Tag: heavens (page 1 of 3)

The Blue and the Event

Now that the circus of the US elections is over, we can finally focus again on real intel.The emergence of the Goddess DouMu to the surface of the planet a few years ago is the first sign of the return of the Light forces after their 26,000 years long ...

View Article Here Read More

Astronomers find baby blue galaxy close to dawn of time

NASA, ESA, P. OESCH AND I. MOMCHEVA (YALE UNIVERSITY), AND THE 3D-HST AND HUDF09/XDF TEAMS
Astronomers have discovered a baby blue galaxy that is the furthest away in distance and time - 13.1 billion years - that they’ve ever seen. Photo: Pascal Oesch and Ivelina Momcheva, NASA, European Space Agency via AP


Excerpt from smh.com.au

A team of astronomers peering deep into the heavens have discovered the earliest, most distant galaxy yet, just 670 million years after the Big Bang.

Astronomers have discovered a baby blue galaxy that is the furthest away in distance and time - 13.1 billion years - that they’ve ever seen.
Close-up of the blue galaxy

The findings, described in Astrophysical Journal Letters, reveal a surprisingly active, bright galaxy near the very dawn of the cosmos that could shed light on what the universe, now 13.8 billion years old, was really like in its young, formative years.

"We're actually looking back through 95 per cent of all time to see this galaxy," said study co-author Garth Illingworth, an astronomer at the University of California, Santa Cruz.

"It's really a galaxy in its infancy ... when the universe was in its infancy."

Capturing an image from a far-off light source is like looking back in time. When we look at the sun, we're seeing a snapshot of what it looked like eight minutes ago.

The same principle applies for the light coming from the galaxy known as EGS-zs8-1. We are seeing this distant galaxy as it existed roughly 13.1 billion years ago.

EGS-zs8-1 is so far away that the light coming from it is exceedingly faint. And yet, compared with other distant galaxies, it is surprisingly active and bright, forming stars at roughly 80 times the rate the Milky Way does today.

This precocious little galaxy has built up the mass equivalent to about 8 billion suns, more than 15 per cent of the mass of the Milky Way, even though it appears to have been in existence for a mere fraction of the Milky Way's more than 13 billion years.

"If it was a galaxy near the Milky Way [today], it would be this vivid blue colour, just because it's forming so many stars," Illingworth said.

One of the many challenges with looking for such faint galaxies is that it's hard to tell if they're bright and far, or dim and near. Astronomers can usually figure out which it is by measuring how much that distant starlight gets stretched, "redshifted", from higher-energy light such as ultraviolet down to optical and then infrared wavelengths. The universe is expanding faster and faster, so the further away a galaxy is, the faster it's going, and the more stretched, or "redder", those wavelengths of light will be.

The astronomers studied the faint light from this galaxy using NASA's Hubble and Spitzer space telescopes. But EGS-zs8-1 seemed to be too bright to be coming from the vast distances that the Hubble data suggested.

To narrow in, they used the MOSFIRE infrared spectrograph at the Keck I telescope in Hawaii to search for a particularly reliable fingerprint of hydrogen in the starlight known as the Lyman-alpha line. This fingerprint lies in the ultraviolet part of the light spectrum, but has been shifted to redder, longer wavelengths over the vast distance between the galaxy and Earth.

It's a dependable line on which to base redshift (and distance) estimates, Illingworth said - and with that settled, the team could put constraints on the star mass, star formation rate and formation epoch of this galaxy.

The telltale Lyman-alpha line also reveals the process through which the universe's haze of neutral hydrogen cleared up, a period called the epoch of reionisation. As stars formed and galaxies grew, their ultraviolet radiation eventually ionised the hydrogen and ended the "dark ages" of the cosmos.

Early galaxies-such as EGS-zs8-1 - are "probably the source of ultraviolet radiation that ionised the whole universe", Illingworth said.

Scientists have looked for the Lyman-alpha line in other distant galaxies and come up empty, which might mean that their light was still being blocked by a haze of neutral hydrogen that had not been ionised yet.

But it's hard to say with just isolated examples, Illingworth pointed out. If scientists can survey many galaxies from different points in the universe's very early history, they can have a better sense of how reionisation may have progressed.

"We're trying to understand how many galaxies do have this line - and that gives us some measure of when the universe itself was reionised," Illingworth said.

"One [galaxy] is interesting, but it's when you have 50 that you can really say something about what galaxies were really like then."
As astronomers push the limits of current telescopes and await the completion of NASA's James Webb Space Telescope, set for launch in 2018, scientists may soon find more of these galaxies even closer to the birth of the universe than this new record breaker.

"You don't get to be record holder very long in this business," Illingworth said, "which is good because ultimately we are trying to learn about the universe. So more is better."

View Article Here Read More

Circular thinking: Stonehenge’s origin is subject of new theory




Excerpt from theguardian.com

Whether it was a Druid temple, an astronomical calendar or a centre for healing, the mystery of Stonehenge has long been a source of speculation and debate. Now a dramatic new theory suggests that the prehistoric monument was in fact “an ancient Mecca on stilts”.

The megaliths would not have been used for ceremonies at ground level, but would instead have supported a circular wooden platform on which ceremonies were performed to the rotating heavens, the theory suggests.

Julian Spalding, an art critic and former director of some of the UK’s leading museums, argues that the stones were foundations for a vast platform, long since lost – “a great altar” raised up high towards the heavens and able to support the weight of hundreds of worshippers.

“It’s a totally different theory which has never been put forward before,” Spalding told the Guardian. “All the interpretations to date could be mistaken. We’ve been looking at Stonehenge the wrong way: from the earth, which is very much a 20th-century viewpoint. We haven’t been thinking about what they were thinking about.”

Since Geoffrey of Monmouth wrote in the 12th century that Merlin had flown the stones from Ireland, theories on Stonehenge, from plausible to absurd, have abounded. In the last decade alone, the monument has been interpreted as “the prehistoric Lourdes” where people brought the sick to be healed by the power of the magic bluestones from Wales and as a haunted place of the dead contrasting with seasonal feasts for the living at nearby Durrington Walls. 

The site pored over by archaeologists for centuries still produces surprises, including the outline of stones now missing, which appeared in the parched ground in last summer’s drought and showed that the monument was not left unfinished as some had believed, but was once a perfect circle.

Spalding, who is not an archaeologist, believes that other Stonehenge theorists have fallen into error by looking down instead of up. His evidence, he believes, lies in ancient civilisations worldwide. As far afield as China, Peru and Turkey, such sacred monuments were built high up, whether on manmade or natural sites, and in circular patterns possibly linked to celestial movements.

He said: “In early times, no spiritual ceremonies would have been performed on the ground. The Pharaoh of Egypt and the Emperor of China were always carried – as the Pope used to be. The feet of holy people were not allowed to touch the ground. We’ve been looking at Stonehenge from a modern, earth-bound perspective.”
“All the great raised altars of the past suggest that the people who built Stonehenge would never have performed celestial ceremonies on the lowly earth,” he went on. “That would have been unimaginably insulting to the immortal beings, for it would have brought them down from heaven to bite the dust and tread in the dung.”

Spalding’s theory has not met with universal approval. Prof Vincent Gaffney, principal investigator on the Stonehenge Hidden Landscapes Project at Bradford University, said he held “a fair degree of scepticism” and Sir Barry Cunliffe, a prehistorian and emeritus professor of European archaeology at Oxford University, said: “He could be right, but I know of no evidence to support it”.
The archaeologist Aubrey Burl, an authority on prehistoric stone circles, said: “There could be something in it. There is a possibility, of course. Anything new and worthwhile about Stonehenge is well worth looking into, but with care and consideration.”

On Monday Spalding publishes his theories in a new book, titled Realisation: From Seeing to Understanding – The Origins of Art. It explores our ancestors’ understanding of the world, offering new explanations of iconic works of art and monuments.

Stonehenge, built between 3000 and 2000BC, is England’s most famous prehistoric monument, a UNESCO World Heritage site on Salisbury Plain in Wiltshire that draws more than 1 million annual visitors. It began as a timber circle, later made permanent with massive blocks of stone, many somehow dragged from dolerite rock in the Welsh mountains. Spalding believes that ancient worshippers would have reached the giant altar by climbing curved wooden ramps or staircases.

View Article Here Read More

Have Aliens Left The Universe? Theory Predicts We’ll Follow

























Excerpt from robertlanza.com

In Star Wars, the bars are bustling with all types of alien creatures. And then, of course, there’s Yoda and Chewbacca. Recently, renowned scientist Stephen Hawking stated that he too believes aliens exist: “To my mathematical brain, the numbers alone make thinking about aliens perfectly rational.”

Hawking thinks we should be cautious about interacting with aliens — that they might raid Earth’s resources, take our ores, and then move on like pirates. “I imagine they might exist in massive ships, having used up all the resources from their home planet. Such advanced aliens would perhaps become nomads, looking to conquer and colonize whatever planets they can reach.”
But where are they all anyhow?

For years, NASA and others have been searching for extraterrestrial intelligence. The universe is 13.7 billion years old and contains some 10 billion trillion stars. Surely, in this lapse of suns, advanced life would have evolved if it were possible. Yet despite half a century of scanning the sky, astronomers have failed to find any evidence of life or to pick up any of the interstellar radio signals that our great antennas should be able to easily detect.

Some scientists point to the “Fermi Paradox,” noting that extraterrestrials should have had plenty of time to colonize the entire galaxy but that perhaps they’ve blown themselves up. It’s conceivable the problem is more fundamental and that the answer has to do with the evolutionary course of life itself.

Look at the plants in your backyard. What are they but a stem with roots and leaves bringing nutriments to the organism? After billions of years of evolution, it was inevitable life would acquire the ability to locomote, to hunt and see, to protect itself from competitors. 
Observe the ants in the woodpile — they can engage in combat just as resolutely as humans. Our guns and ICBM are merely the mandibles of a cleverer ant. The effort for self-preservation is vague and varied. But when we’ve overcome our struggles, what do we do next? Build taller and more splendid houses?

What happens after life completes its transition to perfection? Perhaps across space, more advanced intelligences have taken the next evolutionary step. Perhaps they’ve evolved beyond the three dimensions we vertebrates know. A new theory — Biocentrism — tells us that space and time aren’t physical matrices, but simply tools our mind uses to put everything together. These algorithms are the key to consciousness, and why space and time — indeed the properties of matter itself — are relative to the observer. More advanced civilizations would surely understand these algorithms well enough to create realities that we can’t even imagine, and to have expanded beyond our corporeal cage.

Like breathing, we take for granted how our mind puts everything together. I can recall a dream I had of a flying saucer landing in Times Square. It was so real it took awhile to convince myself that it was a dream (that I was actually at home in bed). I was standing in a crowd surrounded by skyscrapers when a massive spaceship appeared overhead. Everyone started running. My mind had somehow generated this spatio-temporal experience out of electrochemical information. I could feel the vibrations under my feet as the ship started to land, merging this 3D world with my inner thoughts and sensations.

Although I was in bed with my eyes closed, I was able to run and move my arms and fingers. My mind had created a fully functioning body and placed it in a virtual world (replete with clouds in the sky and the Sun) that was indistinguishable from the one I’m in right now. Life as we know it is defined by this spatial-temporal logic, which traps us in the universe of up and down. But like my dream, quantum theory confirms that the properties of particles in the “real” world are also observer-determined.

Other information systems surely exist that correspond to other physical realities, universes based on logic completely different from ours and not based on space and time as we know it. In fact, the simplest invertebrates may only experience existence in one dimension of space. Evolutionary biology suggests life has progressed from a one dimensional reality, to two dimensions to three dimensions, and there’s no scientific reason to think that the evolution of life stops there.

Advanced civilizations would certainly have changed the algorithms so that instead of being trapped in the linear dimensions we find ourselves in, their consciousness moves through the multiverse and beyond. Why would Aliens build massive ships and spend thousands of years to colonize planetary systems (most of which are probably useless and barren), when they could simply tinker with the algorithms and get whatever they want?

Life on Earth is just beginning to send its shoots upward into the heavens. We’ve even flung a piece of metal outside the solar system. Affixed to the spacecraft is a record with greetings in 60 languages. One can’t but wonder whether some civilization more advanced than ours will come upon it. Or will it just drift across the gulf of space? To me the answer is clear. But in case I’m wrong, I have a pitch fork guarding the ore in my backyard.

View Article Here Read More

Should Humanity Try to Contact Alien Civilizations?



Some researchers want to use big radio dishes like the 305-meter Arecibo Observatory in Puerto Rico to announce our presence to intelligent aliens.



Excerpt from space.com
by Mike Wall

Is it time to take the search for intelligent aliens to the next level?
For more than half a century, scientists have been scanning the heavens for signals generated by intelligent alien life. They haven't found anything conclusive yet, so some researchers are advocating adding an element called "active SETI" (search for extraterrestrial intelligence) — not just listening, but also beaming out transmissions of our own designed to catch aliens' eyes.

Active SETI "may just be the approach that lets us make contact with life beyond Earth," Douglas Vakoch, director of interstellar message composition at the SETI Institute in Mountain View, California, said earlier this month during a panel discussion at the annual meeting of the American Association for the Advancement of Science (AAAS) in San Jose.

Seeking contact


Vakoch envisions using big radio dishes such as the Arecibo Observatory in Puerto Rico to blast powerful, information-laden transmissions at nearby stars, in a series of relatively cheap, small-scale projects.

"Whenever any of the planetary radar folks are doing their asteroid studies, and they have an extra half an hour before or after, there's always a target star readily available that they can shift to without a lot of extra slough time," he said.

The content of any potential active SETI message is a subject of considerable debate. If it were up to astronomer Seth Shostak, Vakoch's SETI Institute colleague, we'd beam the entire Internet out into space.

"It's like sending a lot of hieroglyphics to the 19th century — they [aliens] can figure it out based on the redundancy," Shostak said during the AAAS discussion. "So, I think in terms of messages, we should send everything."

While active SETI could help make humanity's presence known to extrasolar civilizations, the strategy could also aid the more traditional "passive" search for alien intelligence, Shostak added.
"If you're going to run SETI experiments, where you're trying to listen for a putative alien broadcast, it may be very instructive to have to construct a transmitting project," he said. "Because now, you walk a mile in the Klingons' shoes, assuming they have them."

Cause for concern?

But active SETI is a controversial topic. Humanity has been a truly technological civilization for only a few generations; we're less than 60 years removed from launching our first satellite to Earth orbit, for example. So the chances are that any extraterrestrials who pick up our signals would be far more advanced than we are. 

This likelihood makes some researchers nervous, including famed theoretical physicist Stephen Hawking.

"Such advanced aliens would perhaps become nomads, looking to conquer and colonize whatever planets they could reach," Hawking said in 2010 on an episode of "Into the Universe with Stephen Hawking," a TV show that aired on the Discovery Channel. "If so, it makes sense for them to exploit each new planet for material to build more spaceships so they could move on. Who knows what the limits would be?"

Astrophysicist and science fiction author David Brin voiced similar concerns during the AAAS event, saying there's no reason to assume that intelligent aliens would be altruistic.

"This is an area in which discussion is called for," Brin said. "What are the motivations of species that they might carry with them into their advanced forms, that might color their cultures?"

Brin stressed that active SETI shouldn't be done in a piecemeal, ad hoc fashion by small groups of astronomers.

"This is something that should be discussed worldwide, and it should involve our peers in many other specialties, such as history," he said. "The historians would tell us, 'Well, gee, we have some examples of first-contact scenarios between advanced technological civilizations and not-so-advanced technological civilizations.' Gee, how did all of those turn out? Even when they were handled with goodwill, there was still pain."

Out there already

Vakoch and Shostak agreed that international discussion and cooperation are desirable. But Shostak said that achieving any kind of consensus on the topic of active SETI may be difficult. For example, what if polling reveals that 60 percent of people on Earth are in favor of the strategy, while 40 percent are opposed?

"Do we then have license to go ahead and transmit?" Shostak said. "That's the problem, I think, with this whole 'let's have some international discussion' [idea], because I don't know what the decision metric is."

Vakoch and Shostak also said that active SETI isn't as big a leap as it may seem at first glance: Our civilization has been beaming signals out into the universe unintentionally for a century, since the radio was invented.

"The reality is that any civilization that has the ability to travel between the stars can already pick up our accidental radio and TV leakage," Vakoch said. "A civilization just 200 to 300 years more advanced than we are could pick up our leakage radiation at a distance of several hundred light-years. So there are no increased dangers of an alien invasion through active SETI."

But Brin disputed this assertion, saying the so-called "barn door excuse" is a myth.

"It is very difficult for advanced civilizations to have picked us up at our noisiest in the 1980s, when we had all these military radars and these big television antennas," he said.

Shostak countered that a fear of alien invasion, if taken too far, could hamper humanity's expansion throughout the solar system, an effort that will probably require the use of high-powered transmissions between farflung outposts.

"Do you want to hamstring all that activity — not for the weekend, not just shut down the radars next week, or active SETI this year, but shut down humanity forever?" Shostak said. "That's a price I'm not willing to pay."

So the discussion and debate continues — and may continue for quite some time.

"This is the only really important scientific field without any subject matter," Brin said. "It's an area in which opinion rules, and everybody has a very fierce opinion."

View Article Here Read More

Skywatch: Venus and Jupiter continue to accentuate the night heavens


Venus (right) & Jupiter


Excerpt from washingtonpost.com
By Blaine Friedlander Jr. 
In winter’s waning weeks, Venus and Jupiter continue to accentuate the night heavens, we change our clocks forward and we grab spring with no intention of letting go.

Check the west-southwestern heavens at dusk to spy the vivacious Venus and the dim Mars. In late February, the two planets met for a sweet cosmic waltz, but in March, they appear to separate. Venus approaches negative fourth magnitude (very bright) while Mars makes do at magnitude 1.3 (dim, hard to find in urban light pollution). With a clear sky, Mars looks like a red pinpoint. 

A young, waxing crescent moon visits Mars on the evening of March 21, and on the next evening the crescent flirts with Venus.
Robust Jupiter ascends the evening’s eastern sky. Find this gas giant at a -2.5 magnitude, very bright, in the constellation Cancer. The lion in the constellation Leo appears to stare at the planet. By the Ides of March, find it south around 10:30 p.m. 

The waxing gibbous moon drops by the dazzling Jupiter on March 2, days before the moon itself becomes full on March 5. 

Catch the ringed Saturn rising after midnight in the east-southeast now, hanging out near a gang of constellations, Scorpius, Ophiuchus and Libra. It’s a zero magnitude object, bright enough that it can be seen under urban skies. The waning moon loiters near Saturn before dawn on March 12. On that morning, the reddish star below them is Antares.
We adjust our clocks to Daylight Saving Time at 2 a.m. March 8. Spring forward, moving the clock ahead one hour. 

Winter is almost over. Spring is weeks away. The vernal equinox brings spring’s official arrival on March 20 at 6:45 p.m. 

Also on March 20 — the day a new moon — the North Atlantic and the Arctic waters get a short total eclipse. We won’t see it here, but Slooh.com will carry it live. Totality will start seconds after 5:44 a.m. and end at 5:47 a.m., according to Geoff Chester of the U.S. Naval Observatory. 

View Article Here Read More

In the beginning God created the heavens and the earth ~ Stunning images of our universe & home

The Creation of Adam ~ Michelangelo ~ Ceiling Fresco, Sistine Chapel ~ Circa 1512Click to zoom

View Article Here Read More

How 40,000 Tons of Cosmic Dust Falling to Earth Affects You and Me


Picture of The giant star Zeta Ophiuchi is having a "shocking" effect on the surrounding dust clouds in this infrared image from NASA's Spitzer Space Telescope
In this infrared image, stellar winds from a giant star cause interstellar dust to form ripples. There's a whole lot of dust—which contains oxygen, carbon, iron, nickel, and all the other elements—out there, and eventually some of it finds its way into our bodies.
Photograph by NASA, JPL-Caltech

We have stardust in us as old as the universe—and some that may have landed on Earth just a hundred years ago.

Excerpt from National Geographic
By Simon Worrall

Astrophysics and medical pathology don't, at first sight, appear to have much in common. What do sunspots have to do with liver spots? How does the big bang connect with cystic fibrosis?
Book jacket courtesy of schrijver+schrijver

Astrophysicist Karel Schrijver, a senior fellow at the Lockheed Martin Solar and Astrophysics Laboratory, and his wife, Iris Schrijver, professor of pathology at Stanford University, have joined the dots in a new book, Living With the Stars: How the Human Body Is Connected to the Life Cycles of the Earth, the Planets, and the Stars.

Talking from their home in Palo Alto, California, they explain how everything in us originated in cosmic explosions billions of years ago, how our bodies are in a constant state of decay and regeneration, and why singer Joni Mitchell was right.

"We are stardust," Joni Mitchell famously sang in "Woodstock." It turns out she was right, wasn't she?

Iris: Was she ever! Everything we are and everything in the universe and on Earth originated from stardust, and it continually floats through us even today. It directly connects us to the universe, rebuilding our bodies over and again over our lifetimes.

That was one of the biggest surprises for us in this book. We really didn't realize how impermanent we are, and that our bodies are made of remnants of stars and massive explosions in the galaxies. All the material in our bodies originates with that residual stardust, and it finds its way into plants, and from there into the nutrients that we need for everything we do—think, move, grow. And every few years the bulk of our bodies are newly created.

Can you give me some examples of how stardust formed us?

Karel: When the universe started, there was just hydrogen and a little helium and very little of anything else. Helium is not in our bodies. Hydrogen is, but that's not the bulk of our weight. Stars are like nuclear reactors. They take a fuel and convert it to something else. Hydrogen is formed into helium, and helium is built into carbon, nitrogen and oxygen, iron and sulfur—everything we're made of. When stars get to the end of their lives, they swell up and fall together again, throwing off their outer layers. If a star is heavy enough, it will explode in a supernova.

So most of the material that we're made of comes out of dying stars, or stars that died in explosions. And those stellar explosions continue. We have stuff in us as old as the universe, and then some stuff that landed here maybe only a hundred years ago. And all of that mixes in our bodies.

Picture of the remnants of a star that exploded in a supernova
Stars are being born and stars are dying in this infrared snapshot of the heavens. You and I—we come from stardust.
Photograph by NASA, JPL-Caltech, University of Wisconsin


Your book yokes together two seemingly different sciences: astrophysics and human biology. Describe your individual professions and how you combined them to create this book.

Iris: I'm a physician specializing in genetics and pathology. Pathologists are the medical specialists who diagnose diseases and their causes. We also study the responses of the body to such diseases and to the treatment given. I do this at the level of the DNA, so at Stanford University I direct the diagnostic molecular pathology laboratory. I also provide patient care by diagnosing inherited diseases and also cancers, and by following therapy responses in those cancer patients based on changes that we can detect in their DNA.

Our book is based on many conversations that Karel and I had, in which we talked to each other about topics from our daily professional lives. Those areas are quite different. I look at the code of life. He's an astrophysicist who explores the secrets of the stars. But the more we followed up on our questions to each other, the more we discovered our fields have a lot more connections than we thought possible.

Karel: I'm an astrophysicist. Astrophysicists specialize in all sorts of things, from dark matter to galaxies. I picked stars because they fascinated me. But no matter how many stars you look at, you can never see any detail. They're all tiny points in the sky.

So I turned my attention to the sun, which is the only star where we can see what happens all over the universe. At some point NASA asked me to lead a summer school for beginning researchers to try to create materials to understand the things that go all the way from the sun to the Earth. I learned so many things about these connections I started to tell Iris. At some point I thought: This could be an interesting story, and it dawned on us that together we go all the way, as she said, from the smallest to the largest. And we have great fun doing this together.

We tend to think of our bodies changing only slowly once we reach adulthood. So I was fascinated to discover that, in fact, we're changing all the time and constantly rebuilding ourselves. Talk about our skin.

Iris: Most people don't even think of the skin as an organ. In fact, it's our largest one. To keep alive, our cells have to divide and grow. We're aware of that because we see children grow. But cells also age and eventually die, and the skin is a great example of this.
It's something that touches everything around us. It's also very exposed to damage and needs to constantly regenerate. It weighs around eight pounds [four kilograms] and is composed of several layers. These layers age quickly, especially the outer layer, the dermis. The cells there are replaced roughly every month or two. That means we lose approximately 30,000 cells every minute throughout our lives, and our entire external surface layer is replaced about once a year.

Very little of our physical bodies lasts for more than a few years. Of course, that's at odds with how we perceive ourselves when we look into the mirror. But we're not fixed at all. We're more like a pattern or a process. And it was the transience of the body and the flow of energy and matter needed to counter that impermanence that led us to explore our interconnectedness with the universe.

You have a fascinating discussion about age. Describe how different parts of the human body age at different speeds.

Iris: Every tissue recreates itself, but they all do it at a different rate. We know through carbon dating that cells in the adult human body have an average age of seven to ten years. That's far less than the age of the average human, but there are remarkable differences in these ages. Some cells literally exist for a few days. Those are the ones that touch the surface. The skin is a great example, but also the surfaces of our lungs and the digestive tract. The muscle cells of the heart, an organ we consider to be very permanent, typically continue to function for more than a decade. But if you look at a person who's 50, about half of their heart cells will have been replaced.

Our bodies are never static. We're dynamic beings, and we have to be dynamic to remain alive. This is not just true for us humans. It's true for all living things.

A figure that jumped out at me is that 40,000 tons of cosmic dust fall on Earth every year. Where does it all come from? How does it affect us?

Karel: When the solar system formed, it started to freeze gas into ice and dust particles. They would grow and grow by colliding. Eventually gravity pulled them together to form planets. The planets are like big vacuum cleaners, sucking in everything around them. But they didn't complete the job. There's still an awful lot of dust floating around.

When we say that as an astronomer, we can mean anything from objects weighing micrograms, which you wouldn't even see unless you had a microscope, to things that weigh many tons, like comets. All that stuff is still there, being pulled around by the gravity of the planets and the sun. The Earth can't avoid running into this debris, so that dust falls onto the Earth all the time and has from the very beginning. It's why the planet was made in the first place. 

Nowadays, you don't even notice it. But eventually all that stuff, which contains oxygen and carbon, iron, nickel, and all the other elements, finds its way into our bodies.

When a really big piece of dust, like a giant comet or asteroid, falls onto the Earth, you get a massive explosion, which is one of the reasons we believe the dinosaurs became extinct some 70 million years ago. That fortunately doesn't happen very often. But things fall out of the sky all the time. [Laughs]

Many everyday commodities we use also began their existence in outer space. Tell us about salt.

Karel: Whatever you mention, its history began in outer space. Take salt. What we usually mean by salt is kitchen salt. It has two chemicals, sodium and chloride. Where did they come from? They were formed inside stars that exploded billions of years ago and at some point found their way onto the Earth. Stellar explosions are still going on today in the galaxy, so some of the chlorine we're eating in salt was made only recently.

You study pathology, Iris. Is physical malfunction part of the cosmic order?

Iris: Absolutely. There are healthy processes, such as growth, for which we need cell division. Then there are processes when things go wrong. We age because we lose the balance between cell deaths and regeneration. That's what we see in the mirror when we age over time. That's also what we see when diseases develop, such as cancers. Cancer is basically a mistake in the DNA, and because of that the whole system can be derailed. Aging and cancer are actually very similar processes. They both originate in the fact that there's a loss of balance between regeneration and cell loss.

Cystic fibrosis is an inherited genetic disease. You inherit an error in the DNA. Because of that, certain tissues do not have the capability to provide their normal function to the body. My work is focused on finding changes in DNA in different populations so we can understand better what kinds of mutations are the basis of that disease. Based on that, we can provide prognosis. There are now drugs that target specific mutations, as well as transplants, so these patients can have a much better life span than was possible 10 or 20 years ago.

How has writing this book changed your view of life—and your view of each other?

Karel: There are two things that struck me, one that I had no idea about. The first is what Iris described earlier—the impermanence of our bodies. As a physicist, I thought the body was built early on, that it would grow and be stable. Iris showed me, over a long series of dinner discussions, that that's not the way it works. Cells die and rebuild all the time. We're literally not what were a few years ago, and not just because of the way we think. Everything around us does this. Nature is not outside us. We are nature.

As far as our relationship is concerned, I always had a great deal of respect for Iris, and physicians in general. They have to know things that I couldn't possibly remember. And that's only grown with time.

Iris: Physics was not my favorite topic in high school. [Laughs] Through Karel and our conversations, I feel that the universe and the world around us has become much more accessible. That was our goal with the book as well. We wanted it to be accessible and understandable for anyone with a high school education. It was a challenge to write it that way, to explain things to each other in lay terms. But it has certainly changed my view of life. It's increased my sense of wonder and appreciation of life.

In terms of Karel's profession and our relationship, it has inevitably deepened. We understand much better what the other person is doing in the sandboxes we respectively play in. [Laughs]

View Article Here Read More

5 Sky Events To Enjoy this Week



ALT
Skychart by A. Fazekas/SkySafari


Excerpt from 

Green Giant, Lunar Triangle and Jovian Shadows A planetary pairing and moon dances take center stage in the heavens this week.

Neptune meets Mars this week for stargazers, while Jupiter's retinue plays shadow games.

Neptune and Mars. About an hour after sunset on Monday, January 19, look towards the southwestern sky for Venus and Mercury hanging near the horizon. Look higher up to see the ruddy beacon of Mars.

Telescopes trained on the red planet will reveal the very faint and tiny aquamarine disk of Neptune only 0.2 degrees north. The distant ice giant present quite a color contrast with ruddy Mars.

A stunning celestial trio low in the southwest sky forms this week with the crescent moon, Venus and Mercury.
Lunar Triangle. Just after the sun sets on Wednesday, January 21, gaze towards the thin crescent moon, which rests low in the sky toward the western horizon.

Joining it in a stunning triangular formation, and particularly eye-catching through binoculars, are the two innermost planets in our solar system, Mercury and Venus.

The waxing moon acts as a wonderfully convenient guide to spotting these two worlds.

Moon meets Mars. On Thursday, January 22, Earth’s lone natural satellite rises higher in the sky and pays a visit to the red planet. The curl of the moon's crescent will almost seem to point to Mars, just off to its left.

And wait just one more day, on Friday, January 23, when the moon will continue its journey across the sky, climbing higher to form a straight line connection with Mars and Venus. The dawn star will hang below its two companions, just above the horizon.

ALT
This skychart shows the moon pointing to Uranus in the early morning western sky.
Skychart by A. Fazekas/SkySafari


Moon and Uranus. After night falls on Sunday, January 25, look for the moon pairing up with the seventh planet from the sun, Uranus.

The two solar system objects will reside only 7 degrees apart, making them just fit into the same field of view in binoculars.

ALT
Look for Jupiter in the early morning southeast sky and with a telescope soak in a triple Jovian moon shadow transit.
Skychart by A. Fazekas/SkySafari


Triplet Jovian Eclipse. In the early morning hours of Saturday, January 24, telescopes will reveal a trio of tiny black dots trekking across the face of Jupiter.

Three of the gas giant’s moons, Calisto, Io, and Europa all cast their shadows tight on the cloud tops of Jupiter at once starting at 1:27 am EST to 1:53 am .
Happy hunting!

View Article Here Read More

Top 6 tips for using ordinary binoculars for stargazing




Excerpt from earthsky.org


Admit it.  You’ve probably got a pair of binoculars lying around your house somewhere. They may be perfect – that’s right, perfect – for beginning stargazing. Follow the links below to learn more about the best deal around for people who want to get acquainted with the night sky: a pair of ordinary binoculars.
1. Binoculars are a better place to start than telescopes
2. Start with a small, easy-to-use size
3. First, view the moon with binoculars.
4. Move on to viewing planets with binoculars.
5. Use your binoculars to explore inside our Milky Way.
6. Use your binoculars to peer beyond the Milky Way.

1. Binoculars are a better place to start than telescopes. The fact is that most people who think they want to buy a telescope would be better off using binoculars for a year or so instead.  That’s because first-time telescope users often find themselves completely confused – and ultimately put off – by the dual tasks of learning the use a complicated piece of equipment (the ‘scope) while at the same time learning to navigate an unknown realm (the night sky).
Beginning stargazers often find that an ordinary pair of binoculars – available from any discount store – can give them the experience they’re looking for.  After all, in astronomy, magnification and light-gathering power let you see more of what’s up there.  Even a moderate form of power, like those provided by a pair of 7×50 binoculars, reveals 7 times as much information as the unaided eye can see.

You also need to know where to look. Many people start with a planisphere as they begin their journey making friends with the stars. You can purchase a planisphere at the EarthSky store. Also consider our Astronomy Kit, which has a booklet on what you can see with your binoculars.

2. Start with a small, easy-to-use size.  Don’t buy a huge pair of binoculars to start with! Unless you mount them on a tripod, they’ll shake and make your view of the heavens shakey, too. The video above – from ExpertVillage – does a good job summing up what you want. And in case you don’t want to watch the video, the answer is that 7X50 binoculars are optimum for budding astronomers.  You can see a lot, and you can hold them steadily enough that jitters don’t spoil your view of the sky.  Plus they’re very useful for daylight pursuits, like birdwatching. If 7X50s are too big for you – or if you want binoculars for a child – try 7X35s.

February 24, 2014 moon with earthshine by Greg Diesel Landscape Photography.
February 24, 2014 moon with earthshine by Greg Diesel Landscape Photography.

3. First, view the moon with binoculars. When you start to stargaze, you’ll want to watch the phase of the moon carefully. If you want to see deep-sky objects inside our Milky Way galaxy – or outside the galaxy – you’ll want to avoid the moon. But the moon itself is a perfect target for beginning astronomers, armed with binoculars. Hint: the best time to observe the moon is in twilight. Then the glare of the moon is not so great, and you’ll see more detail.

You’ll want to start your moon-gazing when the moon is just past new – and visible as a waxing crescent in the western sky after sunset. At such times, you’ll have a beautiful view of earthshine on the moon.  This eerie glow on the moon’s darkened portion is really light reflected from Earth onto the moon’s surface.  Be sure to turn your binoculars on the moon at these times to enhance the view. 
Each month, as the moon goes through its regular phases, you can see the line of sunrise and sunset on the moon progress across the moon’s face. That’s just the line between light and dark on the moon. This line between the day and night sides of the moon is called the terminator line.  The best place to look at the moon from Earth – using your binoculars – is along the terminator line. The sun angle is very low in this twilight zone, just as the sun is low in our sky around earthly twilight.  So, along the terminator on the moon, lunar features cast long shadows in sharp relief.

You can also look in on the gray blotches on the moon called maria, named when early astronomers thought these lunar features were seas.  The maria are not seas, of course, and instead they’re now thought to have formed 3.5 billion years ago when asteroid-sized rocks hit the moon so hard that lava percolated up through cracks in the lunar crust and flooded the impact basins. These lava plains cooled and eventually formed the gray seas we see today.

The white highlands, nestled between the maria, are older terrain pockmarked by thousands of craters that formed over the eons. Some of the larger craters are visible in binoculars. One of them, Tycho, at the six o’clock position on the moon, emanates long swatches of white rays for hundreds of miles over the adjacent highlands. This is material kicked out during the Tycho impact 2.5 million years ago.

View Larger. Photo of Jupiter's moons by Carl Galloway. Thank you Carl! The four major moons of Jupiter - Io, Europa, Ganymede and Callisto - are easily seen through a low-powered telescope. Click here for a chart of Jupiter's moons
Photo of Jupiter’s moons by Earthsky Facebook friend Carl Galloway. Thank you Carl! The four major moons of Jupiter are called Io, Europa, Ganymede and Callisto. This is a telescopic view, but you can glimpse one, two or more moons through your binoculars, too.


4. Move on to viewing planets with binoculars. Here’s the deal about planets.  They move around, apart from the fixed stars.  They are wanderers, right?

You can use our EarthSky Tonight page to locate planets visible around now.  Notice if any planets are mentioned in the calendar on the Tonight page, and if so click on that day’s link.  On our Tonight page, we feature planets on days when they’re easily identifiable for some reason – for example, when a planet is near the moon.  So our Tonight page calendar can help you come to know the planets, and, as you’re learning to identify them, keep your binoculars very handy. Binoculars will enhance your view of a planet near the moon, for example, or two planets near each other in the twilight sky. They add a lot to the fun!

Below, you’ll find some more simple ideas on how to view planets with your binoculars.

Mercury and Venus. These are both inner planets.  They orbit the sun closer than Earth’s orbit.  And for that reason, both Mercury and Venus show phases as seen from Earth at certain times in their orbit – a few days before or after the planet passes between the sun and Earth.  At such times,  turn your binoculars on Mercury or Venus. Good optical quality helps here, but you should be able to see them in a crescent phase. Tip: Venus is so bright that its glare will overwhelm the view. Try looking in twilight instead of true darkness.

Mars. Mars – the Red Planet – really does look red, and using binoculars will intensify the color of this object (or of any colored star). Mars also moves rapidly in front of the stars, and it’s fun to aim your binoculars in its direction when it’s passing near another bright star or planet.

Jupiter. Now on to the real action!  Jupiter is a great binocular target, even for beginners.   If you are sure to hold your binoculars steadily as you peer at this bright planet,  you should see four bright points of light near it.  These are the Galilean Satellites – four moons gleaned through one of the first telescopes ever made, by the Italian astronomer Galileo. Note how their relative positions change from night to night as each moon moves around Jupiter in its own orbit.

Saturn.Although a small telescope is needed to see Saturn’s rings, you can use your binoculars to see Saturn’s beautiful golden color.  Experienced observers sometimes glimpse Saturn’s largest moon Titan with binoculars.  Also, good-quality high-powered binoculars – mounted on a tripod – will show you that Saturn is not round.  The rings give it an elliptical shape.

Uranus and Neptune. Some planets are squarely binocular and telescope targets. If you’re armed with a finder chart, two of them, Uranus and Neptune, are easy to spot in binoculars. Uranus might even look greenish, thanks to methane in the planet’s atmosphere. Once a year, Uranus is barely bright enough to glimpse with the unaided eye . . . use binoculars to find it first. Distant Neptune will always look like a star, even though it has an atmosphere practically identical to Uranus.

There are still other denizens of the solar system you can capture through binocs. Look for the occasional comet, which appears as a fuzzy blob of light. Then there are the asteroids – fully 12 of them can be followed with binoculars when they are at their brightest. Because an asteroid looks star-like, the secret to confirming its presence is to sketch a star field through which it’s passing. Do this over subsequent nights; the star that changes position relative to the others is our solar system interloper.

Milky Way Galaxy arching over a Joshua tree

Pleiades star cluster, also known as the Seven Sisters
Pleiades star cluster, also known as the Seven Sisters





5. Use your binoculars to explore inside our Milky Way.  Binoculars can introduce you to many members of our home galaxy. A good place to start is with star clusters that are close to Earth. They cover a larger area of the sky than other, more distant clusters usually glimpsed through a telescope.

Beginning each autumn and into the spring, look for a tiny dipper-like cluster of stars called the Pleiades.  The cluster – sometimes also called the Seven Sisters – is noticeable for being small yet distinctively dipper-like. While most people say they see only six stars here with the unaided eye, binoculars reveal many more stars, plus a dainty chain of stars extending off to one side. The Pleiades star cluster is looks big and distinctive because it’s relatively close – about 400 light years from Earth. This dipper-shaped cluster is a true cluster of stars in space.  Its members were born around the same time and are still bound by gravity.  These stars are very young, on the order of 20 million years old, in contrast to the roughly five billion years for our sun.

Stars in a cluster all formed from the same gas cloud. You can also see what the Pleiades might have like in a primordial state, by shifting your gaze to the prominent constellation Orion the Hunter. Look for Orion’s sword stars, just below his prominent belt stars. If the night is crisp and clear, and you’re away from urban streetlight glare, unaided eyes will show that the sword isn’t entirely composed of stars. Binoculars show a steady patch of glowing gas where, right at this moment, a star cluster is being born. It’s called the Orion Nebula. A summertime counterpart is the Lagoon Nebula, in Sagittarius the Archer.

With star factories like the Orion Nebula, we aren’t really seeing the young stars themselves. They are buried deep within the nebula, bathing the gas cloud with ultraviolet radiation and making it glow. In a few tens of thousands of years, stellar winds from these young, energetic stars will blow away their gaseous cocoons to reveal a newly minted star cluster.

Scan along the Milky Way to see still more sights that hint at our home galaxy’s complexity. First, there’s the Milky Way glow itself; just a casual glance through binoculars will reveal that it is still more stars we can’t resolve with our eyes . . . hundreds of thousands of them. Periodically, while scanning, you might sweep past what appears to be blob-like, black voids in the stellar sheen. These are dark, non-glowing pockets of gas and dust that we see silhouetted against the stellar backdrop. This is the stuff of future star and solar systems, just waiting around to coalesce into new suns.

Andromeda Galaxy from Chris Levitan Photography.
Andromeda Galaxy from Chris Levitan Photography.

Many people use the M- or W-shaped constellation Cassiopeia to find the Andromeda Galaxy.  See how the star Schedar points to the galaxy?  Click here to expand image.
Many people use the M- or W-shaped constellation Cassiopeia to find the Andromeda Galaxy. See how the star Schedar points to the galaxy?


6. Use your binoculars to view beyond the Milky Way.  Let’s leap out of our galaxy for the final stop in our binocular tour. Throughout fall and winter, she reigns high in the sky during northern hemisphere autumns and winters: Andromeda the Maiden. Centered in the star pattern is an oval patch of light, readily visible to the unaided eye away from urban lights. Binoculars will show it even better.

It’s a whole other galaxy like our own, shining across the vastness of intergalactic space. Light from the Andromeda Galaxy has traveled so far that it’s taken more than 2 million years to reach us.
Two smaller companions visible through binoculars on a dark, transparent night are the Andromeda Galaxy’s version of our Milky Way’s Magellanic Clouds. These small, orbiting, irregularly-shaped galaxies that will eventually be torn apart by their parent galaxy’s gravity.

Such sights, from lunar wastelands to the glow of a nearby island universe, are all within reach of a pair of handheld optics, really small telescopes in their own right: your binoculars.

John Shibley wrote the original draft of this article, years ago, and we’ve been expanding it and updating it ever since. Thanks, John!
Bottom line: For beginning stargazers, there’s no better tool than an ordinary pair of binoculars. This post tells you why, explains what size to get, and gives you a rundown on some of the coolest binoculars sights out there: the moon, the planets, inside the Milky Way, and beyond. Have fun!

View Article Here Read More

Biggest-Ever Telescope Approved for Construction

Sure to produce images far more inspiring than its name, the European Extremely Large Telescope, or E-ELT. (Artist's rendereing)Excerpt from space.com The world's largest telescope has gotten its official construction go-ahead, keeping the enormous in...

View Article Here Read More

The Light Side of the Dark Night of the Soul

by Kim Hutchinson Clayhut Healing CentreThe phenomenon known as the Dark Night of the Soul is something which many spiritual seekers experience on their journey to re-enlightenment. It can be a painful and frightening process, but it can also be liberating and empowering. It all depends on your perspective and your ability to remain detached. Peeling the Onion The word ‘night’ is misleading. This is a process, and thankfully so. I doubt you would want to experience [...]

View Article Here Read More

Galactic Federation of Light Hilarion May-05-2013

HILARION’S WEEKLY MESSAGE 2013 May 5-12, 2013
Marlene Swetlishoff/Tsu-tana (Soo-tam-ah)
http://www.therainbowscribe.com/hilarion2013.htm

Beloved Ones,

Throughout the cosmos, alignments are taking place which have been anticipated for several thousands of years. These

View Article Here Read More
Older posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑