Tag: fully (page 4 of 24)

Google’s ‘goofy’ new self-driving car a sign of things to come

Google's latest prototype of its self-driving vehicle was unveiled Monday, Dec. 22, 2014. (Google photo) Excerpt from mercurynews.comMOUNTAIN VIEW -- Google unveiled its first "fully functional" prototype for its own self-driving car Monday and plans...

View Article Here Read More

Stem Cell Success Raises Hopes of Type 1 Diabetes Cure

In laboratory, researchers have developed insulin-producing beta cellsExcerpt fromnlm.nih.gov THURSDAY, Oct. 9, 2014 (HealthDay News) -- In what may be a step toward a cure for type 1 diabetes, researchers say they've developed a large-scale met...

View Article Here Read More

It’s Alive! NASA’s New Horizons Pluto Probe ‘Wakes Up’ for Work


View image on Twitter


Excerpt from nbcnews.com
By Alan Boyle
The first signals were received at the mission's control center at Johns Hopkins University's Applied Physics Laboratory in Maryland via a giant radio antenna in Australia just before 9:30 p.m. ET, nearly four and a half hours after it was sent by the piano-sized probe. It takes that long for signals to travel between there and here at the speed of light. 

Later readings confirmed that New Horizons was fully awake.
New Horizons has been spending about two-thirds of the time since its launch in 2006 in hibernation, to save on electronic wear and tear as well as operational costs. Every few months, the spacecraft's systems have been roused to wakefulness for a checkup, or for photo ops such as its Jupiter flyby in 2007. 

The probe also has been sending weekly blips known as "green beacons" — to let the mission team know it's not dead, but only sleeping. 

From now on, New Horizons will remain awake continuously through its Bastille Day flyby of Pluto and its moons next July 14. After a few weeks of preparation, the probe's instruments will start making long-range observations on Jan. 15. 

The spacecraft is currently about 162 million miles away from Pluto, but as that distance shrinks, the observations will get better and better. By next May, New Horizons' images of Pluto should be sharper than the best pictures taken by the Hubble Space Telescope. And in July, the probe may catch sight of the clouds and ice volcanoes that scientists suspect may exist on the dwarf planet. 

View Article Here Read More

Earth ‘has Star Trek force fields’

Excerpt frombelfasttelegraph.co.ukA US team discovered the barrier, some 7,200 miles above the Earth's surface, that blocks high energy electrons threatening astronauts and satellites.Scientists identified an "extremely sharp" boundary within the Van...

View Article Here Read More

Rosetta mission: Philae lander bounces twice, lands on side ~ Cliff face blocking solar power


How Esa scientists believe Philae has landed on the comet – on its side
How Esa scientists believe Philae has landed on the comet – on its side. Photograph: European Space Agency/Reuters


Excerpt from
theguardian.com


Rosetta mission controllers must decide whether to risk making lander hop from shadow of cliff blocking sunlight to its solar panels.


The robotic lander that touched down on a comet on Wednesday came to rest on its side in the shadow of a cliff, according to the first data beamed home from the probe.

Pictures from cameras on board the European Space Agency’s Philae lander show the machine with one foot in the sky and lodged against a high cliff face that is blocking sunlight to its solar panels.
The precarious resting place means mission controllers are faced with some tough decisions over whether to try and nudge the spacecraft into a sunnier spot. If successful, that would allow Philae to fully recharge its batteries and do more science on the comet, but any sudden move could risk toppling the lander over, or worse, knock it off the comet completely.

The washing machine-sized lander was released by its Rosetta mother ship at 0835am GMT on Wednesday morning and touched down at a perfect spot on the comet’s surface. But when anchoring harpoons failed to fire, the probe bounced back off into space. So weak is the gravitational pull of the comet that Philae soared 1km into the sky and did not come down again until two hours later. “We made quite a leap,” said Stephan Ulamec, the Philae lander manager.

In the time it took the probe to land for the second time, the comet had rotated, bringing more treacherous terrain underneath. The spacecraft bounced a second time and finally came to a standstill on its side at what may be the rim of an enormous crater.

“We bounced twice and stopped in a place we’ve not entirely located,” said Jean-Pierre Bibring, Philae’s lead scientist. Teams of scientists are now trying to work out where the probe is. What mission controllers do know is that they are not where they hoped to be. “We are exactly below a cliff, so we are in a shadow permanently,” Bibring added.

With most of Philae in the dark, the lander will receive only a fraction of the solar energy that Esa had hoped for. The spacecraft needs six or seven hours of sunlight a day but is expected to receive just one and a half. Though it can operate for 60 hours on primary batteries, the probe must then switch to its main batteries which need to be recharged through its solar arrays. If Philae’s batteries run out it will go into a hibernation mode until they have more power.

The spacecraft was designed with landing gear that could hop the probe around, but from its awkward position on its side the option is considered too risky.

Though caught in a tight spot, the Philae lander’s systems appear to be working well. The Rosetta spacecraft picked up the lander’s signal on Thursday morning and received the first images and more instrument data from the surface of the comet.

One of Philae’s major scientific goals is to analyse the comet for organic molecules. To do that, the lander must get samples from the comet into several different instruments, named Ptolemy, Cosac and Civa. There are two ways to do this: sniffing and drilling. Sniffing involves opening the instruments to allow molecules from the surface to drift inside. The instruments are already doing this and returning data.

Panoramic view around the point of Philae's final touchdown on the surface of comet 67P, taken when Rosetta was about 18km from centre of comet. Parts of Philae's landing gear can be seen in this picture.
Panoramic view around the point of Philae’s final touchdown on the surface of comet 67P, taken when Rosetta was about 18km from centre of comet. Parts of Philae’s landing gear can be seen in this picture.Photograph: European Space Agency/AFP/Getty Images

Drilling is much riskier because it could make the lander topple over... Pushing down into the surface will push the lander off again. “We don’t want to start drilling and end the mission,” said Bibring.
But the team has decided to operate another moving instrument, named Mupus, on Thursday evening. This could cause Philae to shift, but calculations show that it would be in a direction that could improve the amount of sunlight falling on the probe. A change in angle of only a few degrees could help. A new panoramic image will be taken after the Mupus deployment to see if there has been any movement.

Meanwhile, the Rosetta orbiter team will continue to try to pinpoint Philae’s position.

View Article Here Read More

European Space Agency: Rosetta Successfully Lands on Comet ~ First Images Sent to Earth

This photo from Philae shows the surface during the lander's approach  Excerpt from bbc.comA European robot probe has made the first, historic landing on a comet, but its status remains uncertain after harpoons failed to anchor it to the su...

View Article Here Read More

The New American Dream ~ The Case for Colonizing Mars




Excerpt from Ad Astra

by Robert Zubrin


Mars Is The New World

Among extraterrestrial bodies in our solar system, Mars is singular in that it possesses all the raw materials required to support not only life, but a new branch of human civilization. This uniqueness is illustrated most clearly if we contrast Mars with the Earth's Moon, the most frequently cited alternative location for extraterrestrial human colonization.

In contrast to the Moon, Mars is rich in carbon, nitrogen, hydrogen and oxygen, all in biologically readily accessible forms such as carbon dioxide gas, nitrogen gas, and water ice and permafrost. Carbon, nitrogen, and hydrogen are only present on the Moon in parts per million quantities, much like gold in seawater. Oxygen is abundant on the Moon, but only in tightly bound oxides such as silicon dioxide (SiO2), ferrous oxide (Fe2O3), magnesium oxide (MgO), and aluminum oxide (Al2O3), which require very high energy processes to reduce.

The Moon is also deficient in about half the metals of interest to industrial society (copper, for example), as well as many other elements of interest such as sulfur and phosphorus. Mars has every required element in abundance. Moreover, on Mars, as on Earth, hydrologic and volcanic processes have occurred that are likely to have consolidated various elements into local concentrations of high-grade mineral ore. Indeed, the geologic history of Mars has been compared to that of Africa, with very optimistic inferences as to its mineral wealth implied as a corollary. In contrast, the Moon has had virtually no history of water or volcanic action, with the result that it is basically composed of trash rocks with very little differentiation into ores that represent useful concentrations of anything interesting.

You can generate power on either the Moon or Mars with solar panels, and here the advantages of the Moon's clearer skies and closer proximity to the Sun than Mars roughly balances the disadvantage of large energy storage requirements created by the Moon's 28-day light-dark cycle. But if you wish to manufacture solar panels, so as to create a self-expanding power base, Mars holds an enormous advantage, as only Mars possesses the large supplies of carbon and hydrogen needed to produce the pure silicon required for producing photovoltaic panels and other electronics. In addition, Mars has the potential for wind-generated power while the Moon clearly does not. But both solar and wind offer relatively modest power potential — tens or at most hundreds of kilowatts here or there. To create a vibrant civilization you need a richer power base, and this Mars has both in the short and medium term in the form of its geothermal power resources, which offer potential for large numbers of locally created electricity generating stations in the 10 MW (10,000 kilowatt) class. In the long-term, Mars will enjoy a power-rich economy based upon exploitation of its large domestic resources of deuterium fuel for fusion reactors. Deuterium is five times more common on Mars than it is on Earth, and tens of thousands of times more common on Mars than on the Moon.

But the biggest problem with the Moon, as with all other airless planetary bodies and proposed artificial free-space colonies, is that sunlight is not available in a form useful for growing crops. A single acre of plants on Earth requires four megawatts of sunlight power, a square kilometer needs 1,000 MW. The entire world put together does not produce enough electrical power to illuminate the farms of the state of Rhode Island, that agricultural giant. Growing crops with electrically generated light is just economically hopeless. But you can't use natural sunlight on the Moon or any other airless body in space unless you put walls on the greenhouse thick enough to shield out solar flares, a requirement that enormously increases the expense of creating cropland. Even if you did that, it wouldn't do you any good on the Moon, because plants won't grow in a light/dark cycle lasting 28 days.

But on Mars there is an atmosphere thick enough to protect crops grown on the surface from solar flare. Therefore, thin-walled inflatable plastic greenhouses protected by unpressurized UV-resistant hard-plastic shield domes can be used to rapidly create cropland on the surface. Even without the problems of solar flares and month-long diurnal cycle, such simple greenhouses would be impractical on the Moon as they would create unbearably high temperatures. On Mars, in contrast, the strong greenhouse effect created by such domes would be precisely what is necessary to produce a temperate climate inside. Such domes up to 50 meters in diameter are light enough to be transported from Earth initially, and later on they can be manufactured on Mars out of indigenous materials. Because all the resources to make plastics exist on Mars, networks of such 50- to 100-meter domes could be rapidly manufactured and deployed, opening up large areas of the surface to both shirtsleeve human habitation and agriculture. That's just the beginning, because it will eventually be possible for humans to substantially thicken Mars' atmosphere by forcing the regolith to outgas its contents through a deliberate program of artificially induced global warming. Once that has been accomplished, the habitation domes could be virtually any size, as they would not have to sustain a pressure differential between their interior and exterior. In fact, once that has been done, it will be possible to raise specially bred crops outside the domes.

The point to be made is that unlike colonists on any known extraterrestrial body, Martian colonists will be able to live on the surface, not in tunnels, and move about freely and grow crops in the light of day. Mars is a place where humans can live and multiply to large numbers, supporting themselves with products of every description made out of indigenous materials. Mars is thus a place where an actual civilization, not just a mining or scientific outpost, can be developed. And significantly for interplanetary commerce, Mars and Earth are the only two locations in the solar system where humans will be able to grow crops for export.

Interplanetary Commerce

Mars is the best target for colonization in the solar system because it has by far the greatest potential for self-sufficiency. Nevertheless, even with optimistic extrapolation of robotic manufacturing techniques, Mars will not have the division of labor required to make it fully self-sufficient until its population numbers in the millions. Thus, for decades and perhaps longer, it will be necessary, and forever desirable, for Mars to be able to import specialized manufactured goods from Earth. These goods can be fairly limited in mass, as only small portions (by weight) of even very high-tech goods are actually complex. Nevertheless, these smaller sophisticated items will have to be paid for, and the high costs of Earth-launch and interplanetary transport will greatly increase their price. What can Mars possibly export back to Earth in return?
It is this question that has caused many to incorrectly deem Mars colonization intractable, or at least inferior in prospect to the Moon.

For example, much has been made of the fact that the Moon has indigenous supplies of helium-3, an isotope not found on Earth and which could be of considerable value as a fuel for second generation thermonuclear fusion reactors. Mars has no known helium-3 resources. On the other hand, because of its complex geologic history, Mars may have concentrated mineral ores, with much greater concentrations of precious metal ores readily available than is currently the case on Earth — because the terrestrial ores have been heavily scavenged by humans for the past 5,000 years. If concentrated supplies of metals of equal or greater value than silver (such as germanium, hafnium, lanthanum, cerium, rhenium, samarium, gallium, gadolinium, gold, palladium, iridium, rubidium, platinum, rhodium, europium, and a host of others) were available on Mars, they could potentially be transported back to Earth for a substantial profit. Reusable Mars-surface based single-stage-to-orbit vehicles would haul cargoes to Mars orbit for transportation to Earth via either cheap expendable chemical stages manufactured on Mars or reusable cycling solar or magnetic sail-powered interplanetary spacecraft. The existence of such Martian precious metal ores, however, is still hypothetical.

But there is one commercial resource that is known to exist ubiquitously on Mars in large amount — deuterium. Deuterium, the heavy isotope of hydrogen, occurs as 166 out of every million hydrogen atoms on Earth, but comprises 833 out of every million hydrogen atoms on Mars. Deuterium is the key fuel not only for both first and second generation fusion reactors, but it is also an essential material needed by the nuclear power industry today. Even with cheap power, deuterium is very expensive; its current market value on Earth is about $10,000 per kilogram, roughly fifty times as valuable as silver or 70% as valuable as gold. This is in today's pre-fusion economy. Once fusion reactors go into widespread use deuterium prices will increase. All the in-situ chemical processes required to produce the fuel, oxygen, and plastics necessary to run a Mars settlement require water electrolysis as an intermediate step. As a by product of these operations, millions, perhaps billions, of dollars worth of deuterium will be produced.

Ideas may be another possible export for Martian colonists. Just as the labor shortage prevalent in colonial and nineteenth century America drove the creation of "Yankee ingenuity's" flood of inventions, so the conditions of extreme labor shortage combined with a technological culture that shuns impractical legislative constraints against innovation will tend to drive Martian ingenuity to produce wave after wave of invention in energy production, automation and robotics, biotechnology, and other areas. These inventions, licensed on Earth, could finance Mars even as they revolutionize and advance terrestrial living standards as forcefully as nineteenth century American invention changed Europe and ultimately the rest of the world as well.

Inventions produced as a matter of necessity by a practical intellectual culture stressed by frontier conditions can make Mars rich, but invention and direct export to Earth are not the only ways that Martians will be able to make a fortune. The other route is via trade to the asteroid belt, the band of small, mineral-rich bodies lying between the orbits of Mars and Jupiter. There are about 5,000 asteroids known today, of which about 98% are in the "Main Belt" lying between Mars and Jupiter, with an average distance from the Sun of about 2.7 astronomical units, or AU. (The Earth is 1.0 AU from the Sun.) Of the remaining two percent known as the near-Earth asteroids, about 90% orbit closer to Mars than to the Earth. Collectively, these asteroids represent an enormous stockpile of mineral wealth in the form of platinum group and other valuable metals.


Historical Analogies

The primary analogy I wish to draw is that Mars is to the new age of exploration as North America was to the last. The Earth's Moon, close to the metropolitan planet but impoverished in resources, compares to Greenland. Other destinations, such as the Main Belt asteroids, may be rich in potential future exports to Earth but lack the preconditions for the creation of a fully developed indigenous society; these compare to the West Indies. Only Mars has the full set of resources required to develop a native civilization, and only Mars is a viable target for true colonization. Like America in its relationship to Britain and the West Indies, Mars has a positional advantage that will allow it to participate in a useful way to support extractive activities on behalf of Earth in the asteroid belt and elsewhere.

But despite the shortsighted calculations of eighteenth-century European statesmen and financiers, the true value of America never was as a logistical support base for West Indies sugar and spice trade, inland fur trade, or as a potential market for manufactured goods. The true value of America was as the future home for a new branch of human civilization, one that as a combined result of its humanistic antecedents and its frontier conditions was able to develop into the most powerful engine for human progress and economic growth the world had ever seen. The wealth of America was in fact that she could support people, and that the right kind of people chose to go to her. People create wealth. People are wealth and power. Every feature of Frontier American life that acted to create a practical can-do culture of innovating people will apply to Mars a hundred-fold.

Mars is a harsher place than any on Earth. But provided one can survive the regimen, it is the toughest schools that are the best. The Martians shall do well.



Robert Zubrin is former Chairman of the National Space Society, President of the Mars Society, and author of The Case For Mars: The Plan to Settle the Red Planet and Why We Must.

View Article Here Read More

Kermit the Frog maybe, but are we really suppossed to believe humans evolved from this guy? Greg Giles


An artist's rendition of the amphibious Cartorhynchus lenticarpus. (Stefano Broccoli)


In a Nov. 5th article penned by Rachel Feltman(washingtonpost.com) entitled Newly discovered fossil could prove a problem for creationists (But apparently not a really big problem), a report published in the journal Nature claims to have discovered the missing link proving that modern man has evolved from a sometimes aquatic, sometimes not, (he apparently changed his mind once or twice about which direction he wanted to evolve) little green fish/frog/alligator/lizardy type character named Cartorhynchus lenticarpus. Although I chuckled all through the unsubstantiated claims of the report's lead author Ryosuke Motani, one of my favorite moments had to be when Motani describes his brainstorming activity. "Initially I was really puzzled by this fossil. I could tell it was related [to ichthyosaurs], but I didn't know how to place it. It took me about a year before I was sure I had no doubts." (Wait Ryosuke, go back to that moment in time while you were kicking an empty soda can around your neighborhood while trying to figure out how you could pound a square green peg into a round hole. I think that's where your theory may have gone slightly askew.)

My absolute favorite moment of the study though had to be the team's conclusion that the foot and a half long green amphibian "probably had a happy life". I could see now a room full of white lab coats concurring with one another. "Yes yes, happy indeed. I concur." A young lab technician then sheepishly speaks up. "I must disagree sirs. My research shows its not easy being green." "Oh yes, yes," the group of senior scientists now concede. "Indeed, it's not easy being green." 

Motani's statement that his team now hopes to find the preceding evolutionary ancestor to Cartorhynchus lenticarpus as their next major breakthrough is the part of this report that I can't get out of my mind. What would the odds be that this small group of researchers not only find one crucial missing link, but will also discover the very next missing piece of the long evolutionary puzzle chain, evidence countless archeologists, scientists and researchers have been, for centuries, turning over stones in search of. Something smells fishy here, and it isn't the great, great, great grandfather of Kermit the Frog.  
Greg Giles

Excerpts from the washingtonpost.com article by Rachel Feltman:

Researchers report that they've found the missing link between an ancient aquatic predator and its ancestors on land. Ichthyosaurs, the dolphin-like reptiles that lived in the sea during the time of the dinosaurs, evolved from terrestrial creatures that made their way back into the water over time.

But the fossil record for the lineage has been spotty, without a clear link between land-based reptiles and the aquatic ichthyosaurs scientists know came after. Now, researchers report in Nature that they've found that link — an amphibious ancestor of the swimming ichthyosaurs named  Cartorhynchus lenticarpus.

"Many creationists have tried to portray ichthyosaurs as being contrary to evolution," said lead author Ryosuke Motani, a professor of earth and planetary sciences at the University of California Davis. "We knew based on their bone structure that they were reptiles, and that their ancestors lived on land at some time, but they were fully adapted to life in the water. So creationists would say, well, they couldn't have evolved from those reptiles, because where's the link?"

Now the gap has been filled, he said.

The creature is about a foot and a half long and lived 248 million years ago.

"Initially I was really puzzled by this fossil," Motani said. "I could tell it was related [to ichthyosaurs], but I didn't know how to place it. It took me about a year before I was sure I had no doubts."

One of the most important differences between this new ichthyosaur and its supposed descendants comes down to being big boned: When other vertebrates have evolved from land to sea living, they've gone through stages where they're amphibious and heavy. Their thick bones probably allowed them to fight the power of strong coastal waves and stay grounded in shallow waters. Sure enough, this new fossil has much thicker bones than previously examined ichthyosaurs.

"This animal probably had a happy life. It was in the tropics, and it was probably a bottom feeder that fed on soft-bodied things like squid and animals like shrimp," Motani said. "And for a predator like that to exist, there has to be plenty of prey. This was probably one of the first predators to appear after that extinction."

This single fossil hasn't revealed all of the ichthyosaurs' secrets. Motani hopes to find the preceding evolutionary ancestor next — one that was also amphibious, but spent slightly more of its time on land. "We're looking for that one now," Motani said.

View Article Here Read More

Safety Board Cites Improper Pilot Command in Virgin Galactic Crash



Excerpt from

wsj.com By Andy Pasztor


Accident Sets Back Ambitious Timetables for Space Tourism and Other Commercial Ventures.

MOJAVE, Calif.—An improper co-pilot command preceded Friday’s in-flight breakup of Virgin Galactic LLC’s rocket, according to investigators, when movable tail surfaces deployed prematurely.

Two seconds after the surfaces moved—with SpaceShip Two traveling faster than the speed of sound—“we saw disintegration” of the 60-foot-long experimental craft, according to Christopher Hart, acting chairman of the National Transportation Safety Board.
The co-pilot died in the accident, and the other pilot was severely injured.

The sequence of events released by the NTSB indicates that the rocket ship separated normally from its carrier and the propulsion system worked normally until the tail surfaces, called feathers, deployed.

The disaster, coupled with the explosion earlier last week of an unmanned Orbital Sciences Corp. cargo rocket destined for the international space station, has set back the ambitious timetables embraced by space-tourism proponents and other commercial ventures seeking to get beyond Earth’s atmosphere. Some in the industry predict difficulties obtaining additional private-equity funding for startup ventures, while others worry about nagging propulsion problems and public confidence. 

“Recent events bring home the reality that we’re in a very dangerous phase” of pursuing space activities relying on the private sector, said Howard McCurdy, a space history expert at American University. Launching rockets and vehicles “is always a very risky business,” he said, and no amount of ground tests “can duplicate the aerodynamic stresses and other conditions” of actual space flight.

Virgin Galactic had initially hoped to start commercial service by 2008, but persistent development and testing challenges have repeatedly pushed back the date. Before the accident, company officials were talking about inaugurating service by early 2015, with company founder Sir Richard Branson and members of his family slated to take the first ride. Now, the initial launch date is uncertain because the probe is likely to stretch for many months.

How much the fledgling industry is set back may depend on what investigators determine caused the two accidents. Some industry officials and analysts predict that Virgin Galactic’s fatal mishap may have a long-term residual impact as dramatic as the fallout from the 2003 in-flight breakup of the space shuttle Columbia, which killed all seven crew members. 

“It’s clearly bad news for commercial space,” said one veteran industry official affiliated with another commercial space company. “But from the beginning, people recognized a fatal event on some spacecraft was inevitable.” 

Earlier Sunday, George Whitesides, Virgin Galactic’s chief executive, defended the company’s safety procedures and indicated that the rocket motor on the craft that crashed was a derivative of a design that had been successfully tested on the ground and in the air for years.

“At the end of the day, safety of our system is paramount,” he said in an interview. “The engineers and the flight-test team have the final authority” to determine when and how experimental flights are conducted.

Virgin Galactic has pledged to cooperate fully with the probe, which also includes experts from the Federal Aviation Administration and Scaled Composites, a Northrop Grumman Corp. unit that designed and is testing the Virgin crafts—SpaceShip Two and its carrier aircraft, dubbed WhiteKnight Two. The pilots on Friday’s test flight were Scaled Composites employees.

Mr. Whitesides, a former senior NASA official, is in charge of the roughly $500 million project intended to take passengers on suborbital flights for more than $200,000 each. He said last week’s test flight wasn’t rushed. “I strongly reject any assertion that something pushed us to fly when we weren’t ready,” he said.

SpaceShip Two’s fuel tanks and engine were recovered largely intact. The hybrid motor fueled by nitrous oxide and a plastic-based compound was found some 5 miles from where large sections of the tail first hit the ground. Sections of the fuselage, fuel tanks and cockpit were located some distance from the engine itself.

The condition and location of various pieces of the wreckage suggest there was no propulsion-system explosion before the craft started coming apart miles above California’s Mojave Desert, according to air-safety experts who have reviewed the images.

“It’s hard to figure how an engine explosion” could produce such a debris field, said John Cox, an industry consultant and former accident investigator for the Air Line Pilots Association.

The rocket ship was equipped with six onboard video cameras and many sensors feeding data to the ground. The flight also was followed by radar, and was filmed from the ground and by a plane flying close by.

SpaceShip Two’s rocket motor received considerable attention immediately after the accident. Industry officials and news reports concentrated on the fact that it was burning a new type of plastic-based fuel for the first time in flight.

The new engine-fuel combination was tested on the ground about a dozen times in the months leading up to Friday’s flight.

View Article Here Read More

U.S. Creates Largest Protected Area in the World ~ 3X Larger than California


Photo of fish swimming in the Palmyra Atoll.
A school of fish swims under the water around Palmyra Atoll, in an area of the Pacific that is already part of a marine sanctuary.
Photograph by Randy Olson, National Geographic



By Brian Clark Howard




NEW YORK—The Obama administration announced Thursday that it will create the largest marine reserve in the world by expanding an existing monument around U.S.-controlled islands and atolls in the central Pacific.


The Pacific Remote Islands Marine National Monument will now be nearly 490,000 square miles, nearly three times the size of California and six times larger than its previous size. Commercial fishing, dumping, and mining will be prohibited in the reserve, but recreational fishing will be allowed with permits, and boaters may visit the area.


The protected area that Secretary of State John Kerry announced this morning is actually smaller than the 782,000 square miles that the president initially considered. But environmentalists, preservationists, and conservation groups that had pushed for the expansion called President Barack Obama's designation a historic victory in their efforts to limit the impact of fishing, drilling, and other activities that threaten some of the world's most species-rich waters.

Map of the pacific remote islands.
MAGGIE SMITH, NG STAFF. SOURCES: U.S. FISH AND WILDLIFE SERVICE; USGS; MARINE CONSERVATION INSTITUTE


"What has happened is extraordinary. It is history making. There is a lot of reason we should be celebrating right now," said Elliott Norse, founder and chief scientist of the Seattle-based Marine Conservation Institute.


Enric Sala, an ocean scientist and National Geographic Explorer-in-Residence, called the newly expanded monument "a great example of marine protection."


During the past several years, Sala and National Geographic's Pristine Seas project—which aims to explore, survey, and protect several of the last wild places in the world's oceans—have been key players in expeditions to the region that helped to put a spotlight on its biodiversity. Sala also met with White House officials to make the scientific case for expanding the Pacific Remote Islands monument. 


Photo of a sea anemone providing cover for a transparent shrimp in Kingman Reef, Pacific Ocean.
Tentacles of a sea anemone provide cover for a transparent shrimp in Kingman Reef, which is part of the existing marine sanctuary. Photograph by Brian Skerry, National Geographic Creative


In announcing the expansion of protected marine areas, Kerry said, “We’re committed to protecting more of the world's ocean. Today, one to three percent of the ocean is protected, that's it. That's why President Obama will sign a proclamation today that will create one of the largest maritime protected areas in the world. It will be protected in perpetuity.”

Michael Boots, chairman of the White House's Council on Environmental Quality, made clear that by expanding protected areas, the administration sought to balance the need to preserve a range of marine species with concerns from the fishing industry, which had warned about the economic impact of curtailing deep-sea fishing areas.

"We thought [the monument decision] was a good way to balance what the science was telling us was important to protect and the needs of those who use the area," Boots said.


The administration said in a statement late Wednesday that "expanding the monument will more fully protect the deep coral reefs, seamounts, and marine ecosystems unique to this part of the world, which are also among the most vulnerable areas to the impacts of climate change and ocean acidification."


In June, when he first announced his intent to expand the monument, Obama said, "I'm using my authority as president to protect some of our nation's most pristine marine monuments, just like we do on land."


The June announcement was followed by a public comment period and further analysis by the White House, officials said. Thousands of people submitted comments, with many conservation groups and scientists offering their support. Some fishing and cannery groups, as well as a few members of the U.S. Congress opposed the expansion, citing the potential a loss of commercial fishing grounds. 


Norse said that the newly protected areas will safeguard endangered seabirds and other key species, including five endangered sea turtle species (such as loggerheads and leatherbacks), sooty terns and other terns, silky sharks and oceanic whitetip sharks, beaked whales, manta rays, red-tailed tropic birds, and deep-sea corals.

The expanded monument will help ensure that "there are some places that are as pristine as possible for as long as possible," Norse said. "I think a hundred years from now, people will be praising Barack Obama for having the vision to protect the Pacific remote islands."


"A Big Step"


Obama's Democratic administration is building on a national monument that was first created by his predecessor, Republican President George W. Bush, suggesting that "ocean protection may be one of the last bipartisan issues" in the politically divided United States, says David Helvarg, the author of several books on the ocean and the founder of the advocacy group Blue Frontier Campaign.

Democratic and Republican presidents going all the way back to Teddy Roosevelt, a Republican who served from 1901 to 1909, have used the 1906 Antiquities Act to designate national monuments. The law requires simply that an area be unique and considered worthy of protection for future generations. This is the 12th time Obama has used his authority under the Antiquities Act to protect environmental areas.

The area being protected by the administration will expand the protected areas from 50 miles offshore to 200 miles offshore around three areas—Wake Island, Johnston Atoll, and Jarvis Island—the maximum reach of the United States’ exclusive economic zone. The current 50-mile offshore protections around the Howland and Baker islands, and Kingman Reef and Palmyra Atoll, will not change.


"Although 71 percent of our planet is covered with saltwater, we have protected much more of the land than the ocean," Helvarg said. But the newly expanded monument is a big step in the right direction, he added.

Enforcing fishing bans in the monument will be a big challenge, Kerry acknowledged. "Agreements won't matter if no one is enforcing them," he said. "It's going to take training and resources."
Kerry said one measure that could help deter illegal fishing in the region, as well as around the world, would be to implement the Port State Measures Agreement, an international treaty that requires member nations to prevent illegally caught fish from entering the market. Eleven nations or parties have ratified the agreement, but a total of 25 must sign before the treaty will take effect.

"Our goal is to get this done this year," Kerry said.


Meanwhile, efforts to preserve more biologically diverse waters continue.


This week, National Geographic Society announced that it is dramatically expanding its campaign to help protect marine areas, with a goal of persuading governments to officially safeguard more than 770,000 square miles.


The plan, announced by former President Bill Clinton, includes programs that target the Seychelles—an archipelago in the Indian Ocean—northern Greenland, and South America's Patagonia region. The program builds on National Geographic's Pristine Seas project, which has financed ten scientific expeditions to remote areas of ocean around the world, including in the South Pacific and off Africa, Russia, and South America.

View Article Here Read More

Going Within – The Door To Higher Consciousness

by Michelle Walling, CHLCWhat does it mean to go within? This question is on the mind of most people who are awakening to the multidimensionality of this reality. Many people have different experiences but there is one similar thread that all people need to know about. The meaning of going within The term “going within” is the method by which we discover who we truly are.To go within simply means to be with yourself, to listen to yourself and your higher self, and to feel yo [...]

View Article Here Read More

10 Signs That You’re Fully Awake

A great article from www.pakalertpress.comIsn’t it obvious that there is a significant global awakening happening? Just as the Mayans predicted so many years ago, the apocalypse would become apparent in 2012. But many misinterpret the apocalypse to be the end of the world, when in fact it actually means an “un-covering, a revelation of something hidden.”As many continue to argue the accuracy of the Mayan calendar, it can no longer be argued that a great many people are finally [...]

View Article Here Read More

Spinning the Web of Life

by Julian RoseContributor, ZenGardner.comSpiders do it. Take a look – oh what an amazing creation! Working their way out from the first circle; filling-in every loop of the circuit; spinning on the outward pull; determined, full of intention, guided by Divine. So my friends, why can’t we?Look at that final creation on the garden gate on a misty October morning – wow – what a stunner! Stay looking and what do you see? A little universe spun into being, oh so de [...]

View Article Here Read More
Older posts Newer posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑