Tag: gradually (page 1 of 5)

Mike Quinsey ~ Channeling his Higher Self ~ 16 March 2018

http://www.treeofthegoldenlight.com/
http://www.galacticchannelings.com/english/mike16-03-18.html

Mike Quinsey ~ Channeling his Higher Self ~ 16 March 2018

Be assured that all goes well and although it is chaotic in some countries.

View Article Here Read More

What You’ll Never Read About Virus-Research Fraud

Jon Rappoport, GuestThe Rabbit HoleThere are very few investigators on the planet who are interested in this subject. I am one of them. There is a reason why.In many articles, I’ve written about the shocking lack of logic in the curriculum of advanced centers of learning. When I attended college, I was fortunate to have a professor who taught logic, and taught it in a way that appealed to the minds of his students. In other words, for those of us who cared, we could not only ab [...]

View Article Here Read More

The Agendas Behind HAARP Weather Control Programs

Documentary Film – Our atmosphere is now a weapon!!! Weather is being manipulated through intense regular chemtrail spraying and HAARP technology. People, animals and nature are all impacted – will they be gradually exterminated if these projects continue? Here’s a film that investigates the agendas associated with weather control programs. [...]

View Article Here Read More

The Class-Domination Theory of Power

by G. William DomhoffNOTE: WhoRulesAmerica.net is largely based on my book,Who Rules America?, first published in 1967 and now in its7th edition. This on-line document is presented as a summary of some of the main ideas in that book.Who has predominant power in the United States? The short answer, from 1776 to the present, is: Those who have the money -- or more specifically, who own income-producing land and businesses -- have the power. George Washington was one of the biggest landowner [...]

View Article Here Read More

Physicists: Black holes don’t erase information




Excerpt from earthsky.org
Since 1975, when Hawking showed that black holes evaporate from our universe, physicists have tried to explain what happens to a black hole’s information.

What happens to the information that goes into a black hole? Is it irretrievably lost? Does it gradually or suddenly leak out? Is it stored somehow? Physicists have puzzled for decades over what they call the information loss paradox in black holes. A new study by physicists at University at Buffalo – published in March, 2015 in the journal in Physical Review Letters – shows that information going into a black hole is not lost at all.

Instead, these researchers say, it’s possible for an observer standing outside of a black hole to recover information about what lies within.

Dejan Stojkovic, associate professor of physics at the University at Buffalo, did the research with his student Anshul Saini as co-author. Stojkovic said in a statement:
According to our work, information isn’t lost once it enters a black hole. It doesn’t just disappear.
What sort of information are we talking about? In principle, any information drawn into a black hole has an unknown future, according to modern physics. That information could include, for example, the characteristics of the object that formed the black hole to begin with, and characteristics of all matter and energy drawn inside.

Stojkovic says his research “marks a significant step” toward solving the information loss paradox, a problem that has plagued physics for almost 40 years, since Stephen Hawking first proposed that black holes could radiate energy and evaporate over time, disappearing from the universe and taking their information with them. 

Disappearing information is a problem for physicists because it’s a violation of quantum mechanics, which states that information must be conserved.
According to modern physics, any information about an astronaut entering a black hole - for example, height, weight, hair color - may be lost.  Likewise, information about he object that formed the hole, or any matter and energy entering the hole, may be lost.  This notion violates quantum mechanics, which is why it's known as the 'black hole information paradox.


According to modern physics, any information related to an astronaut entering a black hole – for example, height, weight, hair color – may be lost. This notion is known as the ‘information loss paradox’ of black holes because it violates quantum mechanics. Artist’s concept via Nature.

Stojkovic says that physicists – even those who believed information was not lost in black holes – have struggled to show mathematically how the information is preserved. He says his new paper presents explicit calculations demonstrating how it can be preserved. His statement from University at Buffalo explained:
In the 1970s, [Stephen] Hawking proposed that black holes were capable of radiating particles, and that the energy lost through this process would cause the black holes to shrink and eventually disappear. Hawking further concluded that the particles emitted by a black hole would provide no clues about what lay inside, meaning that any information held within a black hole would be completely lost once the entity evaporated.

Though Hawking later said he was wrong and that information could escape from black holes, the subject of whether and how it’s possible to recover information from a black hole has remained a topic of debate.

Stojkovic and Saini’s new paper helps to clarify the story.
Instead of looking only at the particles a black hole emits, the study also takes into account the subtle interactions between the particles. By doing so, the research finds that it is possible for an observer standing outside of a black hole to recover information about what lies within.
Interactions between particles can range from gravitational attraction to the exchange of mediators like photons between particles. Such “correlations” have long been known to exist, but many scientists discounted them as unimportant in the past.
Stojkovic added:
These correlations were often ignored in related calculations since they were thought to be small and not capable of making a significant difference.
Our explicit calculations show that though the correlations start off very small, they grow in time and become large enough to change the outcome.
Artist's impression of a black hole, via Icarus
Artist’s impression of a black hole, via Icarus

Bottom line: Since 1975, when Stephen Hawking and Jacob Bekenstein showed that black holes should slowly radiate away energy and ultimately disappear from the universe, physicists have tried to explain what happens to information inside a black hole. Dejan Stojkovic and Anshul Saini, both of University at Buffalo, just published a new study that contains specific calculations showing that information within a black hole is not lost.

View Article Here Read More

Dawn Enters Orbit Around Dwarf Planet Ceres ~ Video

Ceres Dawn




Dwarf Planet Ceres

Excerpt from spacenews.com

NASA’s Dawn spacecraft arrived in orbit around the dwarf planet Ceres March 6, completing a journey of nearly seven and a half years and five billion kilometers.  In a statement, NASA’s Jet Propulsion Laboratory said Dawn entered orbit about 61,000 kilometers above Ceres at 7:39 am EST March 6, sending a signal to Earth about an hour later confirming it was in orbit and in good health.  “We feel exhilarated,” Dawn principal investigator Chris Russell said in the statement. “We have much to do over the next year and a half, but we are now on station with ample reserves, and a robust plan to obtain our science objectives.”

Dawn will gradually spiral down to its initial science orbit, 13,500 kilometers above Ceres, by April. Later in its mission Dawn will move gradually closer to the surface, eventually moving into an orbit of 375 kilometers.  The Dawn spacecraft, built by Orbital ATK, launched on a United Launch Alliance Delta 2 rocket in September 2007. After making a gravity assist flyby of Mars in February 2009, it entered orbit around the large main-belt asteroid Vesta in July 2011. It remained there for more than a year, using its ion thrusters to leave orbit in September 2012 to head to Ceres. 

Ceres, the largest object in the main asteroid belt between the orbits of Mars and Jupiter, was the first asteroid discovered by astronomers, in 1801. The International Astronomical Union designated Ceres a “dwarf planet” in 2006, a new category of objects that also includes the former planet Pluto.


Click to zoom
Dawn will gradually spiral down to its initial science orbit, 13,500 kilometers above Ceres, by April. Later in its mission Dawn will move gradually closer to the surface, eventually moving into an orbit of 375 kilometers.
The Dawn spacecraft, built by Orbital ATK, launched on a United Launch Alliance Delta 2 rocket in September 2007. After making a gravity assist flyby of Mars in February 2009, it entered orbit around the large main-belt asteroid Vesta in July 2011. It remained there for more than a year, using its ion thrusters to leave orbit in September 2012 to head to Ceres.
Ceres, the largest object in the main asteroid belt between the orbits of Mars and Jupiter, was the first asteroid discovered by astronomers, in 1801. The International Astronomical Union designated Ceres a “dwarf planet” in 2006, a new category of objects that also includes the former planet Pluto.
- See more at: http://spacenews.com/dawn-enters-orbit-around-ceres/#sthash.yoclEQI4.dpuf
WASINGTON — NASA’s Dawn spacecraft arrived in orbit around the dwarf planet Ceres March 6, completing a journey of nearly seven and a half years and five billion kilometers.
In a statement, NASA’s Jet Propulsion Laboratory said Dawn entered orbit about 61,000 kilometers above Ceres at 7:39 am EST March 6, sending a signal to Earth about an hour later confirming it was in orbit and in good health.
“We feel exhilarated,” Dawn principal investigator Chris Russell said in the statement. “We have much to do over the next year and a half, but we are now on station with ample reserves, and a robust plan to obtain our science objectives.”
- See more at: http://spacenews.com/dawn-enters-orbit-around-ceres/#sthash.yoclEQI4.dpuf

View Article Here Read More

This Awesome 3D View Of Deep Space May Be The Best Ever

The background image in this composite shows the Hubble Space Telescope image of the region known as the Hubble Deep Field South. The boxes show distant galaxies that were invisible to Hubble.Excerpt from  huffingtonpost.comAlong with Earthrise ...

View Article Here Read More

Recent Disappearances & Strangeness in the Bermuda Triangle

Excerpt from paranormal.lovetoknow.com By Michelle Radcliff The Bermuda Triangle is an area of mostly open ocean located between Bermuda, Miami, Florida and San Juan, Puerto Rico. The unexplained disappearances of hundreds of ships and air...

View Article Here Read More

Earth’s Moon May Not Be Critical to Life Afterall




Excerpt from space.com

The moon has long been viewed as a crucial component in creating an environment suitable for the evolution of complex life on Earth, but a number of scientific results in recent years have shown that perhaps our planet doesn't need the moon as much as we have thought.

In 1993, French astronomer Jacques Laskar ran a series of calculations indicating that the gravity of the moon is vital to stabilizing the tilt of our planet. Earth's obliquity, as this tilt is technically known as, has huge repercussions for climate. Laskar argued that should Earth's obliquity wander over hundreds of thousands of years, it would cause environmental chaos by creating a climate too variable for complex life to develop in relative peace.
So his argument goes, we should feel remarkably lucky to have such a large moon on our doorstep, as no other terrestrial planet in our solar system has such a moon. Mars' two satellites, Phobos and Deimos, are tiny, captured asteroids that have little known effect on the Red Planet. Consequently, Mars' tilt wobbles chaotically over timescales of millions of years, with evidence for swings in its rotational axis at least as large as 45 degrees. 


The stroke of good fortune that led to Earth possessing an unlikely moon, specifically the collision 4.5 billion years ago between Earth and a Mars-sized proto-planet that produced the debris from which our Moon formed, has become one of the central tenets of the 'Rare Earth' hypothesis. Famously promoted by Peter Ward and Don Brownlee, it argues that planets where everything is just right for complex life are exceedingly rare.

New findings, however, are tearing up the old rule book. In 2011, a trio of scientists — Jack Lissauer of NASA Ames Research Center, Jason Barnes of the University of Idaho and John Chambers of the Carnegie Institution for Science — published results from new simulations describing what Earth's obliquity would be like without the moon. What they found was surprising.

"We were looking into how obliquity might vary for all sorts of planetary systems," says Lissauer. "To test our code we began with integrations following the obliquity of Mars and found similar results to other people. But when we did the obliquity of Earth we found the variations were much smaller than expected — nowhere near as extreme as previous calculations suggested they would be."
Lissauer's team found that without the moon, Earth's rotational axis would only wobble by 10 degrees more than its present day angle of 23.5 degrees. The reason for such vastly different results to those attained by Jacques Laskar is pure computing power. Today's computers are much faster and capable of more accurate modeling with far more data than computers of the 1990s.

Lissauer and his colleagues also found that if Earth were spinning fast, with one day lasting less than 10 hours, or rotating retrograde (i.e. backwards so that the sun rose in the West and set in the East), then Earth stabilized itself thanks to the gravitational resonances with other planets, most notably giant Jupiter. There would be no need for a large moon. 

Earth's rotation has not always been as leisurely as the current 24 hour spin-rate. Following the impact that formed the moon, Earth was spinning once every four or five hours, but it has since gradually slowed by the moon's presence. As for the length of Earth's day prior to the moon-forming impact, nobody really knows, but some models of the impact developed by Robin Canup of the Southwest Research Institute, in Boulder, Colorado, suggest that Earth could have been rotating fast, or even retrograde, prior to the collision.

Tilted Orbits
Planets with inclined orbits could find that their increased obliquity is beneficial to their long-term climate – as long as they do not have a large moon.


"Collisions in the epoch during which Earth was formed determined its initial rotation," says Lissauer. "For rocky planets, some of the models say most of them will be prograde, but others say comparable numbers of planets will be prograde and retrograde. Certainly, retrograde worlds are not expected to be rare."

The upshot of Lissauer's findings is that the presence of a moon is not the be all and end all as once thought, and a terrestrial planet can exist without a large moon and still retain its habitability. Indeed, it is possible to imagine some circumstances where having a large moon would actually be pretty bad for life.

Rory Barnes, of the University of Washington, has also tackled the problem of obliquity, but from a different perspective. Planets on the edge of habitable zones exist in a precarious position, far enough away from their star that, without a thick, insulating atmosphere, they freeze over, just like Mars. Barnes and his colleagues including John Armstrong of Weber State University, realized that torques from other nearby worlds could cause a planet's inclination to the ecliptic plane to vary. This in turn would result in a change of obliquity; the greater the inclination, the greater the obliquity to the Sun. Barnes and Armstrong saw that this could be a good thing for planets on the edges of habitable zones, allowing heat to be distributed evenly over geological timescales and preventing "Snowball Earth" scenarios. They called these worlds "tilt-a-worlds," but the presence of a large moon would counteract this beneficial obliquity change.

"I think one of the most important points from our tilt-a-world paper is that at the outer edge of the habitable zone, having a large moon is bad, there's no other way to look at it," says Barnes. "If you have a large moon that stabilizes the obliquity then you have a tendency to completely freeze over."

Barnes is impressed with the work of Lissauer's team.
"I think it is a well done study," he says. "It suggests that Earth does not need the moon to have a relatively stable climate. I don't think there would be any dire consequences to not having a moon."

Mars' Changing Tilt
The effects of changing obliquity on Mars’ climate. Mars’ current 25-degree tilt is seen at top left. At top right is a Mars that has a high obliquity, leading to ice gather at its equator while the poles point sunwards. At bottom is Mars with low obliquity, which sees its polar caps grow in size.


Of course, the moon does have a hand in other factors important to life besides planetary obliquity. Tidal pools may have been the point of origin of life on Earth. Although the moon produces the largest tides, the sun also influences tides, so the lack of a large moon is not necessarily a stumbling block. Some animals have also evolved a life cycle based on the cycle of the moon, but that's more happenstance than an essential component for life.

"Those are just minor things," says Lissauer.

Without the absolute need for a moon, astrobiologists seeking life and habitable worlds elsewhere face new opportunities. Maybe Earth, with its giant moon, is actually the oddball amongst habitable planets. Rory Barnes certainly doesn't think we need it.
"It will be a step forward to see the myth that a habitable planet needs a large moon dispelled," he says, to which Lissauer agrees.
Earth without its moon might therefore remain habitable, but we should still cherish its friendly presence. After all, would Beethoven have written the Moonlight Sonata without it?

View Article Here Read More

Dawn’s imagery of Ceres keeps getting better


These two views of Ceres were acquired by NASA's Dawn spacecraft on Feb. 12, 2015, from a distance of about 52,000 miles (83,000 kilometers) as the dwarf planet rotated. The images, which were taken about 10 hours apart, have been magnified from their original size. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
These two views of Ceres were acquired by NASA’s Dawn spacecraft on Feb. 12, 2015, from a distance of about 52,000 miles (83,000 kilometers) as the dwarf planet rotated. The images, which were taken about 10 hours apart, have been magnified from their original size. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA



Excerpt from spaceflightnow.com

Images from NASA’s Dawn spacecraft on approach to the dwarf planet Ceres show a world pockmarked by craters and mysterious bright spots, and scientists are eager for a better look in the weeks ahead.

The latest images were taken Feb. 12 at a distance of 52,000 miles, or 83,000 kilometers, from Ceres. NASA released the fresh views Tuesday.

Every picture taken of Ceres in the coming weeks will show greater detail, as Dawn is set to be captured by the Texas-sized world’s gravity March 6. The dwarf planet will pull Dawn into the first of a series of survey orbits 8,400 miles from Ceres around April 23.

The imagery so far reveals Ceres as a cratered world, and Dawn will make a global map of the dwarf planet during its time in orbit.
But several bright spots have captured the attention of scientists.
“As we slowly approach the stage, our eyes transfixed on Ceres and her planetary dance, we find she has beguiled us but left us none the wiser,” said Chris Russell, principal investigator of the Dawn mission, based at UCLA. “We expected to be surprised; we did not expect to be this puzzled.”

The suspense is compounded by Dawn’s slow rate of approach. The probe’s ion propulsion system is gradually nudging Dawn on a trajectory closer to Ceres, eventually moving the spacecraft close enough to be grasped by the 590-mile diameter dwarf planet’s gravity.

“I want to know what is causing the bright spots,” Russell wrote in an email to Spaceflight Now. “The increased resolution seems to have moved us no closer to answering this mystery. I am frustrated by the suspense. This is the one problem of ion propulsion: We are closing in on Ceres very slowly.”

The latest photos have a resolution have 4.9 miles, or 7.8 kilometers, per pixel, according to a NASA press release.

Dawn’s framing camera will take its next set of images Feb. 20 at a range of about 30,000 miles. After late February, the resolution of Dawn’s imagery will be reduced as the spacecraft passes Ceres and flies in front of it, before being pulled closer in early April for insertion into orbit.

Soon after arriving in April, the spacecraft’s instruments will look for the signature of water vapor plumes shooting into space from the surface of Ceres, which may be blanketed in a crust of ice.
Dawn will orbit closest to Ceres in December at an altitude of 232 miles.

Dawn’s mission planners say the spacecraft could operate around Ceres until late 2016.

Ceres is the second destination for NASA’s Dawn mission, which launched in September 2007 and visited asteroid Vesta in 2011 and 2012.

View Article Here Read More

NASA probe snaps amazing image of Ceres



    NASA's Dawn space probe has taken the sharpest-yet image of Ceres, a dwarf planet in our solar system's asteroid belt.

    Excerpt from SPACE.com

    By Mike Wall  

    NASA's Dawn spacecraft has taken the sharpest-ever photos of Ceres, just a month before slipping into orbit around the mysterious dwarf planet.

    Dawn captured the new Ceres images Wednesday (Feb. 4), when the probe was 90,000 miles (145,000 kilometers) from the dwarf planet, the largest object in the main asteroid belt between Mars and Jupiter.

    On the night of March 5, Dawn will become the first spacecraft ever to orbit Ceres — and the first to circle two different solar system bodies beyond Earth. (Dawn orbited the protoplanet Vesta, the asteroid belt's second-largest denizen, from July 2011 through September 2012.) 

    "It's very exciting," Dawn mission director and chief engineer Marc Rayman, who's based at NASA's Jet Propulsion Laboratory in Pasadena, California, said of Dawn's impending arrival at Ceres. "This is a truly unique world, something that we've never seen before."


    The 590-mile-wide (950 km) Ceres was discovered by Italian astronomer Giuseppe Piazzi in 1801. It's the only dwarf planet in the asteroid belt, and contains about 30 percent of the belt's total mass. (For what it's worth, Vesta harbors about 8 percent of the asteroid belt's mass.)

    Despite Ceres' proximity (relative to other dwarf planets such as Pluto and Eris, anyway), scientists don't know much about the rocky world. But they think it contains a great deal of water, mostly in the form of ice. Indeed, Ceres may be about 30 percent water by mass, Rayman said.

    Ceres could even harbor lakes or oceans of liquid water beneath its frigid surface. Furthermore, in early 2014, researchers analyzing data gathered by Europe's Herschel Space Observatory announced that they had spotted a tiny plume of water vapor emanating from Ceres. The detection raised the possibility that internal heat drives cryovolcanism on the dwarf planet, as it does on Saturn's moon's Enceladus. (It's also possible that the "geyser" was caused by a meteorite impact, which exposed subsurface ice that quickly sublimated into space, researchers said).

    The interior of Ceres may thus possess liquid water and an energy source — two key criteria required for life as we know it to exist.
    Dawn is not equipped to search for signs of life. But the probe — which is carrying a camera, a visible and infrared mapping spectrometer and a gamma ray and neutron spectrometer — will give scientists great up-close looks at Ceres' surface, which in turn could shed light on what's happening down below. 

    For example, Dawn may see chemical signs of interactions between subsurface water, if it exists, and the surface, Rayman said.
    "That's the sort of the thing we would be looking for — surface structures or features that show up in the camera's eye, or something about the composition that's detectable by one of our multiple spectrometers that could show evidence," he told Space.com. "But if the water doesn't make it to the surface, and isn't in large enough reservoirs to show up in the gravity data, then maybe we won't find it."

    Dawn will also attempt to spot Ceres' water-vapor plume, if it still exists, by watching for sunlight scattered off water molecules above the dwarf planet. But that's going to be a very tough observation to make, Rayman said.

    "The density of the water [observed by Herschel] is less than the density of air even above the International Space Station," he said. "For a spacecraft designed to map solid surfaces of airless bodies, that is an extremely difficult measurement." 

    Merging onto the freeway

    Dawn is powered by low-thrust, highly efficient ion engines, so its arrival at Ceres will not be a nail-biting affair featuring a make-or-break engine burn, as most other probes' orbital insertions are.

    Indeed, as of Friday (Feb. 6), Dawn is closing in on Ceres at just 215 mph (346 km/h), Rayman said —and that speed will keep decreasing every day.

    "You take a gentle, curving route, and then you slowly and safely merge onto the freeway, traveling at the same speed as your destination," Rayman said. "Ion propulsion follows that longer, more gentle, more graceful route."

    Dawn won't start studying Ceres as soon as it arrives. The spacecraft will gradually work its way down to its first science orbit, getting there on April 23. Dawn will then begin its intensive observations of Ceres, from a vantage point just 8,400 miles (13,500 km) above the dwarf planet's surface.

    The science work will continue — from a series of increasingly closer-in orbits, including a low-altitude mapping orbit just 230 miles (375 km) from Ceres' surface — through June 30, 2016, when the $466 million Dawn mission is scheduled to end.
    Rayman can't wait to see what Dawn discovers.

    "After looking through telescopes at Ceres for more than 200 years, I just think it's really going to be exciting to see what this exotic, alien world looks like," he said. "We're finally going to learn about this place."

    View Article Here Read More

    New EAGLE Simulation Shows Galaxies as They Really Are ~ Video


    The EAGLE simulation of the universe generates a more accurate picture of galaxies than any simulation of this size before it.



    Excerpt from space.com

    Galaxies come in all different shapes and sizes, and a massive new simulation of the universe has captured that galactic variety with more accuracy than any simulation before it, according to a new study.

    Using a simulation called EAGLE (Evolution and Assembly of GaLaxies and their Environments), researchers from multiple institutes in Europe have cooked up a dazzling simulation of the universe that contains tens of thousands of galaxies.



    A sample of the new simulation can be seen in the video above. It shows the evolution of the universe in a region 25 megaparsecs cubed (about 81 million light years).



    "This is really a staggering success, I think it's fair to say," Rob Crain from Liverpool John Moores University and a member of the group that built EAGLE, told Space.com. The researchers are part of a collaboration called the Virgo Consortium for Cosmological Supercomputer Simulations. "Go to our previous generation of simulations, and the galaxies all look like big spherical blobs. Now they form disks and bars and irregular galaxies and different types of ellipticals."

    A computer simulation is like a recipe for the universe. Scientists have to start with a list of ingredients and instructions — which actually means a description of the physics that underlie the current universe. While many simulations can recreate the major cosmic ingredients (like stars and galaxies), the subtleties are harder to achieve (like the shape, mass and distribution of those stars and galaxies).

    The bottom right corner of the screen shows the time after the Big Bang (denoted by "t"). In the early universe, matter is dispersed and hazy, but gradually coalesces into a sort of web, with long strands of material connecting nodes where galaxies are clustered. At 1:06, the simulation starts again from the beginning and shows the three major components of the model: dark matter (labeled as CDM), gas (the red globs are gas clouds where stars are often born), and stars. The full EAGLE simulation contains an area 100 megaparsecs cubed.

    One goal of the EAGLE group was to produce a simulation large enough that it contained all types of galaxies seen in the universe. This allows the researchers to find out if the physics they programmed into EAGLE are accurate for all galaxies, and if they produce the correct number of galaxies in the universe.




    Schaye said the picture of the universe created by the EAGLE simulation "is not perfect, but for astronomers the level of agreement is very impressive. It seems we have the main ingredients in place."

    View Article Here Read More

    Is this the Loch Ness Monster? Scientists discover new species of "uniquely Scottish" boat-sized Jurassic reptile on Isle of Skye




    Excerpt 

    A 14-foot long, dolphin-like ichthyosaur would have swum the warm, shallow seas near Scotland during the Jurassic period, according to scientists who have identified an entirely new species from a “very special” set of bones found by an amateur enthusiast in 1959 and given to Glasgow’s Hunterian Museum.

    The largest group of palaeontologists ever to have worked together in Scotland believe fossil fragments of skulls, teeth, vertebrae and an upper arm bone would have belonged to a previously unknown type of long-extinct aquatic animal, named the Dearcmhara shawcrossi after Brian Shawcross, who recovered the fossils from the island’s Bearreraig Bay.


    A photo of a group of people standing around a table in a lab with rocks on it
    The PalAlba group behind the identification of the new species© Bill Crighton


    partly in homage to the history of the Hebrides and Skye, much of which was underwater during Jurassic times. Some reports have likened the predator to an ancestor of the Loch Ness monster.

    “During the time of dinosaurs, the waters of Scotland were prowled by big reptiles the size of motor boats,” explained Dr Steve Brusatte, of the University of Edinburgh’s School of GeoSciences, who led the study.

    “Their fossils are very rare, and only now, for the first time, we’ve found a new species that was uniquely Scottish.

    “Without the generosity of the collector who donated the bones to a museum instead of keeping them or selling them, we would have never known that this amazing animal existed.

    “We are honoured to name the new species after Mr Shawcross and will do the same if any other collectors wish to donate new specimens.”

    The creature was near the top of the food chain 170 million years ago, preying on fish and other reptiles during an age when Skye was joined to the rest of the UK as part of a large island positioned between landmasses that gradually drifted apart to become Europe and North America.


    “Not only is this a very special discovery, but it also marks the beginning of a major new collaboration involving some of the most eminent palaeontologists in Scotland,” said Dr Nick Fraser, of National Museums Scotland.

    View Article Here Read More
    Older posts

    Creative Commons License
    This work is licensed under a
    Creative Commons Attribution 4.0
    International License
    .
    unless otherwise marked.

    Terms of Use | Privacy Policy



    Up ↑