Tag: fundamental (page 2 of 5)

Scientist Claims to Discover Sounds of Stars






Excerpt from clapway.com

If you can remember your primary school’s astronomy classes, the surface of a star is a very volatile place with tons of chemical reactions and extreme motions, and with immense gravitational pull. Generally a place you would not want to be. But researchers are now saying that if you were to orbit a star, it may be possible, with the right equipment, to hear what a star is saying! Or Singing?
Would you want to hear the sounds of stars?

The sound, unfortunately, is so high pitched that no mammal, not even a dolphin or bat, would be able to hear it, and couldn’t be heard anyway because space is a vacuum and there is no air medium for the sound to travel in.

With a frequency of nearly one trillion hertz, the sound was not only unexpected, but six million times higher than what any mammal can hear. But the researchers have developed a method to hear what they poetically refer to as “singing” or a star’s “song.”

Britain’s University of York’s researchers of hydrodynamics – the study of fluids in motion – fired a laser beam at the plasma in the laboratory and found that within a trillionth of a second, the plasma quickly moved from high-density to low-density areas.Plasma is a state of matter that makes up most things in the known universe and a few things on earth like lightning strikes and neon signs. It is basically a gas that has been charged with enough energy to loose the electrons from the atoms holding them together.

The spot where the low-density and high-density areas meet led to what the University researchers called a “traffic jam,” and resulted in an apparent sound wave, allowing us to know the sounds of stars.

Though this was achieved in the laboratory, scientists have yet to try to hear the sounds of a real star.

Dr. Pasley, a scientist from the Tata Institute of Fundamental Research in Mumbai, India, , said: “One of the few locations in nature where we believe this effect would occur is at the surface of stars. When they are accumulating new material stars could generate sound in a very similar manner to that which we observed in the laboratory–so the stars might be singing–but since sound cannot propagate through the vacuum of space, no-one can hear them.”

The technique used to observe the sound waves in the laboratory sort of works like a police speed camera, allowing scientists to accurately measure how the fluid would sound at the point of being struck by the laser at very minute timescales. The research was published in Physical Review Letters.

Perhaps in the future we might be able to listen in on the sounds of stars instead of just viewing it, and hear what they have to say!

View Article Here Read More

How Quantum Physics will change your life and amaze the world!

 Excerpt from educatinghumanity.com "Anyone not shocked by quantum mechanics has not yet understood it."Niels Bohr10 Ways Quantum Physics Will Change the WorldEver want to have a "life do over", teleport, time travel, have your computer wor...

View Article Here Read More

Biologists fear DNA editing procedure can alter human DNA




Excerpt from themarketbusiness.com

A group of biologists was alarmed with the use a new genome-editing technique to modify human DNA in a way that it can become hereditary.
The biologists worry that the new technique is so effective and easy to use that some physicians may push ahead with it before its safety can be weigh up. They also want the public to understand the ethical issues surrounding the technique, which could be used to cure genetic diseases, but also to enhance qualities like beauty or intelligence. The latter is a path that many ethicists believe should never be taken.


“You could exert control over human heredity with this technique, and that is why we are raising the issue,” said David Baltimore, a former president of the California Institute of Technology and a member of the group whose paper on the topic was published in the journal Science.

Ethicists have been concerned for decades about the dangers of altering the human germ line — meaning to make changes to human sperm, eggs or embryos that will last through the life of the individual and be passed on to future generations. Until now, these worries have been theoretical. But a technique invented in 2012 makes it possible to edit the genome precisely and with much greater ease. The technique has already been used to edit the genomes of mice, rats and monkeys, and few doubt that it would work the same way in people.

The new genome-editing technique holds the power to repair or enhance any human gene. “It raises the most fundamental of issues about how we are going to view our humanity in the future and whether we are going to take the dramatic step of modifying our own germline and in a sense take control of our genetic destiny, which raises enormous peril for humanity,” said George Daley, a stem cell expert at Boston Children’s Hospital and a member of the group.

The biologists writing in Science support continuing laboratory research with the technique, and few if any scientists believe it is ready for clinical use. Any such use is tightly regulated in the United States and Europe. American scientists, for instance, would have to present a plan to treat genetic diseases in the human germline to the Food and Drug Administration.

The paper’s authors, however, are concerned about countries that have less regulation in science. They urge that “scientists should avoid even attempting, in lax jurisdictions, germ line genome modification for clinical application in humans” until the full implications “are discussed among scientific and governmental organizations.”

Though such a moratorium would not be legally enforceable and might seem unlikely to exert global sway, there is a precedent. In 1975, scientists worldwide were asked to refrain from using a method for manipulating genes, the recombinant DNA technique, until rules had been established.

“We asked at that time that nobody do certain experiments, and in fact nobody did, to my knowledge,” said Baltimore, who was a member of the 1975 group. “So there is a moral authority you can assert from the U.S., and that is what we hope to do.”

Recombinant DNA was the first in a series of ever-improving steps for manipulating genetic material. The chief problem has always been one of accuracy, of editing the DNA at precisely the intended site, since any off-target change could be lethal. Two recent methods, known as zinc fingers and TAL effectors, came close to the goal of accurate genome editing, but both are hard to use. The new genome-editing approach was invented by Jennifer Doudna of the University of California, Berkeley, and Emmanuelle Charpentier of Umea University in Sweden.

Their method, known by the acronym Crispr-Cas9, co-opts the natural immune system with which bacteria remember the DNA of the viruses that attack them so they are ready the next time those same invaders appear. Researchers can simply prime the defense system with a guide sequence of their choice and it will then destroy the matching DNA sequence in any genome presented to it. Doudna is the lead author of the Science article calling for control of the technique and organized the meeting at which the statement was developed.

Though highly efficient, the technique occasionally cuts the genome at unintended sites. The issue of how much mistargeting could be tolerated in a clinical setting is one that Doudna’s group wants to see thoroughly explored before any human genome is edited.

Scientists also say that replacing a defective gene with a normal one may seem entirely harmless but perhaps would not be.
“We worry about people making changes without the knowledge of what those changes mean in terms of the overall genome,” Baltimore said. “I personally think we are just not smart enough — and won’t be for a very long time — to feel comfortable about the consequences of changing heredity, even in a single individual.”
Many ethicists have accepted the idea of gene therapy, changes that die with the patient, but draw a clear line at altering the germline, since these will extend to future generations. The British Parliament in February approved the transfer of mitochondria, small DNA-containing organelles, to human eggs whose own mitochondria are defective. But that technique is less far-reaching because no genes are edited.

There are two broad schools of thought on modifying the human germline, said R. Alta Charo, a bioethicist at the University of Wisconsin and a member of the Doudna group. One is pragmatic and seeks to balance benefit and risk. The other “sets up inherent limits on how much humankind should alter nature,” she said. 
Some Christian doctrines oppose the idea of playing God, whereas in Judaism and Islam there is the notion “that humankind is supposed to improve the world.” She described herself as more of a pragmatist, saying, “I would try to regulate such things rather than shut a new technology down at its beginning.”

Other scientists agree with the Doudna group’s message.
“It is very clear that people will try to do gene editing in humans,” said Rudolf Jaenisch, a stem cell biologist at the Whitehead Institute in Cambridge, Massachusetts, who was not a member of the Doudna group. “This paper calls for a moratorium on any clinical application, which I believe is the right thing to do.”
Writing in Nature last week, Edward Lanphier and other scientists involved in developing the rival zinc finger technique for genome editing also called for a moratorium on human germline modification, saying that use of current technologies would be “dangerous and ethically unacceptable.”

The International Society for Stem Cell Research said Thursday that it supported the proposed moratorium.

The Doudna group calls for public discussion but is also working to develop some more formal process, such as an international meeting convened by the National Academy of Sciences, to establish guidelines for human use of the genome-editing technique.

“We need some principled agreement that we want to enhance humans in this way or we don’t,” Jaenisch said. “You have to have this discussion because people are gearing up to do this.”

View Article Here Read More

Have Aliens Left The Universe? Theory Predicts We’ll Follow

























Excerpt from robertlanza.com

In Star Wars, the bars are bustling with all types of alien creatures. And then, of course, there’s Yoda and Chewbacca. Recently, renowned scientist Stephen Hawking stated that he too believes aliens exist: “To my mathematical brain, the numbers alone make thinking about aliens perfectly rational.”

Hawking thinks we should be cautious about interacting with aliens — that they might raid Earth’s resources, take our ores, and then move on like pirates. “I imagine they might exist in massive ships, having used up all the resources from their home planet. Such advanced aliens would perhaps become nomads, looking to conquer and colonize whatever planets they can reach.”
But where are they all anyhow?

For years, NASA and others have been searching for extraterrestrial intelligence. The universe is 13.7 billion years old and contains some 10 billion trillion stars. Surely, in this lapse of suns, advanced life would have evolved if it were possible. Yet despite half a century of scanning the sky, astronomers have failed to find any evidence of life or to pick up any of the interstellar radio signals that our great antennas should be able to easily detect.

Some scientists point to the “Fermi Paradox,” noting that extraterrestrials should have had plenty of time to colonize the entire galaxy but that perhaps they’ve blown themselves up. It’s conceivable the problem is more fundamental and that the answer has to do with the evolutionary course of life itself.

Look at the plants in your backyard. What are they but a stem with roots and leaves bringing nutriments to the organism? After billions of years of evolution, it was inevitable life would acquire the ability to locomote, to hunt and see, to protect itself from competitors. 
Observe the ants in the woodpile — they can engage in combat just as resolutely as humans. Our guns and ICBM are merely the mandibles of a cleverer ant. The effort for self-preservation is vague and varied. But when we’ve overcome our struggles, what do we do next? Build taller and more splendid houses?

What happens after life completes its transition to perfection? Perhaps across space, more advanced intelligences have taken the next evolutionary step. Perhaps they’ve evolved beyond the three dimensions we vertebrates know. A new theory — Biocentrism — tells us that space and time aren’t physical matrices, but simply tools our mind uses to put everything together. These algorithms are the key to consciousness, and why space and time — indeed the properties of matter itself — are relative to the observer. More advanced civilizations would surely understand these algorithms well enough to create realities that we can’t even imagine, and to have expanded beyond our corporeal cage.

Like breathing, we take for granted how our mind puts everything together. I can recall a dream I had of a flying saucer landing in Times Square. It was so real it took awhile to convince myself that it was a dream (that I was actually at home in bed). I was standing in a crowd surrounded by skyscrapers when a massive spaceship appeared overhead. Everyone started running. My mind had somehow generated this spatio-temporal experience out of electrochemical information. I could feel the vibrations under my feet as the ship started to land, merging this 3D world with my inner thoughts and sensations.

Although I was in bed with my eyes closed, I was able to run and move my arms and fingers. My mind had created a fully functioning body and placed it in a virtual world (replete with clouds in the sky and the Sun) that was indistinguishable from the one I’m in right now. Life as we know it is defined by this spatial-temporal logic, which traps us in the universe of up and down. But like my dream, quantum theory confirms that the properties of particles in the “real” world are also observer-determined.

Other information systems surely exist that correspond to other physical realities, universes based on logic completely different from ours and not based on space and time as we know it. In fact, the simplest invertebrates may only experience existence in one dimension of space. Evolutionary biology suggests life has progressed from a one dimensional reality, to two dimensions to three dimensions, and there’s no scientific reason to think that the evolution of life stops there.

Advanced civilizations would certainly have changed the algorithms so that instead of being trapped in the linear dimensions we find ourselves in, their consciousness moves through the multiverse and beyond. Why would Aliens build massive ships and spend thousands of years to colonize planetary systems (most of which are probably useless and barren), when they could simply tinker with the algorithms and get whatever they want?

Life on Earth is just beginning to send its shoots upward into the heavens. We’ve even flung a piece of metal outside the solar system. Affixed to the spacecraft is a record with greetings in 60 languages. One can’t but wonder whether some civilization more advanced than ours will come upon it. Or will it just drift across the gulf of space? To me the answer is clear. But in case I’m wrong, I have a pitch fork guarding the ore in my backyard.

View Article Here Read More

‘God Particle’ analogue spotted outside a supercollider: Scientists find Higgs mode in a superconductor


The God Particle, which is believed to be responsible for all the mass in the universe, was discovered in 2012 using a Cern's supercollider. In this image two high-energy photons collide. The yellow lines are the measured tracks of other particles produced in the collision, which helped lead to the discovery of the God particle
The God Particle, which is believed to be responsible for all the mass in the universe, was discovered in 2012 using a Cern's supercollider. In this image two high-energy photons collide. The yellow lines are the measured tracks of other particles produced in the collision, which helped lead to the discovery of the God particle.


Excerpt from dailymail.co.uk
  • God Particle is believed to be responsible for all the mass in the universe
  • Particle was discovered in 2012 using a Cern's supercollider in Geneva
  • uperconductor experiment suggests the particle could be detected without the huge amounts of energy used at by the Large Hadron Collider
  • LHC is due to come back online next month after an upgrade that has given it a big boost in energy

Scientists have discovered a simulated version of the elusive 'God particle' using superconductors.

The God Particle, which is believed to be responsible for all the mass in the universe, was discovered in 2012 using a Cern's supercollider.

The superconductor experiment suggests that the Higgs particle could be detected without the huge amounts of energy used at by the Large Hadron Collider. 
The results could help scientists better understand how this mysterious particle – also known as the Higgs boson – behaves in different conditions.

'Just as the Cern experiments revealed the existence of the Higgs boson in a high-energy accelerator environment, we have now revealed a Higgs boson analogue in superconductors,' said researcher Aviad Frydman from Bar-Ilan University.

Superconductors are a type of metal that, when cooled to low temperatures, allow electrons to pass through freely.

'The Higgs mode was never actually observed in superconductors because of technical difficulties - difficulties that we've managed to overcome,' Professor Frydman said.

The superconductor experiment suggests that the Higgs particle could be detected without the huge amounts of energy used at by the Large Hadron Collider (pictured)
The superconductor experiment suggests that the Higgs particle could be detected without the huge amounts of energy used at by the Large Hadron Collider (pictured)

WHAT IS THE GOD PARTICLE? 

The 'God Particle', also known as the Higgs boson, was a missing piece in the jigsaw for physicists in trying to understand how the universe works.

Scientists believe that a fraction of a second after the Big Bang that gave birth to the universe, an invisible energy field, called the Higgs field, formed.

This has been described as a kind of 'cosmic treacle' across the universe. 

As particles passed through it, they picked up mass, giving them size and shape and allowing them to form the atoms that make up you, everything around you and everything in the universe.

This was the theory proposed in 1964 by former grammar school boy Professor Higgs that has now been confirmed.

Without the Higgs field particles would simply whizz around space in the same way as light does.

A boson is a type of sub-atomic particle. Every energy field has a specific particle that governs its interaction with what's around it. 

To try to pin it down, scientists at the Large Hadron Collider near Geneva smashed together beams of protons – the 'hearts of atoms' – at close to the speed of light, recreating conditions that existed a fraction of a second after the Big Bang.

Although they would rapidly decay, they should have left a recognisable footprint. This footprint was found in 2012.

The main difficulty was that the superconducting material would decay into something known as particle-hole pairs.

Large amounts of energy – which are usually needed to excite the Higgs mode - tend to break apart the electron pairs that act as the material's charge.

Professor Frydman and his colleagues solved this problem by using ultra-thin superconducting films of Niobium Nitrite (NbN) and Indium Oxide (InO) as something known as the 'superconductor-insulator critical point.'

This is a state in which recent theory predicted the decay of the Higgs would no longer occur.

In this way, they could still excite a Higgs mode even at relatively low energies.

'The parallel phenomenon in superconductors occurs on a different energy scale entirely - just one-thousandth of a single electronvolt,' Professor Frydman added.

'What's exciting is to see how, even in these highly disparate systems, the same fundamental physics is at work.'

The different approach help solve one of the longstanding mysteries of fundamental physics.

The discovery of the Higgs boson verified the Standard Model, which predicted that particles gain mass by passing through a field that slows down their movement through the vacuum of space.

To try to pin it down, scientists at the Large Hadron Collider near Geneva smashed together beams of protons – the 'hearts of atoms' – at close to the speed of light, recreating conditions that existed a fraction of a second after the Big Bang.

Although they would rapidly decay, the also left a recognisable footprint.

Professor Higgs, 83, has been waiting since 1964 for science to catch up with his ideas about the Higgs boson
Professor Higgs, 83, has been waiting since 1964 for science to catch up with his ideas about the Higgs boson

According to Professor Frydman, observation of the Higgs mechanism in superconductors is significant because it reveals how a single type of physical process behaves under different energy conditions.

'Exciting the Higgs mode in a particle accelerator requires enormous energy levels - measured in giga-electronvolts, or 109 eV,' Professor Frydman says.

'The parallel phenomenon in superconductors occurs on a different energy scale entirely - just one-thousandth of a single electronvolt.

'What's exciting is to see how, even in these highly disparate systems, the same fundamental physics is at work.'

The LHC is due to come back online in March after an upgrade that has given it a big boost in energy.

'With this new energy level, the (collider) will open new horizons for physics and for future discoveries,' CERN Director General Rolf Heuer said in a statement.
'I'm looking forward to seeing what nature has in store for us.'

Cern's collider is buried in a 27-km (17-mile) tunnel straddling the Franco-Swiss border at the foot of the Jura mountains.

The LHC in Geneva will come back online in March after an upgrade that has given it a big boost in energy
The LHC in Geneva will come back online in March after an upgrade that has given it a big boost in energy

View Article Here Read More

History Repeating? Study shows Ancient cities were bigger and denser, just like modern cities




Excerpt from  thenextdigit.com

Recently, a new research has been done, which found that the ancient cities were similar to the current modern-day cities in terms of size as well as the density of those settlements. In the research paper, the researcher explains that modern cities with large amount of populations as well as density, are similar to the characteristics of ancient cities. The research claims that the character of the inhabitants of ancient cities is similar to those of inhabitants of modern cities.

 The study was done by the researchers at Santa Fe Institute and at the University of Colorado Boulder. The main objective of the researchers is to find the functionality of the settlements and they started to find out whether current cities and ancient cities are similar in nature.

Scott Ortman, Researcher at Department of Anthropology, University of Colorado Boulder says,
“Our findings indicate the fundamental processes behind the emergence of scaling in modern cities have structured human settlement organization throughout human history, and that contemporary urban systems are best-conceived as lying on a continuum with the smaller-scale settlement systems known from historical and archaeological research.”
The researcher grouped together and analyzes the structures as well as dimensions of both cities and estimated the way of construction of monuments, housing styles, the amount of people stayed in a region and so on. They found the place or region where the density was high, the productivity was more.

Ortman also said that the results were amazing and unbelievable for them and added that the modern world is radically different from the ancient world with its capitalism, democracy, industrialization and so on. They also noticed that, once the population of a particular area grew, then the productivity of that same place rose high. Even a few patterns that are used in the ancient human societies were same as that we are following in our modern urban system.
“It was amazing and unbelievable,” Ortman said. “We’ve been raised on a steady diet, telling us that, thanks to capitalism, industrialization, and democracy, the modern world is radically different from worlds of the past. What we found here is that the fundamental drivers of robust socioeconomic patterns in modern cities precede all that.”

View Article Here Read More

Why science is so hard to believe?

 
In the recent movie “Interstellar,” set in a futuristic, downtrodden America where NASA has been forced into hiding, school textbooks say the Apollo moon landings were faked.


Excerpt from 


There’s a scene in Stanley Kubrick’s comic masterpiece “Dr. Strangelove” in which Jack D. Ripper, an American general who’s gone rogue and ordered a nuclear attack on the Soviet Union, unspools his paranoid worldview — and the explanation for why he drinks “only distilled water, or rainwater, and only pure grain alcohol” — to Lionel Mandrake, a dizzy-with-anxiety group captain in the Royal Air Force.
Ripper: “Have you ever heard of a thing called fluoridation? Fluoridation of water?”
Mandrake: “Ah, yes, I have heard of that, Jack. Yes, yes.”Ripper: “Well, do you know what it is?”
Mandrake: “No. No, I don’t know what it is, no.”
Ripper: “Do you realize that fluoridation is the most monstrously conceived and dangerous communist plot we have ever had to face?” 

The movie came out in 1964, by which time the health benefits of fluoridation had been thoroughly established and anti-fluoridation conspiracy theories could be the stuff of comedy. Yet half a century later, fluoridation continues to incite fear and paranoia. In 2013, citizens in Portland, Ore., one of only a few major American cities that don’t fluoridate, blocked a plan by local officials to do so. Opponents didn’t like the idea of the government adding “chemicals” to their water. They claimed that fluoride could be harmful to human health.

Actually fluoride is a natural mineral that, in the weak concentrations used in public drinking-water systems, hardens tooth enamel and prevents tooth decay — a cheap and safe way to improve dental health for everyone, rich or poor, conscientious brushers or not. That’s the scientific and medical consensus.
To which some people in Portland, echoing anti-fluoridation activists around the world, reply: We don’t believe you.
We live in an age when all manner of scientific knowledge — from the safety of fluoride and vaccines to the reality of climate change — faces organized and often furious opposition. Empowered by their own sources of information and their own interpretations of research, doubters have declared war on the consensus of experts. There are so many of these controversies these days, you’d think a diabolical agency had put something in the water to make people argumentative.
Science doubt has become a pop-culture meme. In the recent movie “Interstellar,” set in a futuristic, downtrodden America where NASA has been forced into hiding, school textbooks say the Apollo moon landings were faked.


The debate about mandated vaccinations has the political world talking. A spike in measles cases nationwide has President Obama, lawmakers and even potential 2016 candidates weighing in on the vaccine controversy. (Pamela Kirkland/The Washington Post)
In a sense this is not surprising. Our lives are permeated by science and technology as never before. For many of us this new world is wondrous, comfortable and rich in rewards — but also more complicated and sometimes unnerving. We now face risks we can’t easily analyze.
We’re asked to accept, for example, that it’s safe to eat food containing genetically modified organisms (GMOs) because, the experts point out, there’s no evidence that it isn’t and no reason to believe that altering genes precisely in a lab is more dangerous than altering them wholesale through traditional breeding. But to some people, the very idea of transferring genes between species conjures up mad scientists running amok — and so, two centuries after Mary Shelley wrote “Frankenstein,” they talk about Frankenfood.
The world crackles with real and imaginary hazards, and distinguishing the former from the latter isn’t easy. Should we be afraid that the Ebola virus, which is spread only by direct contact with bodily fluids, will mutate into an airborne super-plague? The scientific consensus says that’s extremely unlikely: No virus has ever been observed to completely change its mode of transmission in humans, and there’s zero evidence that the latest strain of Ebola is any different. But Google “airborne Ebola” and you’ll enter a dystopia where this virus has almost supernatural powers, including the power to kill us all.
In this bewildering world we have to decide what to believe and how to act on that. In principle, that’s what science is for. “Science is not a body of facts,” says geophysicist Marcia McNutt, who once headed the U.S. Geological Survey and is now editor of Science, the prestigious journal. “Science is a method for deciding whether what we choose to believe has a basis in the laws of nature or not.”
The scientific method leads us to truths that are less than self-evident, often mind-blowing and sometimes hard to swallow. In the early 17th century, when Galileo claimed that the Earth spins on its axis and orbits the sun, he wasn’t just rejecting church doctrine. He was asking people to believe something that defied common sense — because it sure looks like the sun’s going around the Earth, and you can’t feel the Earth spinning. Galileo was put on trial and forced to recant. Two centuries later, Charles Darwin escaped that fate. But his idea that all life on Earth evolved from a primordial ancestor and that we humans are distant cousins of apes, whales and even deep-sea mollusks is still a big ask for a lot of people.
Even when we intellectually accept these precepts of science, we subconsciously cling to our intuitions — what researchers call our naive beliefs. A study by Andrew Shtulman of Occidental College showed that even students with an advanced science education had a hitch in their mental gait when asked to affirm or deny that humans are descended from sea animals and that the Earth goes around the sun. Both truths are counterintuitive. The students, even those who correctly marked “true,” were slower to answer those questions than questions about whether humans are descended from tree-dwelling creatures (also true but easier to grasp) and whether the moon goes around the Earth (also true but intuitive).
Shtulman’s research indicates that as we become scientifically literate, we repress our naive beliefs but never eliminate them entirely. They nest in our brains, chirping at us as we try to make sense of the world.
Most of us do that by relying on personal experience and anecdotes, on stories rather than statistics. We might get a prostate-specific antigen test, even though it’s no longer generally recommended, because it caught a close friend’s cancer — and we pay less attention to statistical evidence, painstakingly compiled through multiple studies, showing that the test rarely saves lives but triggers many unnecessary surgeries. Or we hear about a cluster of cancer cases in a town with a hazardous-waste dump, and we assume that pollution caused the cancers. Of course, just because two things happened together doesn’t mean one caused the other, and just because events are clustered doesn’t mean they’re not random. Yet we have trouble digesting randomness; our brains crave pattern and meaning.
Even for scientists, the scientific method is a hard discipline. They, too, are vulnerable to confirmation bias — the tendency to look for and see only evidence that confirms what they already believe. But unlike the rest of us, they submit their ideas to formal peer review before publishing them. Once the results are published, if they’re important enough, other scientists will try to reproduce them — and, being congenitally skeptical and competitive, will be very happy to announce that they don’t hold up. Scientific results are always provisional, susceptible to being overturned by some future experiment or observation. Scientists rarely proclaim an absolute truth or an absolute certainty. Uncertainty is inevitable at the frontiers of knowledge.
That provisional quality of science is another thing a lot of people have trouble with. To some climate-change skeptics, for example, the fact that a few scientists in the 1970s were worried (quite reasonably, it seemed at the time) about the possibility of a coming ice age is enough to discredit what is now the consensus of the world’s scientists: The planet’s surface temperature has risen by about 1.5 degrees Fahrenheit in the past 130 years, and human actions, including the burning of fossil fuels, are extremely likely to have been the dominant cause since the mid-20th century.
It’s clear that organizations funded in part by the fossil-fuel industry have deliberately tried to undermine the public’s understanding of the scientific consensus by promoting a few skeptics. The news media gives abundant attention to such mavericks, naysayers, professional controversialists and table thumpers. The media would also have you believe that science is full of shocking discoveries made by lone geniuses. Not so. The (boring) truth is that science usually advances incrementally, through the steady accretion of data and insights gathered by many people over many years. So it has with the consensus on climate change. That’s not about to go poof with the next thermometer reading.
But industry PR, however misleading, isn’t enough to explain why so many people reject the scientific consensus on global warming.
The “science communication problem,” as it’s blandly called by the scientists who study it, has yielded abundant new research into how people decide what to believe — and why they so often don’t accept the expert consensus. It’s not that they can’t grasp it, according to Dan Kahan of Yale University. In one study he asked 1,540 Americans, a representative sample, to rate the threat of climate change on a scale of zero to 10. Then he correlated that with the subjects’ science literacy. He found that higher literacy was associated with stronger views — at both ends of the spectrum. Science literacy promoted polarization on climate, not consensus. According to Kahan, that’s because people tend to use scientific knowledge to reinforce their worldviews.
Americans fall into two basic camps, Kahan says. Those with a more “egalitarian” and “communitarian” mind-set are generally suspicious of industry and apt to think it’s up to something dangerous that calls for government regulation; they’re likely to see the risks of climate change. In contrast, people with a “hierarchical” and “individualistic” mind-set respect leaders of industry and don’t like government interfering in their affairs; they’re apt to reject warnings about climate change, because they know what accepting them could lead to — some kind of tax or regulation to limit emissions.
In the United States, climate change has become a litmus test that identifies you as belonging to one or the other of these two antagonistic tribes. When we argue about it, Kahan says, we’re actually arguing about who we are, what our crowd is. We’re thinking: People like us believe this. People like that do not believe this.
Science appeals to our rational brain, but our beliefs are motivated largely by emotion, and the biggest motivation is remaining tight with our peers. “We’re all in high school. We’ve never left high school,” says Marcia McNutt. “People still have a need to fit in, and that need to fit in is so strong that local values and local opinions are always trumping science. And they will continue to trump science, especially when there is no clear downside to ignoring science.”
Meanwhile the Internet makes it easier than ever for science doubters to find their own information and experts. Gone are the days when a small number of powerful institutions — elite universities, encyclopedias and major news organizations — served as gatekeepers of scientific information. The Internet has democratized it, which is a good thing. But along with cable TV, the Web has also made it possible to live in a “filter bubble” that lets in only the information with which you already agree.
How to penetrate the bubble? How to convert science skeptics? Throwing more facts at them doesn’t help. Liz Neeley, who helps train scientists to be better communicators at an organization called Compass, says people need to hear from believers they can trust, who share their fundamental values. She has personal experience with this. Her father is a climate-change skeptic and gets most of his information on the issue from conservative media. In exasperation she finally confronted him: “Do you believe them or me?” She told him she believes the scientists who research climate change and knows many of them personally. “If you think I’m wrong,” she said, “then you’re telling me that you don’t trust me.” Her father’s stance on the issue softened. But it wasn’t the facts that did it.
If you’re a rationalist, there’s something a little dispiriting about all this. In Kahan’s descriptions of how we decide what to believe, what we decide sometimes sounds almost incidental. Those of us in the science-communication business are as tribal as anyone else, he told me. We believe in scientific ideas not because we have truly evaluated all the evidence but because we feel an affinity for the scientific community. When I mentioned to Kahan that I fully accept evolution, he said: “Believing in evolution is just a description about you. It’s not an account of how you reason.”
Maybe — except that evolution is real. Biology is incomprehensible without it. There aren’t really two sides to all these issues. Climate change is happening. Vaccines save lives. Being right does matter — and the science tribe has a long track record of getting things right in the end. Modern society is built on things it got right.
Doubting science also has consequences, as seen in recent weeks with the measles outbreak that began in California. The people who believe that vaccines cause autism — often well educated and affluent, by the way — are undermining “herd immunity” to such diseases as whooping cough and measles. The anti-vaccine movement has been going strong since a prestigious British medical journal, the Lancet, published a study in 1998 linking a common vaccine to autism. The journal later retracted the study, which was thoroughly discredited. But the notion of a vaccine-autism connection has been endorsed by celebrities and reinforced through the usual Internet filters. (Anti-vaccine activist and actress Jenny McCarthy famously said on “The Oprah Winfrey Show,” “The University of Google is where I got my degree from.”)
In the climate debate, the consequences of doubt are likely to be global and enduring. Climate-change skeptics in the United States have achieved their fundamental goal of halting legislative action to combat global warming. They haven’t had to win the debate on the merits; they’ve merely had to fog the room enough to keep laws governing greenhouse gas emissions from being enacted.
Some environmental activists want scientists to emerge from their ivory towers and get more involved in the policy battles. Any scientist going that route needs to do so carefully, says Liz Neeley. “That line between science communication and advocacy is very hard to step back from,” she says. In the debate over climate change, the central allegation of the skeptics is that the science saying it’s real and a serious threat is politically tinged, driven by environmental activism and not hard data. That’s not true, and it slanders honest scientists. But the claim becomes more likely to be seen as plausible if scientists go beyond their professional expertise and begin advocating specific policies.
It’s their very detachment, what you might call the cold-bloodedness of science, that makes science the killer app. It’s the way science tells us the truth rather than what we’d like the truth to be. Scientists can be as dogmatic as anyone else — but their dogma is always wilting in the hot glare of new research. In science it’s not a sin to change your mind when the evidence demands it. For some people, the tribe is more important than the truth; for the best scientists, the truth is more important than the tribe.

View Article Here Read More

Striking Similarities Between Brain Cells and Our Universe



The two pictures below illustrate the similarities. The top picture shows the neural network of a brain cell; the bottom picture shows the distribution of dark matter in the universe as simulated by Millennium Simulation.


Excerpt from  themindunleashed.org


The structures of the universe and the human brain are strikingly similar.

In the Eastern spiritual discipline of Daoism, the human body has long been viewed as a small universe, as a microcosm. As billion-dollar investments are made in the United States and Europe to research brain functioning, the correlations between the brain and the universe continue to emerge.

The two pictures below illustrate the similarities. The top picture shows the neural network of a brain cell; the bottom picture shows the distribution of dark matter in the universe as simulated by Millennium Simulation.

The pictures show a structural similarity in terms of connections and distribution of matter in the brain and in the universe. The photo on the left is a microscopic view, the one on the right is a macroscopic view.

The brain is like a microcosm.

A study conducted by Dmitri Krioukov of the University of California and a team of researchers published in Nature last year shows striking similarities between neural networks in the brain and network connections between galaxies.

Krioukov’s team created a computer simulation that broke the known universe down into tiny, subatomic units of space-time, explained Live Science. The simulation added more space-time units as the history of the universe progressed. The developing interactions between matter in galaxies was similar to the interactions that comprise neural networks in the human brain.
Physicist Kevin Bassler of the University of Houston, who was not involved in the study, told Live Science that the study suggests a fundamental law governing these networks.

In May 2011, Seyed Hadi Anjamrooz of the Kerman University of Medical Sciences and other Iranian medical scientists published an article in the International Journal of the Physical Sciences on the similarities between cells and the universe. They explain that a black hole resembles the cell nucleus. A black hole’s event horizon—a sort of point of no return where the gravitational pull will suck objects into the black hole—also resembles the nuclear membrane.

The event horizon is double-layered, as is the nuclear membrane. Much like the event horizon, which prevents anything that enters from leaving, the nuclear membrane separates cell fluids, preventing mixing, and regulates the exchange of matter between the inside and outside of the nucleus. Black holes and living cells also both emit pockets of electromagnetic radiation, among other similarities.

The researchers wrote: “Nearly all that exists in the macrouniverse is mirrored in a biological cell as a microuniverse. Simply put, the universe can be pictured as a cell.”

View Article Here Read More

Study Suggests Baby Chicks Can Count! ~ Video





Excerpt from nbcnews.com
By Tia Ghose, LiveScience



It's not just humans who can count: Newly published research suggests chicks seem to have a number sense, too. 

Scientists found that chicks seem to count upward, moving from left to right. They put smaller numbers on the left, and larger numbers on the right — the same mental representation of the number line that humans use. 

"Our results suggest a rethinking of the relationship between numerical abilities and verbal language, providing further evidence that language and culture are not necessary for the development of a mathematical cognition," said study lead author Rosa Rugani, a psychologist at the University of Padova in Italy.

The left-to-right way of thinking about ascending numbers seems to be embedded in people's mental representations of numbers, but it's not clear exactly why. Is it an artifact of some long-lost accident of history, or is it a fundamental aspect of the way the brain processes numbers? 

To help answer those questions, Rugani and her colleagues trained 3-day-old chicks to travel around a screen panel with five dots on it to get to a food treat behind it. This made the five-dot panel an anchor number that the chicks could use for comparison with other numbers. 

After the chicks learned that the five-dot panel meant food, the researchers removed that panel and then placed the chicks in front of two panels, one to the left and the other to the right, that each had two dots. The chicks tended to go to the left panel, suggesting that they mentally represent numbers smaller than five as being to the left of five. 

When the researchers put the chicks in front of two panels that each had eight dots, the chicks walked to the panel on the right. This suggests the chicks mentally represent numbers larger than five as being to the right of five, the researchers said. 

In a second experiment, the researchers repeated the whole process, but started with a panel that had 20 dots instead of five. They then added two other panels that had either eight or 32 dots. Sure enough, the baby chicks tended to go to the left when the screens had just eight dots, and to the right when they had 32 dots, according to the findings published in this week's issue of the journal Science. 

"I would not at all be surprised that the number spatial mapping is also found in other animals, and in newborn infants," Rugani said.



Click to zoom

View Article Here Read More

Why Bill Nye ‘The Science Guy’ Calls Evolution ‘Undeniable’ and Creationism ‘Inane’



Picture of thousands of galaxies
Gazing at galaxy clusters like Abell 2218, it's hard to imagine how we fit into the cosmos. Evolution can help with that, says Bill Nye.
Photograph by NASA, ESA, and Johan Richard (Caltech, USA)


Darwin's theory explains so much of the world, from bumblebees to human origins, says the Science Guy.


Excerpt from
By Jane J. Lee

With a jaunty bow tie and boyish enthusiasm, Bill Nye the Science Guy has spent decades decoding scientific topics, from germs to volcanoes, for television audiences. Last February, the former engineer defended the theory of evolution in a televised debate with young-Earth creationist Ken Ham, a vocal member of a group that believes the Earth is only 6,000 years old. Nye's decision to engage Ham kicked up plenty of criticism from scientists and creationists alike.

The experience prompted the celebrity science educator to write a "primer" on the theory of evolution called Undeniable: Evolution and the Science of Creation. In his new book, Nye delights in how this fundamental discovery helps to unlock the mysteries of everything from bumblebees to human origins to our place in the universe.

Who do you hope will read this book?
Grown-ups who have an interest in the world around them, people coming of age who have an interest in science, people who still want to know how the world works.

This is the big concern of mine with respect to the organization Answers in Genesis and Ken Ham and all those guys: their relentless, built-in attempts to indoctrinate a generation of science students on a worldview that is obviously wrong.

I worry about these kids—they're part of my society. We can't raise a generation of students who don't understand the fundamental idea in all of life science, any more than you want to raise a generation of kids who don't understand chemistry or physics or arithmetic.

How and when did you first encounter creationism?
About 20 years ago. I was a member of the Northwest Skeptics, which is the Seattle-based skeptics organization. We met people who insisted that the Earth was 6,000 years old. The inanity took my breath away. When you understand anything about astronomy or have just a rudimentary understanding of radioactivity, the Earth is patently not 6,000 years old. It's silly.

It's been said that a good way of convincing people of something is to appeal to their emotions. What do you think?
That's my business! In the book, I purposely spend a lot of time in the first person. The reason is, we find stories compelling. Stories are how we remember things, how we organize things.

By telling a story in the first person, it's hard to dismiss. If I say, "I remember the time I met Ivan the gorilla," it's really difficult for the listener or reader to go, "No, you don't!"

When you say, "I feel," it's really hard for the reader to say, "No, you don't." Yes, I do. I did a lot of that in the book...

Picture of a sweat bee pollinating a deadly nightshade flower
A fascination with bees and flight drew a young Bill Nye into the world of science and evolution.
Photograph by Mark W Moffett, National Geographic



Picture of the Earth seen from the International Space Station
One of the most fundamental ideas in explaining life on Earth is the theory of evolution, says Nye.
Photograph by NASA Earth Observatory

View Article Here Read More

New data that fundamental physics constants underlie life-enabling universe

Excerpt from spacedaily.com For nearly half a century, theoretical physicists have made a series of discoveries that certain constants in fundamental physics seem extraordinarily fine-tuned to allow for the emergence of a life-enabling universe.Thi...

View Article Here Read More

Chondrules Were Byproducts of Violent Planetary Process


 Chondrules were Byproducts of Violent Planetary Process



Excerpt from perfscience.com

For long, meteors that crashed on earth were considered to be remnants of the early solar system. The meteors are usually found studded with chondrules, tiny, glass, spherical grains.  It was considered that chondrules were early kernels of terrestrial planets.

But researchers at MIT and Purdue University have a new revelation to make. They have found that chondrules might not have played a fundamental role in the formation of planets.  The researchers based their findings on computer simulations and concluded that chondrules are by-products of planetary process and not the building blocks. The team found that planetary bodies as big as moon already existed before chondrules came on the scene. 

The researchers think that chondrules were most probably formed by the collision of moon-sized planter embryos. Brandon Johnson from MIT’s Department of Earth, Atmospheric and Planetary Sciences said, “This tells us that meteorites aren’t actually representative of the material that formed planets — they’re these smaller fractions of material that are the byproduct of planet formation”.  Johnson affirmed that the study findings have also unveiled that the early solar system was more violent than they have expected. The research team said that they have also modeled all the different types of impact that might have taken place in the early solar system.
For long, meteors that crashed on earth were considered to be remnants of the early solar system. The meteors are usually found studded with chondrules, tiny, glass, spherical grains.
It was considered that chondrules were early kernels of terrestrial planets. But researchers at MIT and Purdue University have a new revelation to make. They have found that chondrules might not have played a fundamental role in the formation of planets.
The researchers based their findings on computer simulations and concluded that chondrules are by-products of planetary process and not the building blocks. The team found that planetary bodies as big as moon already existed before chondrules came on the scene.
The researchers think that chondrules were most probably formed by the collision of moon-sized planter embryos. Brandon Johnson from MIT’s Department of Earth, Atmospheric and Planetary Sciences said, “This tells us that meteorites aren’t actually representative of the material that formed planets — they’re these smaller fractions of material that are the byproduct of planet formation”.
Johnson affirmed that the study findings have also unveiled that the early solar system was more violent than they have expected. The research team said that they have also modeled all the different types of impact that might have taken place in the early solar system.
- See more at: http://perfscience.com/content/2141073-chondrules-were-byproducts-violent-planetary-process#sthash.4XzOzvJT.dpuf
For long, meteors that crashed on earth were considered to be remnants of the early solar system. The meteors are usually found studded with chondrules, tiny, glass, spherical grains.
It was considered that chondrules were early kernels of terrestrial planets. But researchers at MIT and Purdue University have a new revelation to make. They have found that chondrules might not have played a fundamental role in the formation of planets.
The researchers based their findings on computer simulations and concluded that chondrules are by-products of planetary process and not the building blocks. The team found that planetary bodies as big as moon already existed before chondrules came on the scene.
The researchers think that chondrules were most probably formed by the collision of moon-sized planter embryos. Brandon Johnson from MIT’s Department of Earth, Atmospheric and Planetary Sciences said, “This tells us that meteorites aren’t actually representative of the material that formed planets — they’re these smaller fractions of material that are the byproduct of planet formation”.
Johnson affirmed that the study findings have also unveiled that the early solar system was more violent than they have expected. The research team said that they have also modeled all the different types of impact that might have taken place in the early solar system.
- See more at: http://perfscience.com/content/2141073-chondrules-were-byproducts-violent-planetary-process#sthash.4XzOzvJT.dpuf

View Article Here Read More

The Whispering Mind: The Enduring Conundrum of Consciousness

It's an old question: what is consciousness? Today, sophisticated brain imaging technologies, clinical studies, as well as the newfound ability to listen to the whisper of even an individual nerve cell, are bringing scientists closer than ever to t...

View Article Here Read More
Older posts Newer posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑