbia University.

View Article Here Read More

Nanoparticles In Food and Water Found to Alter Gut Microbiome

Heather Callaghan, ContributorWaking TimesNanotechnology – that is, metal oxide particles* such as titanium dioxide – are increasingly used in the commercial food supply, consumer goods, body care and in water treatment.The gut microbiome is today’s most appealing topic of science because it was previously unacknowledged by the medical community just how important gut health is to the human brain, hormones, immunity, mental health and more. Maintaining a h [...]

View Article Here Read More

A super-hot super-Earth spotted 40 light-years away

An artist's depiction of the exoplanet 55 Cancri E with its molten surface exposed on the left, and covered in gas and ash on the right. (NASA/JPL - Caltech/R.Hurt)Excerpt from latimes.comScientists have found an extreme planet where the atmospheric ...

View Article Here Read More

Nuclear Experimentation Year 70 – Playing With Madness

Ethan Indigo Smith, ContributorThe recent “news” on the nuclear situation in Iran brings to light the madhouse of cards on which the postmodern world is built. Or rather, it would bring the madness to light if the major media outlets of the world were not bought up and sold out to the military industrial complex, and therefore completely misinformed on the actions and dangers of the nuclear experimentation industry.The story is not just about [...]

View Article Here Read More

Chicxulub Dinosaur-Killer Asteroid Impact To Be Probed For Answers To Extinction Mysteries

Excerpt from techtimes.comScientists are seeking a core sample from the Chicxulub crater that marks the remains of an asteroid impact which ended the age of the dinosaurs nearly 66 million years ago.That geological feature will be probed by scientist...

View Article Here Read More

VLA photos 18 years apart show dramatic difference in young stellar system

Excerpt from bulletinstandard.com  A pair of pictures of a young star, produced 18 years apart, has revealed a dramatic distinction that is giving astronomers with a exclusive, "real-time" appear at how enormous stars create in the e...

View Article Here Read More
Older posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑