Tag: greatly (page 2 of 6)

6 Natural Solutions To Decontaminate Soil

Marco Torres, Prevent DiseaseWith a progressively educated population becoming more aware of the inherent dangers of the conventional food supply, urban farming has become hugely popular. However, more people are also becoming aware of contaminated soil and how heavy metals pose potential risks to their food crops. As backyard gardening continues to explode in popularity, we must ask how contaminated is our soil?Many municipalities in many countries are embracing urban agri [...]

View Article Here Read More

Air Force to Test Futuristic ‘Hall Thruster’ on X-37B Space Plane



Vandenberg Air Force Base
The X-37B before its first trip to space.

Excerpt from nbcnews.com


After years of silence on all but the most prosaic aspects of the secretive X-37B space plane program, the Defense Department has revealed that the mysterious, truck-sized craft's next mission will host an experimental new thrust system that could greatly improve the shelf life of satellites. 

The X-37B program has sent its shuttle-like Orbital Test Vehicle craft into space three times for a total time in orbit of almost four years. What the spacecraft has been doing up there is anybody's guess — its creators have declined to comment except to say that everything is working properly. But a news release this week from the Air Force says in no uncertain terms that the next flight of the X-37B, set to begin next month, will be the platform for testing a Hall thruster.

Hall thrusters combine electricity and a noble gas like xenon to produce a miniscule amount of direct force — weak in comparison with thrusters that use ordinary solid fuel, but at a far lesser cost of fuel. Trading power for fuel efficiency would allow satellites and probes to make course adjustments for much longer, extending their lives and versatility. Spaceflight Now has more details on how the system works. 

Of course, this sheds no light on what the last three X-37B missions were — but in light of this new information it seems more likely that it's a test bed for high-tech space experiments, and not an orbital bomber or elite spy satellite. But you never know.

View Article Here Read More

Is In-Flight Refueling Coming to Commercial Airlines?




Excerpt from space.com

This article was originally published on The Conversation. The publication contributed this article to Space.com's Expert Voices: Op-Ed & Insights.

There’s real pressure on the aviation industry to introduce faster, cheaper and greener aircraft, while maintaining the high safety standards demanded of airlines worldwide.

Airlines carry more than three billion passengers each year, which presents an enormous challenge not only for aircraft manufacturers but for the civil aviation infrastructure that makes this extraordinary annual mass-migration possible. Many international airports are close to or already at capacity. The International Air Transport Association (IATA) has estimated that, without intervention, many global airports – including major hubs such as London Heathrow, Amsterdam Schiphol, Beijing and Dubai – will have run out of runway or terminal capacity by 2020. 


The obvious approach to tackling this problem is to extend and enlarge airport runways and terminals – such as the long-proposed third runway at London Heathrow. However there may be other less conventional alternatives, such as introducing in-flight refuelling for civil aircraft on key long-haul routes. Our project, Research on a Cruiser-Enabled Air Transport Environment (Recreate), began in 2011 to evaluate whether this was something that could prove a viable, and far cheaper, solution.

If in-flight refuelling seems implausible, it’s worth remembering that it was first trialed in the 1920s, and the military has continued to develop the technology ever since. The appeal is partly to reduce the aircraft’s weight on take-off, allowing it to carry additional payload, and partly to extend its flight range. Notably, during the Falklands War in 1982 RAF Vulcan bombers used in-flight refuelling to stage what was at the time the longest bombing mission ever, flying 8,000 miles non-stop from Ascension Island in the South Atlantic to the Falklands and back.

Reducing take-off weight could offer many benefits for civilian aircraft too. Without the need to carry so much fuel the aircraft can be smaller, which means less noise on take-off and landing and shorter runways. This opens up the network of smaller regional airports as new potential sites for long-haul routes, relieving pressure on the major hubs that are straining at the seams.

There are environmental benefits too, as a smaller, lighter aircraft requires less fuel to reach its destination. Our initial estimates from air traffic simulations demonstrate that it’s possible to reduce fuel burn by up to 11% over today’s technology by simply replacing existing global long-haul flight routes with specifically designed 250-seater aircraft with a range of 6,000nm after one refuelling – roughly the distance from London to Hong Kong. This saving could potentially grow to 23% with further efficiencies, all while carrying the same number of passengers the same distance as is possible with the current aircraft fleet, and despite the additional fuel burn of the tanker aircraft.

Tornado fighter jets in-flight refuel
Imagine if these Tornado fighter jets were 250-seater passenger aircraft and you’ve got the idea.

However, this is not the whole picture – in-flight refuelling will require the aerial equivalent of petrol stations in order to deliver keep passenger aircraft in the sky. With so much traffic it simply wouldn’t be possible to refuel any aircraft any time, anywhere it was needed. The location of these refuelling zones, coupled with the flight distance between the origin and destination airports can greatly affect the potential benefits achievable, possibly pulling flights away from their shortest route, and even making refuelling on some routes impossible – if for example the deviation to the nearest refuelling zone meant burning as much fuel as would have been saved.

Safety and automation

As with all new concepts – particularly those that involve bringing one aircraft packed with people and another full of fuel into close proximity during flight – it’s quite right to ask whether this is safe. To try and answer this question, the Dutch National Aerospace Laboratory and German Aerospace Centre used their flight simulators to test the automated in-flight refuelling flight control system developed as part of the Recreate project.

One simulator replicated the manoeuvre from the point of view of the tanker equipped with an in-flight refuelling boom, the other simulated the aircraft being refuelled mid-flight. Critical test situations such as engine failure, high air turbulence and gusts of wind were simulated with real flight crews to assess the potential danger to the operation. The results were encouraging, demonstrating that the manoeuvre doesn’t place an excessive workload on the pilots, and that the concept is viable from a human as well as a technical perspective.

So far we’ve demonstrated the potential aerial refuelling holds for civilian aviation, but putting it into practice would still pose challenges. Refuelling hubs would need to be established worldwide, shared between airlines. There would need to be fundamental changes to airline pilot training, alongside a wider public acceptance of this departure from traditional flight operations.

However, it does demonstrate that, in addition to all the high-tech work going into designing new aircraft, new materials, new engines and new fuels, the technology we already have offers solutions to the long-term problems of ferrying billions of passengers by air around the world.

View Article Here Read More

Every Black Hole Contains a New Universe


At the center of spiral galaxy M81 is a supermassive black hole about 70 million times more massive than our sun.



Excerpt from insidescience.org
A physicist presents a solution to present-day cosmic mysteries.



By: 
Nikodem Poplawski, Inside Science Minds Guest Columnist



(ISM) -- Our universe may exist inside a black hole. This may sound strange, but it could actually be the best explanation of how the universe began, and what we observe today. It's a theory that has been explored over the past few decades by a small group of physicists including myself. 
Successful as it is, there are notable unsolved questions with the standard big bang theory, which suggests that the universe began as a seemingly impossible "singularity," an infinitely small point containing an infinitely high concentration of matter, expanding in size to what we observe today. The theory of inflation, a super-fast expansion of space proposed in recent decades, fills in many important details, such as why slight lumps in the concentration of matter in the early universe coalesced into large celestial bodies such as galaxies and clusters of galaxies.
But these theories leave major questions unresolved. For example: What started the big bang? What caused inflation to end? What is the source of the mysterious dark energy that is apparently causing the universe to speed up its expansion?
The idea that our universe is entirely contained within a black hole provides answers to these problems and many more. It eliminates the notion of physically impossible singularities in our universe. And it draws upon two central theories in physics.
Nikodem Poplawski displays a "tornado in a tube." The top bottle symbolizes a black hole, the connected necks represent a wormhole and the lower bottle symbolizes the growing universe on the just-formed other side of the wormhole. Credit: Indiana University
In this picture, spins in particles interact with spacetime and endow it with a property called "torsion." To understand torsion, imagine spacetime not as a two-dimensional canvas, but as a flexible, one-dimensional rod. Bending the rod corresponds to curving spacetime, and twisting the rod corresponds to spacetime torsion. If a rod is thin, you can bend it, but it's hard to see if it's twisted or not.

The first is general relativity, the modern theory of gravity. It describes the universe at the largest scales. Any event in the universe occurs as a point in space and time, or spacetime. A massive object such as the Sun distorts or "curves" spacetime, like a bowling ball sitting on a canvas. The Sun's gravitational dent alters the motion of Earth and the other planets orbiting it. The sun's pull of the planets appears to us as the force of gravity.

The second is quantum mechanics, which describes the universe at the smallest scales, such as the level of the atom. However, quantum mechanics and general relativity are currently separate theories; physicists have been striving to combine the two successfully into a single theory of "quantum gravity" to adequately describe important phenomena, including the behavior of subatomic particles in black holes.
A 1960s adaptation of general relativity, called the Einstein-Cartan-Sciama-Kibble theory of gravity, takes into account effects from quantum mechanics. It not only provides a step towards quantum gravity but also leads to an alternative picture of the universe. This variation of general relativity incorporates an important quantum property known as spin. Particles such as atoms and electrons possess spin, or the internal angular momentum that is analogous to a skater spinning on ice.

Spacetime torsion would only be significant, let alone noticeable, in the early universe or in black holes. In these extreme environments, spacetime torsion would manifest itself as a repulsive force that counters the attractive gravitational force coming from spacetime curvature. As in the standard version of general relativity, very massive stars end up collapsing into black holes: regions of space from which nothing, not even light, can escape.
Here is how torsion would play out in the beginning moments of our universe. Initially, the gravitational attraction from curved space would overcome torsion's repulsive forces, serving to collapse matter into smaller regions of space. But eventually torsion would become very strong and prevent matter from compressing into a point of infinite density; matter would reach a state of extremely large but finite density. As energy can be converted into mass, the immensely high gravitational energy in this extremely dense state would cause an intense production of particles, greatly increasing the mass inside the black hole.
The increasing numbers of particles with spin would result in higher levels of spacetime torsion. The repulsive torsion would stop the collapse and would create a "big bounce" like a compressed beach ball that snaps outward. The rapid recoil after such a big bounce could be what has led to our expanding universe. The result of this recoil matches observations of the universe's shape, geometry, and distribution of mass.
In turn, the torsion mechanism suggests an astonishing scenario: every black hole would produce a new, baby universe inside. If that is true, then the first matter in our universe came from somewhere else. So our own universe could be the interior of a black hole existing in another universe. Just as we cannot see what is going on inside black holes in the cosmos, any observers in the parent universe could not see what is going on in ours.
The motion of matter through the black hole's boundary, called an "event horizon," would only happen in one direction, providing a direction of time that we perceive as moving forward. The arrow of time in our universe would therefore be inherited, through torsion, from the parent universe.
Torsion could also explain the observed imbalance between matter and antimatter in the universe. Because of torsion, matter would decay into familiar electrons and quarks, and antimatter would decay into "dark matter," a mysterious invisible form of matter that appears to account for a majority of matter in the universe.
Finally, torsion could be the source of "dark energy," a mysterious form of energy that permeates all of space and increases the rate of expansion of the universe. Geometry with torsion naturally produces a "cosmological constant," a sort of added-on outward force which is the simplest way to explain dark energy. Thus, the observed accelerating expansion of the universe may end up being the strongest evidence for torsion.
Torsion therefore provides a theoretical foundation for a scenario in which the interior of every black hole becomes a new universe. It also appears as a remedy to several major problems of current theory of gravity and cosmology. Physicists still need to combine the Einstein-Cartan-Sciama-Kibble theory fully with quantum mechanics into a quantum theory of gravity. While resolving some major questions, it raises new ones of its own. For example, what do we know about the parent universe and the black hole inside which our own universe resides? How many layers of parent universes would we have? How can we test that our universe lives in a black hole?
The last question can potentially be investigated: since all stars and thus black holes rotate, our universe would have inherited the parent black hole’s axis of rotation as a "preferred direction." There is some recently reported evidence from surveys of over 15,000 galaxies that in one hemisphere of the universe more spiral galaxies are "left-handed", or rotating clockwise, while in the other hemisphere more are "right-handed", or rotating counterclockwise. In any case, I believe that including torsion in geometry of spacetime is a right step towards a successful theory of cosmology.

View Article Here Read More

The Best Star Gazing Binoculars for 2015




Excerpt from space.com

Most people have two eyes. Humans evolved to use them together (not all animals do). People form a continuous, stereoscopic panorama movie of the world within in their minds. With your two eyes tilted upward on a clear night, there's nothing standing between you and the universe. The easiest way to enhance your enjoyment of the night sky is to paint your brain with two channels of stronger starlight with a pair of binoculars. Even if you live in — or near — a large, light-polluted city, you may be surprised at how much astronomical detail you'll see through the right binoculars!
Our editors have looked at the spectrum of current binocular offerings. Thanks to computer-aided design and manufacturing, there have never been more high-quality choices at reasonable prices. Sadly, there's also a bunch of junk out there masquerading as fine stargazing instrumentation. We've selected a few that we think will work for most skywatchers.
There was a lot to consider: magnification versus mass, field of view, prism type, optical quality ("sharpness"), light transmission, age of the user (to match "exit pupil" size, which changes as we grow older), shock resistance, waterproofing and more. 

The best binoculars for you

"Small" astronomy binoculars would probably be considered "medium" for bird watching, sports observation and other terrestrial purposes. This comes about as a consequence of optics (prism type and objective size, mostly). "Large" binoculars are difficult to use for terrestrial applications and have a narrow field of view. They begin to approach telescope quality in magnification, resolution and optical characteristics.

Most of our Editors' Choicesfor stargazing binoculars here are under $300. You can pay more than 10 times that for enormous binocular telescopes used by elite enthusiasts on special mounts! You'll also pay more for ruggedized ("mil spec," or military standard) binoculars, many of which suspend their prisms on shock mounts to keep the optics in precise alignment.

Also, our Editors' Choices use Porro prism optics. Compact binoculars usually employ "roof" prisms, which can be cast more cheaply, but whose quality can vary widely. [There's much more about Porro prisms in our Buyer's Guide.]
We think your needs are best served by reviewing in three categories.
  • Small, highly portable binoculars can be hand-held for viewing ease.
  • Medium binoculars offer higher powers of magnification, but still can be hand-held, if firmly braced.
  • Large binoculars have bigger "objective" lenses but must be mounted on a tripod or counterweighted arm for stability.
Here's a detailed look at our Editor's Choice selections for stargazing binoculars:

Best Small Binoculars 

Editor's Choice: Oberwerk Mariner 8x40 (Cost: $150)

Oberwerk in German means "above work." The brand does indeed perform high-level optical work, perfect for looking at objects above, as well as on the ground or water. Founder Kevin Busarow's Mariner series is not his top of the line, but it benefits greatly from engineering developed for his pricier models. The Oberwerk 8x40’s treat your eyes to an extremely wide field, at very high contrast, with razor-sharp focus; they are superb for observing the broad starscapes of the Milky Way. Just 5.5 inches (14 cm) from front to back and 6.5 inches wide (16.5 cm), the Mariners are compact and rugged enough to be your favorite "grab and go binoculars." But at 37 ounces, they may be more than a small person wants to carry for a long time.


Runner-Up: Celestron Cometron 7x50 (Cost: $30)

Yes, you read that price correctly! These Celestron lightweight, wide-field binoculars bring honest quality at a remarkably low price point. The compromise comes in the optics, particularly the prism's glass type (you might see a little more chromatic aberration around the edges of the moon, and the exit pupil isn't a nice, round circle). Optimized for "almost infinitely distant" celestial objects, these Cometrons won't focus closer than about 30 feet (9.1 meters).  But that's fine for most sports and other outdoor use. If you're gift-buying for multiple young astronomers – or you want an inexpensive second set for yourself – these binoculars could be your answer. Just maybe remind those young folks to be a little careful around water; Celestron claims only that the Cometrons are "water resistant," not waterproof. 


Honorable Mention: Swarovski Habicht 8x30 (Cost: $1,050)

From the legendary Austrian firm of Swarovski Optik, these "bins" are perfect. Really. Very sharp. Very lightweight. Very wide field. Very versatile. And very expensive! Our editors would have picked them if we could have afforded them. 

Honorable Mention: Nikon Aculon 7x50 (Cost: $110) 

Nikon's legendary optical quality and the large, 7mm exit pupil diameter make these appropriate as a gift for younger skywatchers. 

Best Medium Binoculars

Editor's Choice: Celestron SkyMaster 8x56 (Cost: $210)

A solid, chunky-feeling set of quality prisms and lenses makes these binoculars a pleasant, 38oz. handful. A medium wide 5.8 degrees filed of view and large 7mm exit pupil brings you gently into a sweet sky of bright, though perhaps not totally brilliant, stars. Fully dressed in a rubber wetsuit, these SkyMasters are waterproof. Feel free to take them boating or birding on a moist morning. Their optical tubes were blown out with dry nitrogen at the factory, then sealed. So you can expect them not to fog up, at least not from the inside. Celestron's strap-mounting points on the Skymaster 8x56 are recessed, so they don't bother your thumbs, but that location makes them hard to fasten. 


Runner-Up: Oberwerk Ultra 15x70 (Cost: $380)

The most rugged pair we evaluated, these 15x70s are optically outstanding. Seen through the Ultra's exquisitely multi-coated glass, you may find yourself falling in love with the sky all over again. Oberwerk's method of suspending their BAK4 glass Porro prisms offers greater shock-resistance than most competitors’ designs. While more costly than some comparable binoculars, they deliver superior value. Our only complaint is with their mass: At 5.5 lbs., these guys are heavy!  You can hand-hold them for a short while, if you’re lying down. But they are best placed on a tripod, or on a counterweighted arm, unless you like shaky squiggles where your point-source stars are supposed to be. Like most truly big binoculars, the eyepieces focus independently; there’s no center focus wheel. These "binos" are for true astronomers. 


Honorable Mention: Vixen Ascot 10x50 (Cost:$165)

These quirky binoculars present you with an extremely wide field. But they are not crash-worthy – don't drop them in the dark – nor are they waterproof, and the focus knob is not conveniently located. So care is needed if you opt for these Vixen optics. 

Best Large Binoculars

Don't even think about hand-holding this 156-ounce beast! The SkyMaster 25x100 is really a pair of side-by-side 100mm short-tube refractor telescopes. Factor the cost of a sturdy tripod into your purchase decision, if you want to go this big.  The monster Celestron comes with a sturdy support spar for mounting. Its properly multi-coated optics will haul in surprising detail from the sky.  Just make sure your skies are dark; with this much magnification, light pollution can render your images dingy. As with many in the giant and super-giant class of binoculars, the oculars (non-removable eyepieces) focus separately, each rotating through an unusually long 450 degrees.  Getting to critical focus can be challenging, but the view is worth it. You can resolve a bit of detail on face of the new moon (lit by "Earthshine") and pick out cloud bands on Jupiter; tha's pretty astonishing for binoculars. 


Runner-Up: Orion Astronomy 20x80 (Cost: $150)

These big Orions distinguish themselves by price point; they're an excellent value. You could pay 10 times more for the comparably sized Steiners Military Observer 20x80 binoculars! Yes, the Orions are more delicate, a bit less bright and not quite as sharp. But they do offer amazingly high contrast; you'll catch significant detail in galaxies, comets and other "fuzzies." Unusually among such big rigs, the Astronomy 20x80 uses a center focus ring and one "diopter" (rather than independently focusing oculars); if you’re graduating from smaller binoculars, which commonly use that approach, this may be a comfort. These binoculars are almost lightweight enough to hold them by hand. But don't do that, at least not for long periods. And don't drop them. They will go out of alignment if handled roughly. 


Honorable Mention: Barska Cosmos 25x100 (Cost: $230)

They are not pretty, but you're in the dark, right? Built around a tripod-mountable truss tube, these Barskas equilibrate to temperature quickly and give you decent viewing at rational cost. They make for a cheaper version of our Editors' Choice Celestron SkyMasters. 

Honorable Mention: Steiner Observer 20x80 (Cost: $1,500)

Not at all a practical cost choice for a beginning stargazer, but you can dream, can't you? These Steiner binoculars are essentially military optics "plowshared" for peaceful celestial observing. 

Why we chose NOT to review certain types

Image stabilized?

Binoculars with active internal image stabilization are a growing breed. Most use battery-powered gyroscope/accelerometer-driven dynamic optical elements. We have left this type out of our evaluation because they are highly specialized and pricey ($1,250 and up). But if you are considering active stabilization, you can apply the same judgment methods detailed in our Buyer's Guide.

Comes with a camera?

A few binoculars are sold with built-in cameras. That seems like a good idea. But it isn't, at least not for skywatching. Other than Earth's moon, objects in the night sky are stingy with their photons. It takes a lengthy, rock-steady time exposure to collect enough light for a respectable image. By all means, consider these binocular-camera combos for snapping Facebook shots of little Jenny on the soccer field. But stay away from them for astronomy.

Mega monster-sized?

Take your new binoculars out under the night sky on clear nights, and you will fall in love with the universe. You will crave more ancient light from those distant suns. That may translate into a strong desire for bigger stereo-light buckets.

Caution: The next level up is a quantum jump of at least one financial order of magnitude. But if you have the disposable income and frequent access to dark skies, you may want to go REALLY big. Binocular telescopes in this class can feature interchangeable matching eyepieces, individually focusing oculars, more than 30x magnification and sturdy special-purpose tripods. Amateurs using these elite-level stereoscopes have discovered several prominent comets.

Enjoy your universe

If you are new to lens-assisted stargazing, you'll find excellent enhanced views among the binocular choices above. To get in deeper and to understand how we picked the ones we did, jump to our Buyer's Guide: How to Choose Binoculars for Sky Watching.

You have just taken the first step to lighting up your brain with star fire. May the photons be with you. Always. 

Skywatching Events 2015

Once you have your new binoculars, it's time to take them for a spin. This year intrepid stargazers will have plenty of good opportunities to use new gear.

On March 20, for example, the sun will go through a total solar eclipse. You can check out the celestial sight using the right sun-blocking filters for binoculars, but NEVER look at the sun directly, even during a solar eclipse. It's important to find the proper filters in order to observe the rare cosmic show. 

Observers can also take a look at the craggy face of the moon during a lunar eclipse on April 4. Stargazers using binoculars should be able to pick out some details not usually seen by the naked eye when looking at Earth's natural satellite.

Skywatchers should also peek out from behind the binoculars for a chance to see a series of annual meteor showers throughout the year.

View Article Here Read More

What to Do If You See a Pet Left Out in the Cold


Concerned neighbors rescued Barbie and her puppies from the snow. Scott Townsend

From humanesociety.org

It can be a crime to leave pets outside in extreme temperatures without food and shelter


Cold weather can be deadly for pets. As the temperature plummets in many parts of the country, The Humane Society of the United States sees a marked increase in the number of complaints about dogs and cats who have been left outside with no food or shelter.

We encourage you to contact local law enforcement agencies because pets left outside in extreme temperatures, especially without food and shelter, are at risk of hypothermia, frostbite and even death. Their owners are at risk of facing criminal charges.

The act of leaving a pet outside without food or adequate shelter often receives less attention than a violent attack against an animal, but neglect is a crime. "Especially in these cold months, it is important for people to bring their pets inside and for others to report neglected animals to law enforcement,” says Ashley Mauceri, HSUS manager for cruelty response, who fields these calls.


One of the most common forms of animal cruelty, cases of animals left outside in dangerous weather are investigated more by police and animal control agencies than any other form of animal abuse. Our most constant companions—dogs and cats—feel the effects of winter weather as much as we do, only they are often cast outside to weather the cold or a storm owing to a misconception that the fur on their backs will insulate them from suffering. Without proper shelter, food and water, these domesticated animals’ chances of survival in frigid temperatures is greatly decreased. Any pet owners who aren't sure what protections their pets need during cold weather can read our cold-weather advice for keeping pets safe.

While views on animal welfare vary from region to region, there are laws in place in every state to prevent needless suffering. Callers to The HSUS report numerous cases across the country of animals left out in the cold, but the organization is also working with an increasing number of law enforcement agencies that recognize the importance of intervention in these cases.


The facts


  • Animal neglect is considered a misdemeanor crime in all 50 states and Washington, D.C.
  • Felony penalties can be levied in Massachusetts and Oklahoma for any animal neglect case.
  • Felony charges can be applied in animal neglect resulting in death in California, Connecticut, Florida and Washington, D.C.

 How you can help


View Article Here Read More

Science Increasingly Makes the Case for God



Excerpt from  wsj.com
By Eric Metaxas


The odds of life existing on another planet grow ever longer. Intelligent design, anyone?


In 1966 Time magazine ran a cover story asking: Is God Dead? Many have accepted the cultural narrative that he’s obsolete—that as science progresses, there is less need for a “God” to explain the universe. Yet it turns out that the rumors of God’s death were premature. More amazing is that the relatively recent case for his existence comes from a surprising place—science itself.
Here’s the story: The same year Time featured the now-famous headline, the astronomer Carl Sagan announced that there were two important criteria for a planet to support life: The right kind of star, and a planet the right distance from that star. Given the roughly octillion—1 followed by 27 zeros—planets in the universe, there should have been about septillion—1 followed by 24 zeros—planets capable of supporting life.
With such spectacular odds, the Search for Extraterrestrial Intelligence, a large, expensive collection of private and publicly funded projects launched in the 1960s, was sure to turn up something soon. Scientists listened with a vast radio telescopic network for signals that resembled coded intelligence and were not merely random. But as years passed, the silence from the rest of the universe was deafening. Congress defunded SETI in 1993, but the search continues with private funds. As of 2014, researches have discovered precisely bubkis—0 followed by nothing.
What happened? As our knowledge of the universe increased, it became clear that there were far more factors necessary for life than Sagan supposed. His two parameters grew to 10 and then 20 and then 50, and so the number of potentially life-supporting planets decreased accordingly. The number dropped to a few thousand planets and kept on plummeting.
Even SETI proponents acknowledged the problem. Peter Schenkel wrote in a 2006 piece for Skeptical Inquirer magazine: “In light of new findings and insights, it seems appropriate to put excessive euphoria to rest . . . . We should quietly admit that the early estimates . . . may no longer be tenable.”
As factors continued to be discovered, the number of possible planets hit zero, and kept going. In other words, the odds turned against any planet in the universe supporting life, including this one. Probability said that even we shouldn’t be here.
Today there are more than 200 known parameters necessary for a planet to support life—every single one of which must be perfectly met, or the whole thing falls apart. Without a massive planet like Jupiter nearby, whose gravity will draw away asteroids, a thousand times as many would hit Earth’s surface. The odds against life in the universe are simply astonishing.
Yet here we are, not only existing, but talking about existing. What can account for it? Can every one of those many parameters have been perfect by accident? At what point is it fair to admit that science suggests that we cannot be the result of random forces? Doesn’t assuming that an intelligence created these perfect conditions require far less faith than believing that a life-sustaining Earth just happened to beat the inconceivable odds to come into being?
There’s more. The fine-tuning necessary for life to exist on a planet is nothing compared with the fine-tuning required for the universe to exist at all. For example, astrophysicists now know that the values of the four fundamental forces—gravity, the electromagnetic force, and the “strong” and “weak” nuclear forces—were determined less than one millionth of a second after the big bang. Alter any one value and the universe could not exist. For instance, if the ratio between the nuclear strong force and the electromagnetic force had been off by the tiniest fraction of the tiniest fraction—by even one part in 100,000,000,000,000,000—then no stars could have ever formed at all. Feel free to gulp.
Multiply that single parameter by all the other necessary conditions, and the odds against the universe existing are so heart-stoppingly astronomical that the notion that it all “just happened” defies common sense. It would be like tossing a coin and having it come up heads 10 quintillion times in a row. Really?
Fred Hoyle, the astronomer who coined the term “big bang,” said that his atheism was “greatly shaken” at these developments. He later wrote that “a common-sense interpretation of the facts suggests that a super-intellect has monkeyed with the physics, as well as with chemistry and biology . . . . The numbers one calculates from the facts seem to me so overwhelming as to put this conclusion almost beyond question.”
Theoretical physicist Paul Davies has said that “the appearance of design is overwhelming” and Oxford professor Dr. John Lennox has said “the more we get to know about our universe, the more the hypothesis that there is a Creator . . . gains in credibility as the best explanation of why we are here.”
The greatest miracle of all time, without any close seconds, is the universe. It is the miracle of all miracles, one that ineluctably points with the combined brightness of every star to something—or Someone—beyond itself.

Mr. Metaxas is the author, most recently, of “Miracles: What They Are, Why They Happen, and How They Can Change Your Life” ( Dutton Adult, 2014).

View Article Here Read More

Does the Theory of Evolution Really Matter? Video Presentation

Students who may be disinterested or uncomfortable with the science of evolution often wonder why it is worth their time and effort to understand. Stated Clearly and Emory University's Center for Science Education have joined forces to create this a...

View Article Here Read More

Ballistic Capture Can Send Spacecraft to Mars at Cheaper Cost

Ballistic capture could be used to reach Mars at a lower cost than current techniques. How does it work, and what are the drawbacks?Excerpt from techtimes.comBallistic capture is a navigational technique utilized by spacecraft, and has been successfu...

View Article Here Read More

Japanese probe’s study of asteroid matter could help explain Earth’s evolution






Excerpt from 
thespacereporter.com


The Hayabusa 2, a robotic Japanese spacecraft is due to launch on Monday in Japan from the Tanegashima Space Center. The take-off was originally set for Saturday, but because of unfavorable elements it was not able to launch. Fortunately, on Monday, the launch of Hayabusa 2 will continue and in mid-2018 it will reach its destination, Asteroid 1999 JU3.

Asteroid 1999 JU3 is 3,000 foot in circumference and circles the sun on an orbit that crosses through Earth’s. In past research, the belief that organic matter existed on JU3 was brought up by NASA, the U.S. Air Force and the Massachusetts Institute of Technology. Carbon, amino acids and water-rich minerals were all believed to be located on the asteroid, which might help to provide fundamental evidence on evolution and where oceans were first created on Earth.

Due to the substantial evidence brought back in the original Hayabusa mission, JAXA and the Japanese Aerospace Exploration Agency have partnered with planetary scientist Paul Abell from NASA’s Johnson Space Center in Houston. They are to carry out the Hayabusa 2 mission on Monday in hopes that the H-2A rocket will bring back evidence of organic material on Asteroid 1999 JU3.

With the right samples and evidence, they may be able to prove the correlation between asteroids, how the solar system formed, and how life started on Earth. This could greatly impact the theories of evolution and the solar system. The Hayabusa 2 mission for organic matter on the JU3 is important for furthering scientific study.

View Article Here Read More

The New American Dream ~ The Case for Colonizing Mars




Excerpt from Ad Astra

by Robert Zubrin


Mars Is The New World

Among extraterrestrial bodies in our solar system, Mars is singular in that it possesses all the raw materials required to support not only life, but a new branch of human civilization. This uniqueness is illustrated most clearly if we contrast Mars with the Earth's Moon, the most frequently cited alternative location for extraterrestrial human colonization.

In contrast to the Moon, Mars is rich in carbon, nitrogen, hydrogen and oxygen, all in biologically readily accessible forms such as carbon dioxide gas, nitrogen gas, and water ice and permafrost. Carbon, nitrogen, and hydrogen are only present on the Moon in parts per million quantities, much like gold in seawater. Oxygen is abundant on the Moon, but only in tightly bound oxides such as silicon dioxide (SiO2), ferrous oxide (Fe2O3), magnesium oxide (MgO), and aluminum oxide (Al2O3), which require very high energy processes to reduce.

The Moon is also deficient in about half the metals of interest to industrial society (copper, for example), as well as many other elements of interest such as sulfur and phosphorus. Mars has every required element in abundance. Moreover, on Mars, as on Earth, hydrologic and volcanic processes have occurred that are likely to have consolidated various elements into local concentrations of high-grade mineral ore. Indeed, the geologic history of Mars has been compared to that of Africa, with very optimistic inferences as to its mineral wealth implied as a corollary. In contrast, the Moon has had virtually no history of water or volcanic action, with the result that it is basically composed of trash rocks with very little differentiation into ores that represent useful concentrations of anything interesting.

You can generate power on either the Moon or Mars with solar panels, and here the advantages of the Moon's clearer skies and closer proximity to the Sun than Mars roughly balances the disadvantage of large energy storage requirements created by the Moon's 28-day light-dark cycle. But if you wish to manufacture solar panels, so as to create a self-expanding power base, Mars holds an enormous advantage, as only Mars possesses the large supplies of carbon and hydrogen needed to produce the pure silicon required for producing photovoltaic panels and other electronics. In addition, Mars has the potential for wind-generated power while the Moon clearly does not. But both solar and wind offer relatively modest power potential — tens or at most hundreds of kilowatts here or there. To create a vibrant civilization you need a richer power base, and this Mars has both in the short and medium term in the form of its geothermal power resources, which offer potential for large numbers of locally created electricity generating stations in the 10 MW (10,000 kilowatt) class. In the long-term, Mars will enjoy a power-rich economy based upon exploitation of its large domestic resources of deuterium fuel for fusion reactors. Deuterium is five times more common on Mars than it is on Earth, and tens of thousands of times more common on Mars than on the Moon.

But the biggest problem with the Moon, as with all other airless planetary bodies and proposed artificial free-space colonies, is that sunlight is not available in a form useful for growing crops. A single acre of plants on Earth requires four megawatts of sunlight power, a square kilometer needs 1,000 MW. The entire world put together does not produce enough electrical power to illuminate the farms of the state of Rhode Island, that agricultural giant. Growing crops with electrically generated light is just economically hopeless. But you can't use natural sunlight on the Moon or any other airless body in space unless you put walls on the greenhouse thick enough to shield out solar flares, a requirement that enormously increases the expense of creating cropland. Even if you did that, it wouldn't do you any good on the Moon, because plants won't grow in a light/dark cycle lasting 28 days.

But on Mars there is an atmosphere thick enough to protect crops grown on the surface from solar flare. Therefore, thin-walled inflatable plastic greenhouses protected by unpressurized UV-resistant hard-plastic shield domes can be used to rapidly create cropland on the surface. Even without the problems of solar flares and month-long diurnal cycle, such simple greenhouses would be impractical on the Moon as they would create unbearably high temperatures. On Mars, in contrast, the strong greenhouse effect created by such domes would be precisely what is necessary to produce a temperate climate inside. Such domes up to 50 meters in diameter are light enough to be transported from Earth initially, and later on they can be manufactured on Mars out of indigenous materials. Because all the resources to make plastics exist on Mars, networks of such 50- to 100-meter domes could be rapidly manufactured and deployed, opening up large areas of the surface to both shirtsleeve human habitation and agriculture. That's just the beginning, because it will eventually be possible for humans to substantially thicken Mars' atmosphere by forcing the regolith to outgas its contents through a deliberate program of artificially induced global warming. Once that has been accomplished, the habitation domes could be virtually any size, as they would not have to sustain a pressure differential between their interior and exterior. In fact, once that has been done, it will be possible to raise specially bred crops outside the domes.

The point to be made is that unlike colonists on any known extraterrestrial body, Martian colonists will be able to live on the surface, not in tunnels, and move about freely and grow crops in the light of day. Mars is a place where humans can live and multiply to large numbers, supporting themselves with products of every description made out of indigenous materials. Mars is thus a place where an actual civilization, not just a mining or scientific outpost, can be developed. And significantly for interplanetary commerce, Mars and Earth are the only two locations in the solar system where humans will be able to grow crops for export.

Interplanetary Commerce

Mars is the best target for colonization in the solar system because it has by far the greatest potential for self-sufficiency. Nevertheless, even with optimistic extrapolation of robotic manufacturing techniques, Mars will not have the division of labor required to make it fully self-sufficient until its population numbers in the millions. Thus, for decades and perhaps longer, it will be necessary, and forever desirable, for Mars to be able to import specialized manufactured goods from Earth. These goods can be fairly limited in mass, as only small portions (by weight) of even very high-tech goods are actually complex. Nevertheless, these smaller sophisticated items will have to be paid for, and the high costs of Earth-launch and interplanetary transport will greatly increase their price. What can Mars possibly export back to Earth in return?
It is this question that has caused many to incorrectly deem Mars colonization intractable, or at least inferior in prospect to the Moon.

For example, much has been made of the fact that the Moon has indigenous supplies of helium-3, an isotope not found on Earth and which could be of considerable value as a fuel for second generation thermonuclear fusion reactors. Mars has no known helium-3 resources. On the other hand, because of its complex geologic history, Mars may have concentrated mineral ores, with much greater concentrations of precious metal ores readily available than is currently the case on Earth — because the terrestrial ores have been heavily scavenged by humans for the past 5,000 years. If concentrated supplies of metals of equal or greater value than silver (such as germanium, hafnium, lanthanum, cerium, rhenium, samarium, gallium, gadolinium, gold, palladium, iridium, rubidium, platinum, rhodium, europium, and a host of others) were available on Mars, they could potentially be transported back to Earth for a substantial profit. Reusable Mars-surface based single-stage-to-orbit vehicles would haul cargoes to Mars orbit for transportation to Earth via either cheap expendable chemical stages manufactured on Mars or reusable cycling solar or magnetic sail-powered interplanetary spacecraft. The existence of such Martian precious metal ores, however, is still hypothetical.

But there is one commercial resource that is known to exist ubiquitously on Mars in large amount — deuterium. Deuterium, the heavy isotope of hydrogen, occurs as 166 out of every million hydrogen atoms on Earth, but comprises 833 out of every million hydrogen atoms on Mars. Deuterium is the key fuel not only for both first and second generation fusion reactors, but it is also an essential material needed by the nuclear power industry today. Even with cheap power, deuterium is very expensive; its current market value on Earth is about $10,000 per kilogram, roughly fifty times as valuable as silver or 70% as valuable as gold. This is in today's pre-fusion economy. Once fusion reactors go into widespread use deuterium prices will increase. All the in-situ chemical processes required to produce the fuel, oxygen, and plastics necessary to run a Mars settlement require water electrolysis as an intermediate step. As a by product of these operations, millions, perhaps billions, of dollars worth of deuterium will be produced.

Ideas may be another possible export for Martian colonists. Just as the labor shortage prevalent in colonial and nineteenth century America drove the creation of "Yankee ingenuity's" flood of inventions, so the conditions of extreme labor shortage combined with a technological culture that shuns impractical legislative constraints against innovation will tend to drive Martian ingenuity to produce wave after wave of invention in energy production, automation and robotics, biotechnology, and other areas. These inventions, licensed on Earth, could finance Mars even as they revolutionize and advance terrestrial living standards as forcefully as nineteenth century American invention changed Europe and ultimately the rest of the world as well.

Inventions produced as a matter of necessity by a practical intellectual culture stressed by frontier conditions can make Mars rich, but invention and direct export to Earth are not the only ways that Martians will be able to make a fortune. The other route is via trade to the asteroid belt, the band of small, mineral-rich bodies lying between the orbits of Mars and Jupiter. There are about 5,000 asteroids known today, of which about 98% are in the "Main Belt" lying between Mars and Jupiter, with an average distance from the Sun of about 2.7 astronomical units, or AU. (The Earth is 1.0 AU from the Sun.) Of the remaining two percent known as the near-Earth asteroids, about 90% orbit closer to Mars than to the Earth. Collectively, these asteroids represent an enormous stockpile of mineral wealth in the form of platinum group and other valuable metals.


Historical Analogies

The primary analogy I wish to draw is that Mars is to the new age of exploration as North America was to the last. The Earth's Moon, close to the metropolitan planet but impoverished in resources, compares to Greenland. Other destinations, such as the Main Belt asteroids, may be rich in potential future exports to Earth but lack the preconditions for the creation of a fully developed indigenous society; these compare to the West Indies. Only Mars has the full set of resources required to develop a native civilization, and only Mars is a viable target for true colonization. Like America in its relationship to Britain and the West Indies, Mars has a positional advantage that will allow it to participate in a useful way to support extractive activities on behalf of Earth in the asteroid belt and elsewhere.

But despite the shortsighted calculations of eighteenth-century European statesmen and financiers, the true value of America never was as a logistical support base for West Indies sugar and spice trade, inland fur trade, or as a potential market for manufactured goods. The true value of America was as the future home for a new branch of human civilization, one that as a combined result of its humanistic antecedents and its frontier conditions was able to develop into the most powerful engine for human progress and economic growth the world had ever seen. The wealth of America was in fact that she could support people, and that the right kind of people chose to go to her. People create wealth. People are wealth and power. Every feature of Frontier American life that acted to create a practical can-do culture of innovating people will apply to Mars a hundred-fold.

Mars is a harsher place than any on Earth. But provided one can survive the regimen, it is the toughest schools that are the best. The Martians shall do well.



Robert Zubrin is former Chairman of the National Space Society, President of the Mars Society, and author of The Case For Mars: The Plan to Settle the Red Planet and Why We Must.

View Article Here Read More

Who is Jesus to Ascended Consciousness?

By: Robert Burney"Jesus was a perfect Spiritual Being, a direct extension/manifestation from the ONENESS that is the God/Goddess Energy, having a human experience - just as we all are perfect Spiritual Beings having a human experience.""This Master Teacher was known as Jesus the Christ. The man Jesus was a perfect child of the Goddess and God energy - just as we all are perfect children of the God-Force!"This messenger added the most powerful ingredient to the process. He brought us our sec [...]

View Article Here Read More

Glass Half Full: An Afterlife Experience ~ By Greg Giles


I originally posted this article a couple of years ago, but its one of my favorite of all the articles I have shared over the years here at Ascension Earth. I feel this very real experience is worth sharing with you all once again, and I hope you enjoy it as much as I enjoy sharing it with you. 
Greg      
In a recent article, I shared the story of my Uncle Sonny who, upon leaving this realm from his hospital bed, emphatically and excitedly claimed his friends who had passed on years before him had come for him and were standing right there in the corner of the small hospital room waving him to come with them. My uncle had awoken from a coma he was under for weeks for just that moment, and upon the site of his friends smiling and waving to him he closed his eyes and left this Earth, I am sure to follow his friends into the afterlife.   


My uncle though, is not the only member of our family who has left one last gift for our family, as my mother also left this Earth just one year ago and she too had one last remarkable tale of her own to tell before she said goodbye to all of us. During a long surgical procedure that my mother survived, she was given the opportunity to leave here. After my mother awakened after her surgery in her hospital recovery room, this is what she had to share with all of us. My mother said that during her surgical procedure she suddenly materialized in a small, plainly decorated room. There in front of her was a table with a small glass filled to the top with crystal clear water. She didn't know why the glass of water sat there on the table, and before she could even think about it too long the door to the room opened and a young, handsome man walked in. She said he looked in his early 20s, which corroborates other evidence that beyond the veil of our current reality we can choose our own age and it appears that the low 20s are a very popular choice.


So this young man walked in and he greeted my mother by saying hello Anne, as if he knew her, and I'm sure he does. Without any further conversation he simply said, ‘If you are now ready to leave Earth and return home all you need to do is drink some of the water from this glass. I'm going to leave now for a few minutes to let you think about this and when I return, if you have drank any water from this glass you can come with me through this door. If I return and you have not drank any of the water from this glass, this will be your answer that you are not yet ready to leave your current life and you will be returned to your body back in the hospital.’


The young man then exited the small room and was gone, according to my mother’s account, for about three or four, maybe five minutes tops. My mother thought carefully about whether she wished to leave her life and her family here on Earth, and finally decided to leave the glass of water on the table untouched. The young man, who my mother refers to as one of her spirit guides, though she did not recognize him, returned to the room, looked at the glass of water on the table and said, ‘Okay Anne, then you will now return to your body in the hospital.’ My mother then had second thoughts and said to her guide, ‘Wait, I think I changed my mind. I want to drink some of the water.’ The young man looked at her and surprised her greatly when he said, ‘Sorry, you have already made your choice and now you must return to your life and to your body in the hospital.’


When my mother told us this story we all broke out in laughter and my mother laughed the hardest, saying, ‘Of all the spirit guides in the world I get some kid whose a stickler for the rules.’ My mother always had a great sense of humor and I thank her for that, because I believe I have inherited mine from her side of the family. I'm sure her spirit guide was strictly following procedure, and I am also sure he is a very gifted guide. One would have to be if they were charged with watching over our big family, as every one of us is certainly a handful, and that's putting it mildly.


My mother returned to her body and awoke in the recovery room where she immediately shared with us her story. There is no way I would ever believe that she was hallucinating or anything like that, and this is also quite out of character for her, as she has never felt comfortable speaking about spirituality or life after death or anything of that nature. She certainly was quite surprised to be standing in a room with her spirit guide who offered her the choice to return home. She couldn't stop thinking about what existed beyond the door of that small room, and she immediately knew that if she was ever offered a sip of that water again she would not hesitate to quench her thirst for adventure and a new beginning. She felt she had made a mistake not sipping the water, and she felt she allowed the fear of leaving here and the fear of leaving her family behind to influence greatly her choice, though, she has selflessly looked after us long enough and she certainly deserves the paradise that awaited her just beyond that door.     

My poor mom suffered as well after hesitating to take a sip of that water, as she was in much pain in the days following her surgery. It would not be long before she received a second chance however, and although she did not get the chance to share another story with us of her amazing experience in the afterlife, I’m convinced that somewhere a half filled glass of water sits on a table, and a girl, young again, smiles and laughs with all her old friends.

Greg Giles

View Article Here Read More
Older posts Newer posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑