Tag: granite

Ancient Sunken Cities – 3 Puzzling Enigmas

Terence NewtonIs the truth of human history concealed and buried beneath the oceans? Hundreds of sunken cities adorn the ocean floors of our planet, and dozens of them are believed to be more than 3 millennia old. Although most people are only familiar with the myth of the underwater kingdom of Atlantis, sunken ruins of ancient civilizations are as real as the Egyptian pyramids and can offer us many clues about the history of humanity.Researchers believe that most sunken civilization [...]

View Article Here Read More

Acoustic Resonance Testing Inside the Red Pyramid of Egypt

The Red Pyramid  The Red Pyramid, also called the North Pyramid, is the largest of the three major pyramids located at the Dahshur necropolis. Named for the rusty reddish hue of its granite stones, it is also the third largest Egyptian pyramid, af...

View Article Here Read More

The Mystery of the Black Trevethan Range

castleofspirits.com Located in Queensland, Australia, 26 kilometers to the south of Cooktown lies they mysterious Black Trevethan Range, the Black Mountain. Consisting of granite jumbles of black rocks this mountain is inhabited by frogs, walla...

View Article Here Read More

Early Earth less hellish than previously thought


https://i0.wp.com/news.vanderbilt.edu/files/Dixoncoolearlyearthweb.jpg?resize=640%2C327
Artist's illustration of what a cool early Earth looked like. (Artwork by Don Dixon, cosmographica.com)

vanderbilt.edu

Conditions on Earth for the first 500 million years after it formed may have been surprisingly similar to the present day, complete with oceans, continents and active crustal plates.

This alternate view of Earth’s first geologic eon, called the Hadean, has gained substantial new support from the first detailed comparison of zircon crystals that formed more than 4 billion years ago with those formed contemporaneously in Iceland, which has been proposed as a possible geological analog for early Earth.

Calvin Miller standing on a hilly landscape
Professor Calvin Miller (Vanderbilt University)

The study was conducted by a team of geologists directed by Calvin Miller, the William R. Kenan Jr. Professor of Earth and Environmental Sciences at Vanderbilt University, and published online this weekend by the journal Earth and Planetary Science Letters in a paper titled, “Iceland is not a magmatic analog for the Hadean: Evidence from the zircon record.”

From the early 20th century up through the 1980’s, geologists generally agreed that conditions during the Hadean period were utterly hostile to life. Inability to find rock formations from the period led them to conclude that early Earth was hellishly hot, either entirely molten or subject to such intense asteroid bombardment that any rocks that formed were rapidly remelted. As a result, they pictured the surface of the Earth as covered by a giant “magma ocean.”

This perception began to change about 30 years ago when geologists discovered zircon crystals (a mineral typically associated with granite) with ages exceeding 4 billion years old preserved in younger sandstones. These ancient zircons opened the door for exploration of the Earth’s earliest crust. In addition to the radiometric dating techniques that revealed the ages of these ancient zircons, geologists used other analytical techniques to extract information about the environment in which the crystals formed, including the temperature and whether water was present.
Since then zircon studies have revealed that the Hadean Earth was not the uniformly hellish place previously imagined, but during some periods possessed an established crust cool enough so that surface water could form – possibly on the scale of oceans.

Accepting that the early Earth had a solid crust and liquid water (at least at times), scientists have continued to debate the nature of that crust and the processes that were active at that time: How similar was the Hadean Earth to what we see today?

Panoramic photo of Miller standing on a hilltop
Calvin Miller at the Kerlingarfjoll volcano in central Iceland.  

Some geologists have proposed that the early Earth may have resembled regions like this. (Tamara Carley / Vanderbilt)
Two schools of thought have emerged: One argues that Hadean Earth was surprisingly similar to the present day. The other maintains that, although it was less hostile than formerly believed, early Earth was nonetheless a foreign-seeming and formidable place, similar to the hottest, most extreme, geologic environments of today. A popular analog is Iceland, where substantial amounts of crust are forming from basaltic magma that is much hotter than the magmas that built most of Earth’s current continental crust.

“We reasoned that the only concrete evidence for what the Hadean was like came from the only known survivors: zircon crystals – and yet no one had investigated Icelandic zircon to compare their telltale compositions to those that are more than 4 billion years old, or with zircon from other modern environments,” said Miller.

Tamara Carley kneeling by a stream
Tamara Carley panning for zircons on the bank of the Markarfljot River in south-central Iceland. (Abraham Padilla / Vanderbilt University)

In 2009, Vanderbilt doctoral student Tamara Carley, who has just accepted the position of assistant professor at Layfayette College, began collecting samples from volcanoes and sands derived from erosion of Icelandic volcanoes. She separated thousands of zircon crystals from the samples, which cover the island’s regional diversity and represent its 18 million year history.

Working with Miller and doctoral student Abraham Padilla at Vanderbilt, Joe Wooden at Stanford University, Axel Schmitt and Rita Economos from UCLA, Ilya Bindeman at the University of Oregon and Brennan Jordan at the University of South Dakota, Carley analyzed about 1,000 zircon crystals for their age and elemental and isotopic compositions. She then searched the literature for all comparable analyses of Hadean zircon and for representative analyses of zircon from other modern environments.

“We discovered that Icelandic zircons are quite distinctive from crystals formed in other locations on modern Earth. We also found that they formed in magmas that are remarkably different from those in which the Hadean zircons grew,” said Carley.

Tiny crystals on black background
Images of a collection of Icelandic zircons taken with a scanning electron microscope. They range in size from a tenth of a millimeter to a few thousands of a millimeter. (Tamara Carley / Vanderbilt)

Most importantly, their analysis found that Icelandic zircons grew from much hotter magmas than Hadean zircons. Although surface water played an important role in the generation of both Icelandic and Hadean crystals, in the Icelandic case the water was extremely hot when it interacted with the source rocks while the Hadean water-rock interactions were at significantly lower temperatures.
“Our conclusion is counterintuitive,” said Miller. “Hadean zircons grew from magmas rather similar to those formed in modern subduction zones, but apparently even ‘cooler’ and ‘wetter’ than those being produced today.”

View Article Here Read More

My Morning Walk this Morning…

Observing the Silent Stillness!

This morning while doing my regular A.M. ritual, I was going to get my morning caffeine from DD’s. I was walking down the street on a beautiful sunny morning, then with on step, the world went completely silent. There was not a sound in the air, anywhere, it was completely silent. The street, trees everything was in a state of stillness. I could observe some cars down the street, even a police car zooming by, but I couldn’t even here them or have their motion take my awareness away from the silent stillness I was experiencing.

View Article Here Read More

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑