Tag: google (page 1 of 12)

A Short Message to the Surface poulation

Dark force occultist are using the coming Saturn-Chariklo conjunction on September 21st to enforce second wave covid lockdowns and implement draconian control measures against the surface population. Their plan was already leaked in August.https://tran...

View Article Here Read More

Are you Communicating with Your Spirit Guide or Cyberspace Agent? Take the Quiz! ~ Greg Giles

A U.S.cyberspace operations center It should be apparent to all by now that agencies within the U.S. Department of Defense and also within the U.S. intelligence community are actively engaged in programs that utilize the synthetic telepathy technolo...

View Article Here Read More

Stephen Hawking Says Artificial Intelligence Will Take over Humanity in the Near Future





Excerpt from regaltribune.com

Technology has advanced so much that some scientists fear that one day robots will take over the world and humans will not be able to do anything about it.  
One of those scientists is Stephen Hawking, the most famous physicist and cosmologist in the world.
Hawking stated during a recent conference that robots and artificial intelligence in particular, could conquer humanity in the next 100 years.
The renowned scientist spoke at the Zeitgeist conference held in London, saying that computers will one day overtake us humans with their artificial intelligence and this could happen in less than 100 years.
Hawking added that if this happens, humans need to be sure that the robots have similar goals, or else.
But this is not the first time the author of “A Brief History of Time” made this kind of “doomy” statements about the future of humanity at the robotic hands of artificial intelligence.

At the beginning of this year, Stephen Hawking expressed his opinions on this matter, saying that artificial intelligence will advance so much that it could bring the end of human race.
Also, in an interview for BBC Hawking said that even though A.I. is not a threat to us humans at the present time, in the future the robots would get more intelligent, bigger and much stronger than their makers, the humans.
The scientist added that robots would start to redesign themselves and will evolve at an increasing rate that humans will not be able to keep the pace.
Hawking added that:
“Humans, who are limited by slow biological evolution, couldn’t compete, and would be superseded.”
And Hawking is not the only famous scientist who has a gloomy vision regarding our future.
Ellon Musk, Tesla Motors CEO, said that artificial intelligence poses a real threat to human race.

According to Musk, humans must be extremely careful about artificial intelligence, because it could turn out to be our “biggest existential threat”. Musk even compared A.I. with a “demon”.
However, not every scientist envisions a dark future for human race. While many think of artificial intelligence as the driving force behind robots, A.I. is also used to power many devices, such as smartphones, tablets, laptops and apps.
Artificial intelligence is also used to protect emails from receiving spam.
Giant companies like Google and Facebook are currently working on developing new systems, which will one day lead to advanced artificial intelligence.

View Article Here Read More

Desperately Seeking ET: Fermi’s Paradox Turns 65 ~ Part 2

Excerpt from huffingtonpost.comIntroductionWhy is it so hard to find ET? After 50 years of searching, the SETI project has so far found nothing. In the latest development, on April 14, 2015 Penn State researchers announced that after searching through...

View Article Here Read More

Could Google’s Project Fi be cable’s answer to wireless?

 Excerpt from cnet.com Google's Project Fi wireless service has the potential to turn the mobile industry on its head. But not in the way you might expect. Last week, Google announce...

View Article Here Read More

IBM advances bring quantum computing closer to reality



ibm research jerry chow
 
Research scientist Jerry Chow performs a quantum computing experiment at IBM's Thomas J. Watson Research Center in Yorktown Heights, N.Y. Jon Simon/IBM


Excerpt from computerworld.com
By Sharon Gaudin

IBM scientists say they have made two critical advances in an industrywide effort to build a practical quantum computer, shaving years off the time expected to have a working system.

"This is critical," said Jay Gambetta, IBM's manager of theory of quantum computing. "The field has got a lot more competitive. You could say the [quantum computing] race is just starting to begin… This is a small step on the journey but it's an important one."

Gambetta told Computerworld that IBM's scientists have created a square quantum bit circuit design, which could be scaled to much larger dimensions. This new two-dimensional design also helped the researchers figure out a way to detect and measure errors.
Quantum computing is a fragile process and can be easily thrown off by vibrations, light and temperature variations. Computer scientists doubt they'll ever get the error rate down to that in a classical computer.


Because of the complexity and sensitivity of quantum computing, scientists need to be able to detect errors, figure out where and why they're happening and prevent them from recurring.

IBM says its advancement takes the first step in that process.
"It tells us what errors are happening," Gambetta said. "As you make the square [circuit design] bigger, you'll get more information so you can see where the error was and you can correct for it. We're showing now that we have the ability to detect, and we're working toward the next step, which would allow you to see where and why the problem is happening so you can stop it from happening."

Quantum computing is widely thought to be the next great step in the field of computing, potentially surpassing classical supercomputers in large-scale, complex calculations. 

Quantum computing would be used to cull big data, searching for patterns. It's hoped that these computers will take on questions that would lead to finding cures for cancer or discovering distant planets – jobs that might take today's supercomputers hundreds of years to calculate.

IBM's announcement is significant in the worlds of both computing and physics, where quantum theory first found a foothold.

Quantum computing, still a rather mysterious technology, combines both computing and quantum mechanics, which is one of the most complex, and baffling, areas of physics. This branch of physics evolved out of an effort to explain things that traditional physics is unable to.

With quantum mechanics, something can be in two states at the same time. It can be simultaneously positive and negative, which isn't possible in the world as we commonly know it. 

For instance, each bit, also known as a qubit, in a quantum machine can be a one and a zero at the same time. When a qubit is built, it can't be predicted whether it will be a one or a zero. A qubit has the possibility of being positive in one calculation and negative in another. Each qubit changes based on its interaction with other qubits.

Because of all of these possibilities, quantum computers don't work like classical computers, which are linear in their calculations. A classical computer performs one step and then another. A quantum machine can calculate all of the possibilities at one time, dramatically speeding up the calculation.

However, that speed will be irrelevant if users can't be sure that the calculations are accurate.

That's where IBM's advances come into play.

"This is absolutely key," said Jim Tully, an analyst with Gartner. "You do the computation but then you need to read the results and know they're accurate. If you can't do that, it's kind of meaningless. Without being able to detect errors, they have no way of knowing if the calculations have any validity."

If scientists can first detect and then correct these errors, it's a major step in the right direction to building a working quantum computing system capable of doing enormous calculations. 

"Quantum computing is a hard concept for most to understand, but it holds great promise," said Dan Olds, an analyst with The Gabriel Consulting Group. "If we can tame it, it can compute certain problems orders of magnitude more quickly than existing computers. The more organizations that are working on unlocking the potential of quantum computing, the better. It means that we'll see something real that much sooner."
However, there's still debate over whether a quantum computer already exists.

A year ago, D-Wave Systems Inc. announced that it had built a quantum system, and that NASA, Google and Lockheed Martin had been testing them.

Many in the computer and physics communities doubt that D-Wave has built a real quantum computer. Vern Brownell, CEO of the company, avows that they have.

"I think that quantum computing shows promise, but it's going to be quite a while before we see systems for sale," said Olds.
IBM's Gambetta declined to speculate on whether D-Wave has built a quantum computing but said the industry is still years away from building a viable quantum system.

"Quantum computing could be potentially transformative, enabling us to solve problems that are impossible or impractical to solve today," said Arvind Krishna, senior vice president and director of IBM Research, in a statement.

IBM's research was published in Wednesday's issue of the journal Nature Communications.

quantum computing infographics ibm

View Article Here Read More

European Union regulators filing formal charges against Google






Excerpt from cnbc.com


European Union regulators decided Tuesday that they would file charges against Google stemming from an antitrust investigation, multiple news agencies reported.

Citing a source familiar with the matter, the Wall Street Journal reported that the Google decision will be discussed by EU commissioners on Wednesday. That source claimed to the news outlet that European antitrust chief Margrethe Vestager made the decision to file charges after consulting with European Commission President Jean-Claude Juncker. 

The Financial Times and The New York Times also reported Tuesday that the EU would accuse the tech giant of abusing its market position, citing sources familiar with the regulators' decision.


Google faces fines of as much as $6.6 billion if the charges are proven.

Google shares traded down about 1.6 percent on Tuesday, although most of those losses came in the morning. The stock was largely unchanged in after-hours trading. 

Reuters had reported earlier that Google was likely to learn more on Wednesday about how Vestager will treat complaints about its market dominance. 


However, industry and EU sources suggested to Reuters that Vestager (who took over as EU competition commissioner in November and has indicated she will not be rushed into concluding the five-year-old inquiry) was unlikely to announce charges against the U.S. Internet search giant. 

A European Commission spokesman declined comment on Tuesday on whether Vestager, who is due to fly to the United States on Wednesday afternoon, would make a statement after the weekly meeting of all 28 EU commissioners in the morning. 


The Wall Street Journal says Google could end up facing a fine of more than $6 billion in antitrust charges by the European Union. 
That followed a comment on Monday by another commissioner, digital economy chief Guenther Oettinger, who said Vestager would make a statement on Google in days. Another EU official said he expected an announcement on Wednesday.

Asked about such remarks, Commission spokesman Margaritis Schinas told a routine news briefing on Tuesday: "The Commission does not always express itself on ongoing competition cases.
"If there is a time for announcements it will be announced, but there is nothing on this question today." 


Google could not be reached by Reuters for comment. 

Andreas Schwab, a member of the European Parliament who has pushed for the EU executive to consider even breaking up Google, told Reuters he expected the Commission to conclude its investigation and issue a statement of objections—effectively bringing charges against Google that could result in huge fines and orders to reshape its business in Europe.
—Reuters contributed to this report.

View Article Here Read More

Europe takes on Apple, Facebook, Google & Amazon

Excerpt from money.cnn.comEurope is in the midst of a massive tussle with American tech giants.The European Union is getting increasingly worried about the dominance of Big Tech and has launched a program to boost the European tech sector.  Ap...

View Article Here Read More

Google’s Self-Driving Car Test

GOOGLE: We announced our self-driving car project in 2010 to make driving safer, more enjoyable, and more efficient. Having safely completed over 200,000 miles of computer-led driving, we wanted to share one of our favorite moments. Here's Steve, wh...

View Article Here Read More

Billionaire teams up with NASA to mine the moon




Excerpt from cnbc.com
By Susan Caminiti



Moon Express, a Mountain View, California-based company that's aiming to send the first commercial robotic spacecraft to the moon next year, just took another step closer toward that lofty goal. 

Earlier this year, it became the first company to successfully test a prototype of a lunar lander at the Kennedy Space Center in Florida. The success of this test—and a series of others that will take place later this year—paves the way for Moon Express to send its lander to the moon in 2016, said company co-founder and chairman Naveen Jain.

Moon Express conducted its tests with the support of NASA engineers, who are sharing with the company their deep well of lunar know-how. The NASA lunar initiative—known as Catalyst—is designed to spur new commercial U.S. capabilities to reach the moon and tap into its considerable resources.In addition to Moon Express, NASA is also working with Astrobotic Technologies of Pittsburgh, Pennsylvania, and Masten Space Systems of Mojave, California, to develop commercial robotic spacecrafts. 

Jain said Moon Express also recently signed an agreement to take over Space Launch Complex 36 at Cape Canaveral. The historic launchpad will be used for Moon Express's lander development and flight-test operations. Before it was decommissioned, the launchpad was home to NASA's Atlas-Centaur rocket program and its Surveyor moon landers.

"Clearly, NASA has an amazing amount of expertise when it comes to getting to the moon, and it wants to pass that knowledge on to a company like ours that has the best chance of being successful," said Jain, a serial entrepreneur who also founded Internet companies Infospace and Intelius. He believes that the moon holds precious metals and rare minerals that can be brought back to help address Earth's energy, health and resource challenges. 

Among the moon's vast riches: gold, cobalt, iron, palladium, platinum, tungsten and Helium-3, a gas that can be used in future fusion reactors to provide nuclear power without radioactive waste. "We went to the moon 50 years ago, yet today we have more computing power with our iPhones than the computers that sent men into space," Jain said. "That type of exponential technological growth is allowing things to happen that was never possible before."

An eye on the Google prize

Source: MoonExpress

Helping to drive this newfound interest in privately funded space exploration is the Google Lunar X Prize. It's a competition organized by the X Prize Foundation and sponsored by Google that will award $30 million to the first company that lands a commercial spacecraft on the moon, travels 500 meters across its surface and sends high-definition images and video back to Earth—all before the end of 2016.

Moon Express is already at the front of the pack. In January it was awarded a $1 million milestone prize from Google for being the only company in the competition so far to test a prototype of its lander. "Winning the X prize would be a great thing," said Jain. "But building a great company is the ultimate goal with us." When it comes to space exploration, he added, "it's clear that the baton has been passed from the government to the private sector."

Testing in stages

Jain said Moon Express has been putting its lunar lander through a series of tests at the space center. The successful outing earlier this year involved tethering the vehicle—which is the size of a coffee table—to a crane in order to safely test its control systems. "The reason we tethered it to the crane is because the last thing we wanted was the aircraft to go completely haywire and hurt someone," he said. 

At the end of March, the company will conduct a completely free flight test with no tethering. The lander will take off from the pad, go up and sideways, then land back at the launchpad. "This is to test that the vehicle knows where to go and how to get back to the launchpad safely," Jain explained.


Once all these tests are successfully completed, Jain said the lander—called MX-1—will be ready to travel to the moon. The most likely scenario is that it will be attached to a satellite that will take the lander into a low orbit over the Earth. From there the MX-1 will fire its own rocket, powered by hydrogen peroxide, and launch from that orbit to complete its travel to the moon's surface. 

The lander's first mission is a one-way trip, meaning that it's not designed to travel back to the Earth, said Jain. "The purpose is to show that for the first time, a company has developed the technology to land softly on the moon," he said. "Landing on the moon is not the hard part. Landing softly is the hard part." 

That's because even though the gravity of the moon is one-sixth that of the Earth's, the lander will still be traveling down to the surface of the moon "like a bullet," Jain explained. Without the right calculations to indicate when its rockets have to fire in order to slow it down, the lander would hit the surface of the moon and break into millions of pieces. "Unlike here on Earth, there's no GPS on the moon to tell us this, so we have to do all these calculations first," he said. 

Looking ahead 15 or 20 years, Jain said he envisions a day when the moon is used as a sort of way station enabling easier travel for exploration to other planets. In the meantime, he said the lander's second and third missions could likely involve bringing precious metals, minerals and even moon rocks back to Earth. "Today, people look at diamonds as this rare thing on Earth," Jain said.
He added, "Imagine telling someone you love her by giving her the moon."

View Article Here Read More

Hubble’s ‘Einstein Cross’ Marks the Space-Warping Spot


Image: Einstein Cross revealed
Flash from the supernova's blast has been warped into four points of light surrounding an elliptical galaxy in a cluster called MACS J1149.2+2223, which is 5 billion light-years away in the constellation Leo.


Excerpt from nbcnews.com
By Alan Boyle


One hundred years after Albert Einstein published his theory of general relativity, the Hubble Space Telescope has provided a demonstration of the theory at work: a picture of a distant galaxy so massive that its gravitational field is bending the light from an even more distant supernova. 

The image, released Thursday, shows how the flash from the supernova's blast has been warped into four points of light surrounding an elliptical galaxy in a cluster called MACS J1149.2+2223, which is 5 billion light-years away in the constellation Leo. 

"It really threw me for a loop when I spotted the four images surrounding the galaxy," Patrick Kelly, an astronomer from the University of California at Berkeley, said in a news release. "It was a complete surprise." 

Maybe it shouldn't have been. The configuration is known as an Einstein Cross. It's a well-known but rarely seen effect of gravitational lensing, which is in line with Einstein's assertion that a massive object warps the fabric of space-time — and thus warps the path taken by light rays around the object. 

In this case, the light rays are coming from a stellar explosion that's directly behind the galaxy, but 4.3 million light-years more distant. Computer models suggest that the four-pointed cross will eventually fade away, to be followed within the next five years by the reappearance of the supernova's flash as a single image. 

Kelly is part of a research collaboration known as the Grism Lens Amplified Survey from Space, or GLASS. The collaboration is working with the Frontier Field Supernova team, or FrontierSN, to analyze the exploding star. He's also the lead author of a paper on the phenomenon that's being published this week by the journal Science as part of a package marking the 100th anniversary of Einstein's general relativity theory. 

The researchers suggest that a high-resolution analysis of the gravitational lensing effect can lead to better measurements of cosmic distances and galactic masses, including the contribution from dark matter. The Hubble team says the faraway supernova has been named "Refsdal" in honor of Norwegian astronomer Sjur Refsdal, who proposed using time-delayed images from a lensed supernova to study the expansion of the universe. 

"Astronomers have been looking to find one ever since," UCLA astronomer Tommaso Treu, the GLASS project's principal investigator, said in Thursday's news release. "The long wait is over!" 

The Einstein Cross is the subject of a Google+ Hangout at 3 p.m. ET Thursday, presented by the Hubble science team. You can watch the event now or later via YouTube. Check out a preprint version of the Science report.

View Article Here Read More

Google’s AI Program Is Better At Video Games Than You





pcmag.com

IBM's Watson supercomputer may be saving lives and educating children, but Google's new AI program can master video games without human guidance.

The artificial intelligence system from London-based DeepMind, which Google acquired last year for a reported $400 million, represents a major step toward a future of smart machines.

Computers running the deep Q-network (DQN) algorithm were exposed to 49 retro games on the Atari 2600 and told to play them, without any direction from researchers. Using the same network architecture and tuning parameters, the machines were given only raw screen pixels, available actions, and game score as input.

For each level passed or high score earned, the computer was automatically rewarded with a digital treat.

"Strikingly, DQN was able to work straight 'out of the box' across all these games," DeepMind's Dharshan Kumaran and Demis Hassabis wrote in a blog post. The executives cited classic titles like Breakout, River Raid, Boxing, and Enduro.

The AI crushed even the most expert humans at 29 games, sometimes composing what the creators called "surprisingly far-sighted strategies" that allowed maximum scoring possibilities. It also outperformed previous machine-learning methods in 43 of 49 instances.

VIEW ALL PHOTOS IN GALLERY
Google DeepMind's findings were presented in a paper published in this week's Nature journal, which describes the key DQN features that allow it to learn.

"This work offers the first demonstration of a general purpose learning agent that can be trained end-to-end to handle a wide variety of challenging tasks," the researchers said. "This kind of technology should help us build more useful products."

Imagine asking the Google app to complete a complex task—like plan a backpacking trip through Europe, for example.

Google's DeepMind also hopes its technology will give researchers new ways to make sense of large-scale data, opening the door to discoveries in fields like climate science, physics, medicine, and genomics.

"And it may even help scientists better understand the process by which humans learn," Kumaran and Hassabis said, citing physicist Richard Feynman, who famously said, "What I cannot create, I do not understand."

For more, see How DeepMind Can Bring Google Artificial Intelligence to Life in the slideshow above.

View Article Here Read More

Is playing ‘Space Invaders’ a milestone in artificial intelligence?





Excerpt from latimes.com

Computers have beaten humans at chess and "Jeopardy!," and now they can master old Atari games such as "Space Invaders" or "Breakout" without knowing anything about their rules or strategies.

Playing Atari 2600 games from the 1980s may seem a bit "Back to the Future," but researchers with Google's DeepMind project say they have taken a small but crucial step toward a general learning machine that can mimic the way human brains learn from new experience.

Unlike the Watson and Deep Blue computers that beat "Jeopardy!" and chess champions with intensive programming specific to those games, the Deep-Q Network built its winning strategies from keystrokes up, through trial and error and constant reprocessing of feedback to find winning strategies.

Image result for space invaders

“The ultimate goal is to build smart, general-purpose [learning] machines. We’re many decades off from doing that," said artificial intelligence researcher Demis Hassabis, coauthor of the study published online Wednesday in the journal Nature. "But I do think this is the first significant rung of the ladder that we’re on." 
The Deep-Q Network computer, developed by the London-based Google DeepMind, played 49 old-school Atari games, scoring "at or better than human level," on 29 of them, according to the study.
The algorithm approach, based loosely on the architecture of human neural networks, could eventually be applied to any complex and multidimensional task requiring a series of decisions, according to the researchers. 

The algorithms employed in this type of machine learning depart strongly from approaches that rely on a computer's ability to weigh stunning amounts of inputs and outcomes and choose programmed models to "explain" the data. Those approaches, known as supervised learning, required artful tailoring of algorithms around specific problems, such as a chess game.

The computer instead relies on random exploration of keystrokes bolstered by human-like reinforcement learning, where a reward essentially takes the place of such supervision.
“In supervised learning, there’s a teacher that says what the right answer was," said study coauthor David Silver. "In reinforcement learning, there is no teacher. No one says what the right action was, and the system needs to discover by trial and error what the correct action or sequence of actions was that led to the best possible desired outcome.”

The computer "learned" over the course of several weeks of training, in hundreds of trials, based only on the video pixels of the game -- the equivalent of a human looking at screens and manipulating a cursor without reading any instructions, according to the study.

Over the course of that training, the computer built up progressively more abstract representations of the data in ways similar to human neural networks, according to the study.
There was nothing about the learning algorithms, however, that was specific to Atari, or to video games for that matter, the researchers said.
The computer eventually figured out such insider gaming strategies as carving a tunnel through the bricks in "Breakout" to reach the back of the wall. And it found a few tricks that were unknown to the programmers, such as keeping a submarine hovering just below the surface of the ocean in "Seaquest."

The computer's limits, however, became evident in the games at which it failed, sometimes spectacularly. It was miserable at "Montezuma's Revenge," and performed nearly as poorly at "Ms. Pac-Man." That's because those games also require more sophisticated exploration, planning and complex route-finding, said coauthor Volodymyr Mnih.

And though the computer may be able to match the video-gaming proficiency of a 1980s teenager, its overall "intelligence" hardly reaches that of a pre-verbal toddler. It cannot build conceptual or abstract knowledge, doesn't find novel solutions and can get stuck trying to exploit its accumulated knowledge rather than abandoning it and resort to random exploration, as humans do. 

“It’s mastering and understanding the construction of these games, but we wouldn’t say yet that it’s building conceptual knowledge, or abstract knowledge," said Hassabis.

The researchers chose the Atari 2600 platform in part because it offered an engineering sweet spot -- not too easy and not too hard. They plan to move into the 1990s, toward 3-D games involving complex environments, such as the "Grand Theft Auto" franchise. That milestone could come within five years, said Hassabis.

“With a few tweaks, it should be able to drive a real car,” Hassabis said.

DeepMind was formed in 2010 by Hassabis, Shane Legg and Mustafa Suleyman, and received funding from Tesla Motors' Elon Musk and Facebook investor Peter Thiel, among others. It was purchased by Google last year, for a reported $650 million. 

Hassabis, a chess prodigy and game designer, met Legg, an algorithm specialist, while studying at the Gatsby Computational Neuroscience Unit at University College, London. Suleyman, an entrepreneur who dropped out of Oxford University, is a partner in Reos, a conflict-resolution consulting group.

View Article Here Read More
Older posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑