Tag: gold (page 2 of 6)

‘Holy grail’ of shipwrecks found? Mystery ship found at the bottom of Lake Michigan

Divers inspect a hole being dug beside a wooden beam jutting from the floor of Lake Michigan during a search for the Griffin.   (AP Photo/Great Lakes Exploration Group, David J. Ruck ) ...

View Article Here Read More

Did European scientists find dark-matter signal buried in X-rays?


Dark matter findings XMM-Newton
This illustration shows the ESA's XMM-Newton space telescope. Using X-ray data collected by the telescope, scientists say they may have identified a dark-matter signal. (D. Ducros / European Space Agency)


Excerpt from latimes.com

Scientists say they may have discovered a possible dark matter signal coded in the X-rays emanating from two bright objects in the sky. 

The findings, set to be published next week in Physical Review Letters, could offer tangible evidence for the existence of dark matter -- and help researchers build new tools to search for and study this mysterious stuff.

When it comes to matter in the universe, dark matter is like a backroom political power broker: You never see it, but behind the scenes, it’s been throwing its weight around. The effects of its gravitational influence can be seen in the large-scale structures of the cosmos. Dark matter makes up about 84.5% of the matter in the universe while all the stuff we actually see -- stars, galaxies, planets, ourselves -- makes up the remaining 15.5%.* The enormous galaxies and clusters of galaxies that populate the universe are bantamweights compared to the massive, unseen dark matter ‘halos’ that anchor them.
Dark matter’s formidable gravitational influence is the only way that the strange stuff can be detected, because it’s invisible -- it does not interact with light. Physicists have no idea what it’s made of, although they’ve looked for it by building detectors in underground former gold mines, sending satellites into space and other methods. 

But now, a team led by researchers at Leiden University in the Netherlands and the École Polytechnique Fédérale de Lausanne in Switzerland say they’ve discovered a signal that could be a sign of dark matter. 

The scientists looked at X-ray emissions coming from the Andromeda galaxy and the Perseus galaxy cluster, collected by the European Space Agency’s XMM-Newton space telescope. After accounting for all the light particles (called photons) emanating from known sources in the Andromeda galaxy, they were left with a strange set of photons that had no known source. The found the same light signature emanating from the Perseus cluster. And when they turned their attention to the Milky Way, they found signs of this signal in our home galaxy, as well.
“It is consistent with the behavior of a line originating from the decay of dark matter particles,” the authors wrote in a pre-print of the study.

This weird light signal, they think, could be coming from the destruction of a hypothetical particle called a sterile neutrino (which, if it exists, might help explain dark matter). But it's going to take a lot of follow-up study to determine whether this signal is a scientific breakthrough or an anomalous blip.

View Article Here Read More

Is a trip to the moon in the making?





Excerpt from bostonglobe.com

Decades after that first small step, space thinkers are finally getting serious about our nearest neighbor By Kevin Hartnett

This week, the European Space Agency made headlines with the first successful landing of a spacecraft on a comet, 317 million miles from Earth. It was an upbeat moment after two American crashes: the unmanned private rocket that exploded on its way to resupply the International Space Station, and the Virgin Galactic spaceplane that crashed in the Mojave Desert, killing a pilot and raising questions about whether individual businesses are up to the task of operating in space.  During this same period, there was one other piece of space news, one far less widely reported in the United States: On Nov. 1, China successfully returned a moon probe to Earth. That mission follows China’s landing of the Yutu moon rover late last year, and its announcement that it will conduct a sample-return mission to the moon in 2017.  With NASA and the Europeans focused on robot exploration of distant targets, a moon landing might not seem like a big deal: We’ve been there, and other countries are just catching up. But in recent years, interest in the moon has begun to percolate again, both in the United States and abroad—and it’s catalyzing a surprisingly diverse set of plans for how our nearby satellite will contribute to our space future.  China, India, and Japan have all completed lunar missions in the last decade, and have more in mind. Both China and Japan want to build unmanned bases in the early part of the next decade as a prelude to returning a human to the moon. In the United States, meanwhile, entrepreneurs are hatching plans for lunar commerce; one company even promises to ferry freight for paying customers to the moon as early as next year. Scientists are hatching more far-out ideas to mine hydrogen from the poles and build colonies deep in sky-lit lunar caves.  This rush of activity has been spurred in part by the Google Lunar X Prize, a $20 million award, expiring in 2015, for the first private team to land a working rover on the moon and prove it by sending back video. It is also driven by a certain understanding: If we really want to launch expeditions deeper into space, our first goal should be to travel safely to the moon—and maybe even figure out how to live there.
Entrepreneurial visions of opening the moon to commerce can seem fanciful, especially in light of the Virgin Galactic and Orbital Sciences crashes, which remind us how far we are from having a truly functional space economy. They also face an uncertain legal environment—in a sense, space belongs to everyone and to no one—whose boundaries will be tested as soon as missions start to succeed. Still, as these plans take shape, they’re a reminder that leaping blindly is sometimes a necessary step in opening any new frontier.
“All I can say is if lunar commerce is foolish,” said Columbia University astrophysicist Arlin Crotts in an e-mail, “there are a lot of industrious and dedicated fools out there!”

At its height, the Apollo program accounted for more than 4 percent of the federal budget. Today, with a mothballed shuttle and a downscaled space station, it can seem almost imaginary that humans actually walked on the moon and came back—and that we did it in the age of adding machines and rotary phones.

“In five years, we jumped into the middle of the 21st century,” says Roger Handberg, a political scientist who studies space policy at the University of Central Florida, speaking of the Apollo program. “No one thought that 40 years later we’d be in a situation where the International Space Station is the height of our ambition.”

An image of Earth and the moon created from photos by Mariner 10, launched in 1973.
NASA/JPL/Northwestern University
An image of Earth and the moon created from photos by Mariner 10, launched in 1973.
Without a clear goal and a geopolitical rivalry to drive it, the space program had to compete with a lot of other national priorities. The dramatic moon shot became an outlier in the longer, slower story of building scientific achievements.

Now, as those achievements accumulate, the moon is coming back into the picture. For a variety of reasons, it’s pretty much guaranteed to play a central role in any meaningful excursions we take into space. It’s the nearest planetary body to our own—238,900 miles away, which the Apollo voyages covered in three days. It has low gravity, which makes it relatively easy to get onto and off of the lunar surface, and it has no atmosphere, which allows telescopes a clearer view into deep space.
The moon itself also still holds some scientific mysteries. A 2007 report on the future of lunar exploration from the National Academies called the moon a place of “profound scientific value,” pointing out that it’s a unique place to study how planets formed, including ours. The surface of the moon is incredibly stable—no tectonic plates, no active volcanoes, no wind, no rain—which means that the loose rock, or regolith, on the moon’s surface looks the way the surface of the earth might have looked billions of years ago.

NASA still launches regular orbital missions to the moon, but its focus is on more distant points. (In a 2010 speech, President Obama brushed off the moon, saying, “We’ve been there before.”) For emerging space powers, though, the moon is still the trophy destination that it was for the United States and the Soviet Union in the 1960s. In 2008 an Indian probe relayed the best evidence yet that there’s water on the moon, locked in ice deep in craters at the lunar poles. China landed a rover on the surface of the moon in December 2013, though it soon malfunctioned. Despite that setback, China plans a sample-return mission in 2017, which would be the first since a Soviet capsule brought back 6 ounces of lunar soil in 1976.

The moon has also drawn the attention of space-minded entrepreneurs. One of the most obvious opportunities is to deliver scientific instruments for government agencies and universities. This is an attractive, ready clientele in theory, explains Paul Spudis, a scientist at the Lunar and Planetary Institute in Houston, though there’s a hitch: “The basic problem with that as a market,” he says, “is scientists never have money of their own.”

One company aspiring to the delivery role is Astrobotic, a startup of young Carnegie Mellon engineers based in Pittsburgh, which is currently positioning itself to be “FedEx to the moon,” says John Thornton, the company’s CEO. Astrobotic has signed a contract with SpaceX, the commercial space firm founded by Elon Musk, to use a Falcon 9 for an inaugural delivery trip in 2015, just in time to claim the Google Lunar X Prize. Thornton says most of the technology is in place for the mission, and that the biggest remaining hurdle is figuring out how to engineer a soft, automated moon landing.

Astrobotic is charging $1.2 million per kilogram—you can, in fact, place an order on its website—and Thornton says the company has five customers so far. They include the entities you might expect, like NASA, but also less obvious ones, like a company that wants to deliver human ashes for permanent internment and a Japanese soft drink manufacturer that wants to place its signature beverage, Pocari Sweat, on the moon as a publicity stunt. Astrobotic is joined in this small sci-fi economy by Moon Express out of Mountain View, Calif., another company competing for the Google Lunar X Prize.
Plans like these are the low-hanging fruit of the lunar economy, the easiest ideas to imagine and execute. Longer-scale thinkers are envisioning ways that the moon will play a larger role in human affairs—and that, says Crotts, is where “serious resource exploitation” comes in.
If this triggers fears of a mined-out moon, be reassured: “Apollo went there and found nothing we wanted. Had we found anything we really wanted, we would have gone back and there would have been a new gold rush,” says Roger Launius, the former chief historian of NASA and now a curator at the National Air and Space Museum.

There is one possible exception: helium-3, an isotope used in nuclear fusion research. It is rare on Earth but thought to be abundant on the surface of the moon, which could make the moon an important energy source if we ever figure out how to harness fusion energy. More immediately intriguing is the billion tons of water ice the scientific community increasingly believes is stored at the poles. If it’s there, that opens the possibility of sustained lunar settlement—the water could be consumed as a liquid, or split into oxygen for breathing and hydrogen for fuel.

The presence of water could also open a potentially ripe market providing services to the multibillion dollar geosynchronous satellite industry. “We lose billions of dollars a year of geosynchronous satellites because they drift out of orbit,” says Crotts. In a new book, “The New Moon: Water, Exploration, and Future Habitation,” he outlines plans for what he calls a “cislunar tug”: a space tugboat of sorts that would commute between the moon and orbiting satellites, resupplying them with propellant, derived from the hydrogen in water, and nudging them back into the correct orbital position.

In the long term, the truly irreplaceable value of the moon may lie elsewhere, as a staging area for expeditions deeper into space. The most expensive and dangerous part of space travel is lifting cargo out of and back into the Earth’s atmosphere, and some people imagine cutting out those steps by establishing a permanent base on the moon. In this scenario, we’d build lunar colonies deep in natural caves in order to escape the micrometeorites and toxic doses of solar radiation that bombard the moon, all the while preparing for trips to more distant points.
gical hurdles is long, and there’s also a legal one, at least where commerce is concerned. The moon falls under the purview of the Outer Space Treaty, which the United States signed in 1967, and which prohibits countries from claiming any territory on the moon—or anywhere else in space—as their own.
“It is totally unclear whether a private sector entity can extract resources from the moon and gain title or property rights to it,” says Joanne Gabrynowicz, an expert on space law and currently a visiting professor at Beijing Institute of Technology School of Law. She adds that a later document, the 1979 Moon Treaty, which the United States has not signed, anticipates mining on the moon, but leaves open the question of how property rights would be determined.

There are lots of reasons the moon may never realize its potential to mint the world’s first trillionaires, as some space enthusiasts have predicted. But to the most dedicated space entrepreneurs, the economic and legal arguments reflect short-sighted thinking. They point out that when European explorers set sail in the 15th and 16th centuries, they assumed they’d find a fortune in gold waiting for them on the other side of the Atlantic. The real prizes ended up being very different—and slow to materialize.
“When we settled the New World, we didn’t bring a whole lot back to Europe [at first],” Thornton says. “You have to create infrastructure to enable that kind of transfer of goods.” He believes that in the case of the moon, we’ll figure out how to do that eventually.
Roger Handberg is as clear-eyed as anyone about the reasons why the moon may never become more than an object of wonder, but he also understands why we can’t turn away from it completely. That challenge, in the end, may finally be what lures us back.

View Article Here Read More

The New American Dream ~ The Case for Colonizing Mars




Excerpt from Ad Astra

by Robert Zubrin


Mars Is The New World

Among extraterrestrial bodies in our solar system, Mars is singular in that it possesses all the raw materials required to support not only life, but a new branch of human civilization. This uniqueness is illustrated most clearly if we contrast Mars with the Earth's Moon, the most frequently cited alternative location for extraterrestrial human colonization.

In contrast to the Moon, Mars is rich in carbon, nitrogen, hydrogen and oxygen, all in biologically readily accessible forms such as carbon dioxide gas, nitrogen gas, and water ice and permafrost. Carbon, nitrogen, and hydrogen are only present on the Moon in parts per million quantities, much like gold in seawater. Oxygen is abundant on the Moon, but only in tightly bound oxides such as silicon dioxide (SiO2), ferrous oxide (Fe2O3), magnesium oxide (MgO), and aluminum oxide (Al2O3), which require very high energy processes to reduce.

The Moon is also deficient in about half the metals of interest to industrial society (copper, for example), as well as many other elements of interest such as sulfur and phosphorus. Mars has every required element in abundance. Moreover, on Mars, as on Earth, hydrologic and volcanic processes have occurred that are likely to have consolidated various elements into local concentrations of high-grade mineral ore. Indeed, the geologic history of Mars has been compared to that of Africa, with very optimistic inferences as to its mineral wealth implied as a corollary. In contrast, the Moon has had virtually no history of water or volcanic action, with the result that it is basically composed of trash rocks with very little differentiation into ores that represent useful concentrations of anything interesting.

You can generate power on either the Moon or Mars with solar panels, and here the advantages of the Moon's clearer skies and closer proximity to the Sun than Mars roughly balances the disadvantage of large energy storage requirements created by the Moon's 28-day light-dark cycle. But if you wish to manufacture solar panels, so as to create a self-expanding power base, Mars holds an enormous advantage, as only Mars possesses the large supplies of carbon and hydrogen needed to produce the pure silicon required for producing photovoltaic panels and other electronics. In addition, Mars has the potential for wind-generated power while the Moon clearly does not. But both solar and wind offer relatively modest power potential — tens or at most hundreds of kilowatts here or there. To create a vibrant civilization you need a richer power base, and this Mars has both in the short and medium term in the form of its geothermal power resources, which offer potential for large numbers of locally created electricity generating stations in the 10 MW (10,000 kilowatt) class. In the long-term, Mars will enjoy a power-rich economy based upon exploitation of its large domestic resources of deuterium fuel for fusion reactors. Deuterium is five times more common on Mars than it is on Earth, and tens of thousands of times more common on Mars than on the Moon.

But the biggest problem with the Moon, as with all other airless planetary bodies and proposed artificial free-space colonies, is that sunlight is not available in a form useful for growing crops. A single acre of plants on Earth requires four megawatts of sunlight power, a square kilometer needs 1,000 MW. The entire world put together does not produce enough electrical power to illuminate the farms of the state of Rhode Island, that agricultural giant. Growing crops with electrically generated light is just economically hopeless. But you can't use natural sunlight on the Moon or any other airless body in space unless you put walls on the greenhouse thick enough to shield out solar flares, a requirement that enormously increases the expense of creating cropland. Even if you did that, it wouldn't do you any good on the Moon, because plants won't grow in a light/dark cycle lasting 28 days.

But on Mars there is an atmosphere thick enough to protect crops grown on the surface from solar flare. Therefore, thin-walled inflatable plastic greenhouses protected by unpressurized UV-resistant hard-plastic shield domes can be used to rapidly create cropland on the surface. Even without the problems of solar flares and month-long diurnal cycle, such simple greenhouses would be impractical on the Moon as they would create unbearably high temperatures. On Mars, in contrast, the strong greenhouse effect created by such domes would be precisely what is necessary to produce a temperate climate inside. Such domes up to 50 meters in diameter are light enough to be transported from Earth initially, and later on they can be manufactured on Mars out of indigenous materials. Because all the resources to make plastics exist on Mars, networks of such 50- to 100-meter domes could be rapidly manufactured and deployed, opening up large areas of the surface to both shirtsleeve human habitation and agriculture. That's just the beginning, because it will eventually be possible for humans to substantially thicken Mars' atmosphere by forcing the regolith to outgas its contents through a deliberate program of artificially induced global warming. Once that has been accomplished, the habitation domes could be virtually any size, as they would not have to sustain a pressure differential between their interior and exterior. In fact, once that has been done, it will be possible to raise specially bred crops outside the domes.

The point to be made is that unlike colonists on any known extraterrestrial body, Martian colonists will be able to live on the surface, not in tunnels, and move about freely and grow crops in the light of day. Mars is a place where humans can live and multiply to large numbers, supporting themselves with products of every description made out of indigenous materials. Mars is thus a place where an actual civilization, not just a mining or scientific outpost, can be developed. And significantly for interplanetary commerce, Mars and Earth are the only two locations in the solar system where humans will be able to grow crops for export.

Interplanetary Commerce

Mars is the best target for colonization in the solar system because it has by far the greatest potential for self-sufficiency. Nevertheless, even with optimistic extrapolation of robotic manufacturing techniques, Mars will not have the division of labor required to make it fully self-sufficient until its population numbers in the millions. Thus, for decades and perhaps longer, it will be necessary, and forever desirable, for Mars to be able to import specialized manufactured goods from Earth. These goods can be fairly limited in mass, as only small portions (by weight) of even very high-tech goods are actually complex. Nevertheless, these smaller sophisticated items will have to be paid for, and the high costs of Earth-launch and interplanetary transport will greatly increase their price. What can Mars possibly export back to Earth in return?
It is this question that has caused many to incorrectly deem Mars colonization intractable, or at least inferior in prospect to the Moon.

For example, much has been made of the fact that the Moon has indigenous supplies of helium-3, an isotope not found on Earth and which could be of considerable value as a fuel for second generation thermonuclear fusion reactors. Mars has no known helium-3 resources. On the other hand, because of its complex geologic history, Mars may have concentrated mineral ores, with much greater concentrations of precious metal ores readily available than is currently the case on Earth — because the terrestrial ores have been heavily scavenged by humans for the past 5,000 years. If concentrated supplies of metals of equal or greater value than silver (such as germanium, hafnium, lanthanum, cerium, rhenium, samarium, gallium, gadolinium, gold, palladium, iridium, rubidium, platinum, rhodium, europium, and a host of others) were available on Mars, they could potentially be transported back to Earth for a substantial profit. Reusable Mars-surface based single-stage-to-orbit vehicles would haul cargoes to Mars orbit for transportation to Earth via either cheap expendable chemical stages manufactured on Mars or reusable cycling solar or magnetic sail-powered interplanetary spacecraft. The existence of such Martian precious metal ores, however, is still hypothetical.

But there is one commercial resource that is known to exist ubiquitously on Mars in large amount — deuterium. Deuterium, the heavy isotope of hydrogen, occurs as 166 out of every million hydrogen atoms on Earth, but comprises 833 out of every million hydrogen atoms on Mars. Deuterium is the key fuel not only for both first and second generation fusion reactors, but it is also an essential material needed by the nuclear power industry today. Even with cheap power, deuterium is very expensive; its current market value on Earth is about $10,000 per kilogram, roughly fifty times as valuable as silver or 70% as valuable as gold. This is in today's pre-fusion economy. Once fusion reactors go into widespread use deuterium prices will increase. All the in-situ chemical processes required to produce the fuel, oxygen, and plastics necessary to run a Mars settlement require water electrolysis as an intermediate step. As a by product of these operations, millions, perhaps billions, of dollars worth of deuterium will be produced.

Ideas may be another possible export for Martian colonists. Just as the labor shortage prevalent in colonial and nineteenth century America drove the creation of "Yankee ingenuity's" flood of inventions, so the conditions of extreme labor shortage combined with a technological culture that shuns impractical legislative constraints against innovation will tend to drive Martian ingenuity to produce wave after wave of invention in energy production, automation and robotics, biotechnology, and other areas. These inventions, licensed on Earth, could finance Mars even as they revolutionize and advance terrestrial living standards as forcefully as nineteenth century American invention changed Europe and ultimately the rest of the world as well.

Inventions produced as a matter of necessity by a practical intellectual culture stressed by frontier conditions can make Mars rich, but invention and direct export to Earth are not the only ways that Martians will be able to make a fortune. The other route is via trade to the asteroid belt, the band of small, mineral-rich bodies lying between the orbits of Mars and Jupiter. There are about 5,000 asteroids known today, of which about 98% are in the "Main Belt" lying between Mars and Jupiter, with an average distance from the Sun of about 2.7 astronomical units, or AU. (The Earth is 1.0 AU from the Sun.) Of the remaining two percent known as the near-Earth asteroids, about 90% orbit closer to Mars than to the Earth. Collectively, these asteroids represent an enormous stockpile of mineral wealth in the form of platinum group and other valuable metals.


Historical Analogies

The primary analogy I wish to draw is that Mars is to the new age of exploration as North America was to the last. The Earth's Moon, close to the metropolitan planet but impoverished in resources, compares to Greenland. Other destinations, such as the Main Belt asteroids, may be rich in potential future exports to Earth but lack the preconditions for the creation of a fully developed indigenous society; these compare to the West Indies. Only Mars has the full set of resources required to develop a native civilization, and only Mars is a viable target for true colonization. Like America in its relationship to Britain and the West Indies, Mars has a positional advantage that will allow it to participate in a useful way to support extractive activities on behalf of Earth in the asteroid belt and elsewhere.

But despite the shortsighted calculations of eighteenth-century European statesmen and financiers, the true value of America never was as a logistical support base for West Indies sugar and spice trade, inland fur trade, or as a potential market for manufactured goods. The true value of America was as the future home for a new branch of human civilization, one that as a combined result of its humanistic antecedents and its frontier conditions was able to develop into the most powerful engine for human progress and economic growth the world had ever seen. The wealth of America was in fact that she could support people, and that the right kind of people chose to go to her. People create wealth. People are wealth and power. Every feature of Frontier American life that acted to create a practical can-do culture of innovating people will apply to Mars a hundred-fold.

Mars is a harsher place than any on Earth. But provided one can survive the regimen, it is the toughest schools that are the best. The Martians shall do well.



Robert Zubrin is former Chairman of the National Space Society, President of the Mars Society, and author of The Case For Mars: The Plan to Settle the Red Planet and Why We Must.

View Article Here Read More

A New Planetary Situation Update


Clearing of the Chimera group continues. There is a certain operation of the Light forces that will be ongoing for the next few weeks therefore not much intel can be released until it is completed.

Until then, you can read a little bit about Chimera presence on Long Island:
http://www.bibliotecapleyades.net/montauk/esp_montauk_18.htm

You can visit this beautiful place, an entry point for Goddess energies on Long Island:
You can also participate in a meditation to clear Long Island, taking place at 3 am, 11 am and 7 pm GMT daily, whenever it is convenient for you (the link only works if you are signed into your facebook account):


The Chimera group is afraid that private space initiative will start creating cracks in the quarantine Earth and that is why they have sabotaged Virgin Galactic:
http://rt.com/usa/201315-virgin-spaceship-crashes-mojave-desert/

They did this just before SpaceShipTwo was about to pierce the Veil at 13900 meters:

http://rt.com/usa/201615-space-travel-branson-accident/
The Black Nobility Archon families and their Jesuit minions in Italy are losing their power as they have problems in their little bank:
They are also losing their power over Italy –EU relations:
And the Eastern Alliance is finally voicing its position through the famous Putin's speech:
The Cabal is trying to maintain the illusion of the current financial system by ending the quantitative easing and manipulating down gold and silver prices. Maybe this would sober them up:
Until then, if you have some money to invest, you can buy silver or gold on sale.



If you do not have any money to spare and you believe you have financial problems, this will put things into perspective for you:
Ebola virus was engineered in laboratories in Africa and when it did not spread as the Cabal has hoped, due to intervention of the Light forces, they have hyped up a media campaign to instill fear of Ebola, especially in the US.
In reality, the Ebola »pandemic« is already receding:
So there is nothing to fear:
And there are many cures available. Despite some claims in alternative media, colloidal silver does help with Ebola, which is a viral infection:
And it did help to cure the disease in Sierra Leone:
Vitamin C is a very effective treatment:
And so it is ozone therapy:
No more fear, the Victory of the Light is near!

View Article Here Read More

6,000-year-old temple discovered in prehistoric Ukraine settlement

An overhead shot of the excavated 6,000-year-old temple. (Burdo/Videiko/Institute of Archaeology of the National Academy of Sciences of Ukraine) Excerpt from upi.com  NEBELIVKA, Ukraine, Oct. 21 (UPI) -- Researchers in Ukraine have be...

View Article Here Read More

NASA Releases Spooky Jack-O-Lantern Sun Image for Halloween



NASA jack-o-lantern sun
Eerily grinned Jack-o-lantern Sun

Just in time for Halloween NASA releases an image that is actually a composite of 2 separate images of extreme ultraviolet wavelengths at 171 and 193 Ångströms taken on Oct. 8, 2014. The wavelengths, which are not visible to the unaided eye, have also been colored gold and yellow to create the spooky Halloween jack-o-lantern. 

View Article Here Read More

Money and the Myth of Freedom

Gregg Prescott, M.S., In5D GuestWhat if EVERYONE was wealthy beyond their wildest dreams and how would that affect our perceived “freedom”?I often use an analogy of freedom as a man walking his dog.  The man is the government, you are the dog and the leash is your freedom.And this isn’t even “freedom”.  These are “civil liberties”.In an ideal world, there would only be two rules or laws:1. Love everyone. 2. Respect everything.What we are g [...]

View Article Here Read More

Modern technology to hunt for ancient technology ~ Robot “Exosuit” to aid in Antikythera mechanism exploration project

Robot Exosuit


valuewalk.com

Archeologists have been trying to recover ancient artifacts from the bottom of the Aegean Sea since sponge divers first found the more than 2,000-year-old shipwreck off the Greek island Antikythera in 1900. To date, they have recovered fragments of bronze statues, marble sculptures, gold jewelry and the Antikythera mechanism, a clock-like astronomical calculator that has been dubbed the world’s oldest computer. Jacques Cousteau and his team found a number of artifacts as well as human remains when they explored the area in the 1950s and 1970s.

However, no previous expedition had the Exosuit, a one-of-a-kind diving robot exoskeleton that weighs 530 lbs, and is capable of submerging to the depth of 1,000 feet and divers can remain underwater for hours without any risk of decompression sickness.

More on the Antikythera mission

“It’s likely that sediment will hold the kind of stuff we can’t even imagine,” Brendan Foley, a maritime archaeologist from the Woods Hole Oceanographic Institute and co-director of the project, said during an interview earlier this summer when the team was researching bioluminescent organisms off the coast of Rhode Island. “Our eyes light up thinking about it. It’s the kind of thing that wakes you up in the middle of the night. These are artifacts that have never been seen since the time of Caesar.”

The Antikythera wreck settled more than 200 feet below the surface around the 1st century B.C., but some of the cargo found dates to the 4th century B.C. Historians have suggested the boat may have been carrying loot from Greece to Rome around the time of Julius Caesar.

The Exosuit enables more thorough exploration

The robot exoskeleton Exosuit enables an archaeologist to much more effectively unearth artifacts that might tell more about the ship’s story. During an earlier expedition back in 2012, Foley and his colleagues used sonar to locate targets at the wreck site that could be huge statues, according to WHOI’s Oceanus magazine.

The team is also looking to research a second wreck nearby that could have been the Antikythera ship’s traveling companion. They are also planning to take a look at the bottom of an undersea cliff —  around 400 feet deep — given additional artifacts from the wreck may have slipped over the edge of the cliff over time.

Nuytco Research manufactures the Exosuit, which includes has four 1.6-horsepower thrusters that move the suit up, down, forward, backward, right or left. Exosuit wearers do not have to worry about decompression sickness because the suit maintains surface air pressure. This adds an additional level of safety, as a diver can be pulled up to the surface in just a couple of minutes if there’s a problem.

View Article Here Read More

Atlantis ~ True Story or Cautionary Tale?

Photo: Illustration of Atlantis
An illustration by Sir Gerald Hargreaves shows a utopian scene on a cove of the mythical land of Atlantis. Many scholars think Plato invented the story of Atlantis as a way to present his philosophical theories.
Photograph by Mary Evans Picture Library/Everett Collection


science.nationalgeographic.com
By Willie Drye

If the writing of the ancient Greek philosopher Plato had not contained so much truth about the human condition, his name would have been forgotten centuries ago.

But one of his most famous stories—the cataclysmic destruction of the ancient civilization of Atlantis—is almost certainly false. So why is this story still repeated more than 2,300 years after Plato's death?

"It's a story that captures the imagination," says James Romm, a professor of classics at Bard College in Annandale, New York. "It's a great myth. It has a lot of elements that people love to fantasize about."

Plato told the story of Atlantis around 360 B.C. The founders of Atlantis, he said, were half god and half human. They created a utopian civilization and became a great naval power. Their home was made up of concentric islands separated by wide moats and linked by a canal that penetrated to the center. The lush islands contained gold, silver, and other precious metals and supported an abundance of rare, exotic wildlife. There was a great capital city on the central island.

There are many theories about where Atlantis was—in the Mediterranean, off the coast of Spain, even under what is now Antarctica. "Pick a spot on the map, and someone has said that Atlantis was there," says Charles Orser, curator of history at the New York State Museum in Albany. "Every place you can imagine."

Plato said Atlantis existed about 9,000 years before his own time, and that its story had been passed down by poets, priests, and others. But Plato's writings about Atlantis are the only known records of its existence.

Possibly Based on Real Events?

Few, if any, scientists think Atlantis actually existed. Ocean explorer Robert Ballard, the National Geographic explorer-in-residence who discovered the wreck of the Titanic in 1985, notes that "no Nobel laureates" have said that what Plato wrote about Atlantis is true.

Still, Ballard says, the legend of Atlantis is a "logical" one since cataclysmic floods and volcanic explosions have happened throughout history, including one event that had some similarities to the story of the destruction of Atlantis. About 3,600 years ago, a massive volcanic eruption devastated the island of Santorini in the Aegean Sea near Greece. At the time, a highly advanced society of Minoans lived on Santorini. The Minoan civilization disappeared suddenly at about the same time as the volcanic eruption.

But Ballard doesn't think Santorini was Atlantis, because the time of the eruption on that island doesn't coincide with when Plato said Atlantis was destroyed.

Romm believes Plato created the story of Atlantis to convey some of his philosophical theories. "He was dealing with a number of issues, themes that run throughout his work," he says. "His ideas about divine versus human nature, ideal societies, the gradual corruption of human society—these ideas are all found in many of his works. Atlantis was a different vehicle to get at some of his favorite themes."

The legend of Atlantis is a story about a moral, spiritual people who lived in a highly advanced, utopian civilization. But they became greedy, petty, and "morally bankrupt," and the gods "became angry because the people had lost their way and turned to immoral pursuits," Orser says.

As punishment, he says, the gods sent "one terrible night of fire and earthquakes" that caused Atlantis to sink into the sea.

View Article Here Read More

Gaining the Strength to Reach Your Limitless Potential

The stroke of midnight is here. Prepare yourselves for a quantum leap in consciousness. …..What is next for us cosmically? The huge Mayan shift back in 2012 has definitely left us with something to think about, but is anyone really aware of just what that shift filled with subtle nuances entails? How do we identify with anything subtle in this not-so-subtle world?Why aren’t we seeing the effects of a shift in the world? Doesn’t it feel as if things have just gotten far w [...]

View Article Here Read More

Heaven Letters June-16-2013

Heavenletter #4587 Whose Life Is This, Anyway?, June 16, 2013
Gloria Wendroff
http://www.heavenletters.org/whose-life-is-this-anyway.html

God said:
Let’s face it. The word frustration is just another word for anger. Frustration seems

View Article Here Read More

Heaven Letters May-14-2013

Heavenletter #4554 The Children of God’s DNA, May 14, 2013
Gloria Wendroff
http://www.heavenletters.org/the-children-of-god-s-dna.html

God said:
Of course, yes, you can think too much, and, yes, sometimes, you don’t think

View Article Here Read More
Older posts Newer posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑