Tag: fully (page 3 of 24)

Scientists Take Key Step to Resurrecting Extinct Woolly Mammoth; First Mammoth Could be Born in 2018

Excerpt from en.yibada.comScientists from Harvard University announced their success in splicing DNA from the extinct woolly mammoth into living cells of an Asian elephant, making it possible to "de-extinct" the animal that died-off 4,000 years ago....

View Article Here Read More

If the Moon Landings Were Real, Then Why is NASA Stumped by This?

Buck Rogers, Staff WriterWaking TimesDuring the cold war era the Soviet Union and the United States were locked in an arms and technology race, each nation wanting to prove their dominance over the other, each striving to be the next reigning superpower in a world still shattered by the second world war. The Soviet’s took the lead when in April of 1961, cosmonaut Yuri Gagarin successfully orbited the earth and returned home safely. In May, president John F. Kennedy ma [...]

View Article Here Read More

MAVEN mission finds early surprises in Martian atmosphere

Excerpt from chroniclebulletin.com University of Colorado-led Mars mission has observed two unexpected phenomena in the Martian atmosphere, unveiled Wednesday at the 46th Lunar and Planetary Science Conference in Texas.NASA describes the finds by MA...

View Article Here Read More

Scientists: Enceladus may have warm water ocean with ingredients for life


Enceladus ocean
This artist's impression of the interior of Saturn's moon Enceladus shows that interactions between hot water and rock occur at the floor of the subsurface ocean -- the type of environment that might be friendly to life, scientists say. (NASA/JPL-Caltech)



Excerpt from latimes.com

Scientists say they’ve discovered evidence of a watery ocean with warm spots hiding beneath the surface of Saturn’s icy moon Enceladus. The findings, described in the journal Nature, are the first signs of hydrothermal activity on another world outside of Earth – and raise the chances that Enceladus has the potential to host microbial life.

Scientists have wondered about what lies within Enceladus at least since NASA’s Cassini spacecraft caught the moon spewing salty water vapor out from cracks in its frozen surface. Last year, a study of its gravitational field hinted at a 10-kilometer-thick regional ocean around the south pole lying under an ice crust some 30 to 40 kilometers deep.

Another hint also emerged about a decade ago, when Cassini discovered tiny dust particles escaping Saturn’s system that were nanometer-sized and rich in silicon.

“It’s a peculiar thing to find particles enriched with silicon,” said lead author Hsiang-Wen Hsu, a planetary scientist at the University of Colorado, Boulder. In Saturn’s moons and among its rings, water ice dominates, so these odd particles clearly stood out.

The scientists traced these particles’ origin to Saturn’s E-ring, which lies between the orbits of the moons Mimas and Titan and whose icy particles are known to come from Enceladus. So Hsu and colleagues studied the grains to understand what was going on inside the gas giant’s frigid satellite.   
Rather than coming in a range of sizes, these particles were all uniformly tiny – just a few nanometers across. Studying the spectra of these grains, the scientists found that they were made of silicon dioxide, or silica. That’s not common in space, but it’s easily found on Earth because it’s a product of water interacting with rock. 

Knowing how silica interacts in given conditions such as temperature, salinity and alkalinity, the scientists could work backward to determine what kind of environment creates these unusual particles.

A scientist could do the same thing with a cup of warm coffee, Hsu said.

“You put in the sugar and as the coffee gets cold, if you know the relation of the solubility of sugar as a function of temperature, you will know how hot your coffee was,” Hsu said. “And applying this to Enceladus’s ocean, we can derive a minimum [temperature] required to form these particles.”

The scientists then ran experiments in the lab to determine how such silica particles came to be. With the particles’ particular makeup and size distribution, they could only have formed under very specific circumstances, the study authors found, determining that the silica particles must have formed in water that had less than 4% salinity and that was slightly alkaline (with a pH of about 8.5 to 10.5) and at temperatures of at least 90 degrees Celsius (roughly 190 degrees Fahrenheit).

The heat was likely being generated in part by tidal forces as Saturn’s gravity kneads its icy moon. (The tidal forces are also probably what open the cracks in its surface that vent the water vapor into space.)
Somewhere inside the icy body, there was hydrothermal activity – salty warm water interacting with rocks. It’s the kind of environment that, on Earth, is very friendly to life.  

“It’s kind of obvious, the connection between hydrothermal interactions and finding life,” Hsu said. “These hydrothermal activities will provide the basic activities to sustain life: the water, the energy source and of course the nutrients that water can leach from the rocks.”

Enceladus, Hsu said, is now likely the “second-top object for astrobiology interest” – the first being Jupiter’s icy moon and fellow water-world, Europa.
This activity is in all likelihood going on right now, Hsu said – over time, these tiny grains should glom together into larger and larger particles, and because they haven’t yet, they must have been recently expelled from Enceladus, within the last few months or few years at most.

Gabriel Tobie of the University of Nantes in France, who was not involved in the research, compared the conditions that created these silica particles to a hydrothermal field in the Atlantic Ocean known as Lost City.

“Because it is relatively cold, Lost City has been posited as a potential analogue of hydrothermal systems in active icy moons. The current findings confirm this,” Tobie wrote in a commentary on the paper. “What is more, alkaline hydrothermal vents might have been the birthplace of the first living organisms on the early Earth, and so the discovery of similar environments on Enceladus opens fresh perspectives on the search for life elsewhere in the Solar System.”

However, Hsu pointed out, it’s not enough to have the right conditions for life – they have to have been around for long enough that life would have a fighting chance to emerge.

“The other factor that is also very important is the time.… For Enceladus, we don’t know how long this activity has been or how stable it is,” Hsu said. “And so that’s a big uncertainty here.”

One way to get at this question? Send another mission to Enceladus, Tobie said.

“Cassini will fly through the moon’s plume again later this year,” he wrote, “but only future missions that can undertake improved in situ investigations, and possibly even return samples to Earth, will be able to confirm Enceladus’ astrobiological potential and fully reveal the secrets of its hot springs. ”

View Article Here Read More

Have Aliens Left The Universe? Theory Predicts We’ll Follow

























Excerpt from robertlanza.com

In Star Wars, the bars are bustling with all types of alien creatures. And then, of course, there’s Yoda and Chewbacca. Recently, renowned scientist Stephen Hawking stated that he too believes aliens exist: “To my mathematical brain, the numbers alone make thinking about aliens perfectly rational.”

Hawking thinks we should be cautious about interacting with aliens — that they might raid Earth’s resources, take our ores, and then move on like pirates. “I imagine they might exist in massive ships, having used up all the resources from their home planet. Such advanced aliens would perhaps become nomads, looking to conquer and colonize whatever planets they can reach.”
But where are they all anyhow?

For years, NASA and others have been searching for extraterrestrial intelligence. The universe is 13.7 billion years old and contains some 10 billion trillion stars. Surely, in this lapse of suns, advanced life would have evolved if it were possible. Yet despite half a century of scanning the sky, astronomers have failed to find any evidence of life or to pick up any of the interstellar radio signals that our great antennas should be able to easily detect.

Some scientists point to the “Fermi Paradox,” noting that extraterrestrials should have had plenty of time to colonize the entire galaxy but that perhaps they’ve blown themselves up. It’s conceivable the problem is more fundamental and that the answer has to do with the evolutionary course of life itself.

Look at the plants in your backyard. What are they but a stem with roots and leaves bringing nutriments to the organism? After billions of years of evolution, it was inevitable life would acquire the ability to locomote, to hunt and see, to protect itself from competitors. 
Observe the ants in the woodpile — they can engage in combat just as resolutely as humans. Our guns and ICBM are merely the mandibles of a cleverer ant. The effort for self-preservation is vague and varied. But when we’ve overcome our struggles, what do we do next? Build taller and more splendid houses?

What happens after life completes its transition to perfection? Perhaps across space, more advanced intelligences have taken the next evolutionary step. Perhaps they’ve evolved beyond the three dimensions we vertebrates know. A new theory — Biocentrism — tells us that space and time aren’t physical matrices, but simply tools our mind uses to put everything together. These algorithms are the key to consciousness, and why space and time — indeed the properties of matter itself — are relative to the observer. More advanced civilizations would surely understand these algorithms well enough to create realities that we can’t even imagine, and to have expanded beyond our corporeal cage.

Like breathing, we take for granted how our mind puts everything together. I can recall a dream I had of a flying saucer landing in Times Square. It was so real it took awhile to convince myself that it was a dream (that I was actually at home in bed). I was standing in a crowd surrounded by skyscrapers when a massive spaceship appeared overhead. Everyone started running. My mind had somehow generated this spatio-temporal experience out of electrochemical information. I could feel the vibrations under my feet as the ship started to land, merging this 3D world with my inner thoughts and sensations.

Although I was in bed with my eyes closed, I was able to run and move my arms and fingers. My mind had created a fully functioning body and placed it in a virtual world (replete with clouds in the sky and the Sun) that was indistinguishable from the one I’m in right now. Life as we know it is defined by this spatial-temporal logic, which traps us in the universe of up and down. But like my dream, quantum theory confirms that the properties of particles in the “real” world are also observer-determined.

Other information systems surely exist that correspond to other physical realities, universes based on logic completely different from ours and not based on space and time as we know it. In fact, the simplest invertebrates may only experience existence in one dimension of space. Evolutionary biology suggests life has progressed from a one dimensional reality, to two dimensions to three dimensions, and there’s no scientific reason to think that the evolution of life stops there.

Advanced civilizations would certainly have changed the algorithms so that instead of being trapped in the linear dimensions we find ourselves in, their consciousness moves through the multiverse and beyond. Why would Aliens build massive ships and spend thousands of years to colonize planetary systems (most of which are probably useless and barren), when they could simply tinker with the algorithms and get whatever they want?

Life on Earth is just beginning to send its shoots upward into the heavens. We’ve even flung a piece of metal outside the solar system. Affixed to the spacecraft is a record with greetings in 60 languages. One can’t but wonder whether some civilization more advanced than ours will come upon it. Or will it just drift across the gulf of space? To me the answer is clear. But in case I’m wrong, I have a pitch fork guarding the ore in my backyard.

View Article Here Read More

Mayday! Mayday! Mars One a ‘suicide mission’, warn leading space scientists




By Victoria Weldon

IT'S been described as science fiction made real - but now, just as the final selection process gets under way for the folk with the right stuff to make a manned mission to Mars, scientists have dashed the dreams of planet Earth by warning the journey will probably never happen and will end in disaster if it does.
Privately run space exploration programme Mars One wants to send four people to the red planet for the rest of their (probably not very long) lives and film it for reality TV in order to help finance the endeavour.

Thousands have set their sights on becoming the first settlers to land on the planet - and have now been whittled down to a short list of 100, including a Scottish PhD student - but with questionable technology, a lack of funding and an unrealistic timeframe, experts claim it is a "suicide mission".

Mars One believes it can achieve a manned mission in 2024 - sooner than NASA, the European Space Agency, the Russians or Chinese, and on a fraction of their budgets.

If the project does go ahead, the crew would have to make it through nine months of interplanetary travel without being killed by mishap, radiation - or each other.

And even then, a recent study suggested they will only last 68 days on Mars before dying - due to lack of food and water.

However, Anu Ojha OBE, director of the UK National Space Academy Programme, has warned the applicants not to get their hopes up as the mission is unlikely to ever leave the ground.

Ojha said: "Obviously this is something that has captured the public's imagination, and Mars One obviously has a great PR team, but space engineering obeys the laws of physics not PR."
Mars One is the brainchild of Dutch entrepreneur Bas Lansdorp who was inspired by the images of Mars sent back by the Sojourner rover in 1997, when he was a student.

Lansdorp, who will not make the journey himself, has an impressive team working on the project including former NASA employees Dr Norbert Kraft, who specialises in the physiological and psychological effects of space travel and space architect Kristian von Bengtson.

Physicist Arno Wielders, who previously worked for Dutch Space, is also on board, as well as a number of other advisers from around the world with backgrounds in space engineering, science and technology, marketing, design and television production.

The ultimate aim is to see a large, self-sustaining colony on Mars, but Ojha, who is also a director at the National Space Centre in Leicester, said there are three major stumbling blocks for the mission: technology, funding and human psychology.

"In terms of technology, it's pushing the absolute boundaries and there seems to be a lot of technological naivety on the part of the people running it", he said.

"There are some elements that seem reasonable, but overall it's concerning, and the timescales are also questionable."

While Mars One is planning the one way mission for 2024, NASA, with its long established expertise and technology, is looking to be able to send humans to Mars and bring them back again by the mid 2030s.

This is estimated to cost up to as much as £100 billion (£64.9bn) for the space agency, while Mars One believes it can do it for an optimistic $6 billion (£3.9bn) - and there are even questions over whether or not they will be able to achieve that much funding.
The private enterprise is hoping to raise money through a TV deal and additional funding from the exposure that will bring the project.

Last year it said it had teamed up with programme makers Endemol, but the Big Brother creators recently pulled out of the deal claiming they were "unable to reach agreement on the details of the contract".

Mars One did not respond to questioning by the Sunday Herald over its funding, but its website showed that as at January this year, it had raised just $759,816 from donations, merchandising, and a crowdfunding campaign.

It is unclear what other funding the project has.

Ojha said: "The business model has so many holes in it, it's shaky to say the least. And when you ask them how much money they have raised, they say it's still ongoing. The time scales and the business model - they're completely unrealistic."

Mars One plans to send several unmanned rockets to Mars ahead of the 2024 mission, with the first of these scheduled to take place in 2018.

These will include missions with robots to find a suitable location for a base and assemble it ahead of the humans' arrival.
The project claims it will use only existing technology for the mission, buying in materials from proven suppliers including Lockheed Martin or SpaceX.

The equipment involved includes several simulation outposts for training, a rocket launcher, a transit vehicle to take the crew to Mars, a Mars landing capsule, two rovers, a Mars suit and a communications system.

However, experts have warned that much of this equipment has not been fully tested. 

Physicist professor Todd Huffman is a big supporter of attempting a manned mission to Mars, but he also has serious concerns about Mars One, claiming it is "scientifically irresponsible".

He said: "The plan stretches the technology in many places.
"The launch vehicle they want to use has not actually ever launched yet, let alone make a trip to Mars.

"The living spaces have not been made nor has it been tested whether they can be robotically assembled and by what kind of robot.

"A suitable site would also need to be found for the living spaces and the details of how water extraction will take place have not been understood.

"If you assign a 90 per cent chance to success to each of those things, all of which are necessary for human survival, you end up with about a 50 per cent chance of failure, ending in the death of the colonists - and that would likely not make good television."
He added: "Unless we [wait for] quite a lot of technology and exploration to happen first, it is basically worse than a one-way ticket for the colonists - it is almost surely a suicide mission if carried out within this next decade."

Although most scientists believe the mission will not go ahead, some have also warned of the psychological impact on the people selected for the mission if it does.

Ojha said: "The thing that's really captured the public's imagination is this idea of it being a one way trip, but this brings another set of problems in terms of human psychology.

"The longest period a human has spent in space is 438 days - they're talking about sending people on a one way trip.
"Lots of the people I've seen interviewed, they're really excited about taking part, but have they really thought about what they're doing and what the implications are?

"I would tell them to go to Antarctica for six months in the middle of winter and that's about 1 per cent of what they'll be experiencing on Mars.

"Human psychology is far more fragile than we think."

However, while many scientists warn of the dangers and do not believe the mission will proceed, they have praised Mars One for sparking the public's interest in planetary science.

Dr John Bridges, of the Space Research Centre in Leicester, said: "It's a very interesting and innovative project, but the time scales are very challenging.

"I believe they're planning for 2024 and it's 2015 now. So for something as major as this, it's a very challenging timescale
"But it's fantastic that people are thinking about this, that industry is getting involved and raising awareness of planetary science."

Ojha added: "Mars One has been great in a way because it's once again drawn people's imagination to the idea of space engineering and exploration. 

"But the reality is that there are serious concerns about the project's space engineering, funding and medical implications."

Lansdorp has previously said that most people are "surprised to hear that the manned missions will be happening in ten years time, with a budget ten times less than Nasa".

He added: "But I think that if you really spend time studying Mars One, you cannot believe there is not a good chance we will make it.
"At the same time, it's a hugely ambitious plan, there's many things that can go wrong with such a big plan.

"But I believe we have a good plan and we can overcome the challenges."

However, he has also conceded that the current plans are an "optimum schedule", adding: "If one rocket doesn't launch, or a lander doesn't work on Mars before a human goes, any major malfunctions will result in a two year delay."

Mars One declined the Sunday Herald's request to interview someone from the project and failed to answer any of our questions.

View Article Here Read More

Why science is so hard to believe?

 
In the recent movie “Interstellar,” set in a futuristic, downtrodden America where NASA has been forced into hiding, school textbooks say the Apollo moon landings were faked.


Excerpt from 


There’s a scene in Stanley Kubrick’s comic masterpiece “Dr. Strangelove” in which Jack D. Ripper, an American general who’s gone rogue and ordered a nuclear attack on the Soviet Union, unspools his paranoid worldview — and the explanation for why he drinks “only distilled water, or rainwater, and only pure grain alcohol” — to Lionel Mandrake, a dizzy-with-anxiety group captain in the Royal Air Force.
Ripper: “Have you ever heard of a thing called fluoridation? Fluoridation of water?”
Mandrake: “Ah, yes, I have heard of that, Jack. Yes, yes.”Ripper: “Well, do you know what it is?”
Mandrake: “No. No, I don’t know what it is, no.”
Ripper: “Do you realize that fluoridation is the most monstrously conceived and dangerous communist plot we have ever had to face?” 

The movie came out in 1964, by which time the health benefits of fluoridation had been thoroughly established and anti-fluoridation conspiracy theories could be the stuff of comedy. Yet half a century later, fluoridation continues to incite fear and paranoia. In 2013, citizens in Portland, Ore., one of only a few major American cities that don’t fluoridate, blocked a plan by local officials to do so. Opponents didn’t like the idea of the government adding “chemicals” to their water. They claimed that fluoride could be harmful to human health.

Actually fluoride is a natural mineral that, in the weak concentrations used in public drinking-water systems, hardens tooth enamel and prevents tooth decay — a cheap and safe way to improve dental health for everyone, rich or poor, conscientious brushers or not. That’s the scientific and medical consensus.
To which some people in Portland, echoing anti-fluoridation activists around the world, reply: We don’t believe you.
We live in an age when all manner of scientific knowledge — from the safety of fluoride and vaccines to the reality of climate change — faces organized and often furious opposition. Empowered by their own sources of information and their own interpretations of research, doubters have declared war on the consensus of experts. There are so many of these controversies these days, you’d think a diabolical agency had put something in the water to make people argumentative.
Science doubt has become a pop-culture meme. In the recent movie “Interstellar,” set in a futuristic, downtrodden America where NASA has been forced into hiding, school textbooks say the Apollo moon landings were faked.


The debate about mandated vaccinations has the political world talking. A spike in measles cases nationwide has President Obama, lawmakers and even potential 2016 candidates weighing in on the vaccine controversy. (Pamela Kirkland/The Washington Post)
In a sense this is not surprising. Our lives are permeated by science and technology as never before. For many of us this new world is wondrous, comfortable and rich in rewards — but also more complicated and sometimes unnerving. We now face risks we can’t easily analyze.
We’re asked to accept, for example, that it’s safe to eat food containing genetically modified organisms (GMOs) because, the experts point out, there’s no evidence that it isn’t and no reason to believe that altering genes precisely in a lab is more dangerous than altering them wholesale through traditional breeding. But to some people, the very idea of transferring genes between species conjures up mad scientists running amok — and so, two centuries after Mary Shelley wrote “Frankenstein,” they talk about Frankenfood.
The world crackles with real and imaginary hazards, and distinguishing the former from the latter isn’t easy. Should we be afraid that the Ebola virus, which is spread only by direct contact with bodily fluids, will mutate into an airborne super-plague? The scientific consensus says that’s extremely unlikely: No virus has ever been observed to completely change its mode of transmission in humans, and there’s zero evidence that the latest strain of Ebola is any different. But Google “airborne Ebola” and you’ll enter a dystopia where this virus has almost supernatural powers, including the power to kill us all.
In this bewildering world we have to decide what to believe and how to act on that. In principle, that’s what science is for. “Science is not a body of facts,” says geophysicist Marcia McNutt, who once headed the U.S. Geological Survey and is now editor of Science, the prestigious journal. “Science is a method for deciding whether what we choose to believe has a basis in the laws of nature or not.”
The scientific method leads us to truths that are less than self-evident, often mind-blowing and sometimes hard to swallow. In the early 17th century, when Galileo claimed that the Earth spins on its axis and orbits the sun, he wasn’t just rejecting church doctrine. He was asking people to believe something that defied common sense — because it sure looks like the sun’s going around the Earth, and you can’t feel the Earth spinning. Galileo was put on trial and forced to recant. Two centuries later, Charles Darwin escaped that fate. But his idea that all life on Earth evolved from a primordial ancestor and that we humans are distant cousins of apes, whales and even deep-sea mollusks is still a big ask for a lot of people.
Even when we intellectually accept these precepts of science, we subconsciously cling to our intuitions — what researchers call our naive beliefs. A study by Andrew Shtulman of Occidental College showed that even students with an advanced science education had a hitch in their mental gait when asked to affirm or deny that humans are descended from sea animals and that the Earth goes around the sun. Both truths are counterintuitive. The students, even those who correctly marked “true,” were slower to answer those questions than questions about whether humans are descended from tree-dwelling creatures (also true but easier to grasp) and whether the moon goes around the Earth (also true but intuitive).
Shtulman’s research indicates that as we become scientifically literate, we repress our naive beliefs but never eliminate them entirely. They nest in our brains, chirping at us as we try to make sense of the world.
Most of us do that by relying on personal experience and anecdotes, on stories rather than statistics. We might get a prostate-specific antigen test, even though it’s no longer generally recommended, because it caught a close friend’s cancer — and we pay less attention to statistical evidence, painstakingly compiled through multiple studies, showing that the test rarely saves lives but triggers many unnecessary surgeries. Or we hear about a cluster of cancer cases in a town with a hazardous-waste dump, and we assume that pollution caused the cancers. Of course, just because two things happened together doesn’t mean one caused the other, and just because events are clustered doesn’t mean they’re not random. Yet we have trouble digesting randomness; our brains crave pattern and meaning.
Even for scientists, the scientific method is a hard discipline. They, too, are vulnerable to confirmation bias — the tendency to look for and see only evidence that confirms what they already believe. But unlike the rest of us, they submit their ideas to formal peer review before publishing them. Once the results are published, if they’re important enough, other scientists will try to reproduce them — and, being congenitally skeptical and competitive, will be very happy to announce that they don’t hold up. Scientific results are always provisional, susceptible to being overturned by some future experiment or observation. Scientists rarely proclaim an absolute truth or an absolute certainty. Uncertainty is inevitable at the frontiers of knowledge.
That provisional quality of science is another thing a lot of people have trouble with. To some climate-change skeptics, for example, the fact that a few scientists in the 1970s were worried (quite reasonably, it seemed at the time) about the possibility of a coming ice age is enough to discredit what is now the consensus of the world’s scientists: The planet’s surface temperature has risen by about 1.5 degrees Fahrenheit in the past 130 years, and human actions, including the burning of fossil fuels, are extremely likely to have been the dominant cause since the mid-20th century.
It’s clear that organizations funded in part by the fossil-fuel industry have deliberately tried to undermine the public’s understanding of the scientific consensus by promoting a few skeptics. The news media gives abundant attention to such mavericks, naysayers, professional controversialists and table thumpers. The media would also have you believe that science is full of shocking discoveries made by lone geniuses. Not so. The (boring) truth is that science usually advances incrementally, through the steady accretion of data and insights gathered by many people over many years. So it has with the consensus on climate change. That’s not about to go poof with the next thermometer reading.
But industry PR, however misleading, isn’t enough to explain why so many people reject the scientific consensus on global warming.
The “science communication problem,” as it’s blandly called by the scientists who study it, has yielded abundant new research into how people decide what to believe — and why they so often don’t accept the expert consensus. It’s not that they can’t grasp it, according to Dan Kahan of Yale University. In one study he asked 1,540 Americans, a representative sample, to rate the threat of climate change on a scale of zero to 10. Then he correlated that with the subjects’ science literacy. He found that higher literacy was associated with stronger views — at both ends of the spectrum. Science literacy promoted polarization on climate, not consensus. According to Kahan, that’s because people tend to use scientific knowledge to reinforce their worldviews.
Americans fall into two basic camps, Kahan says. Those with a more “egalitarian” and “communitarian” mind-set are generally suspicious of industry and apt to think it’s up to something dangerous that calls for government regulation; they’re likely to see the risks of climate change. In contrast, people with a “hierarchical” and “individualistic” mind-set respect leaders of industry and don’t like government interfering in their affairs; they’re apt to reject warnings about climate change, because they know what accepting them could lead to — some kind of tax or regulation to limit emissions.
In the United States, climate change has become a litmus test that identifies you as belonging to one or the other of these two antagonistic tribes. When we argue about it, Kahan says, we’re actually arguing about who we are, what our crowd is. We’re thinking: People like us believe this. People like that do not believe this.
Science appeals to our rational brain, but our beliefs are motivated largely by emotion, and the biggest motivation is remaining tight with our peers. “We’re all in high school. We’ve never left high school,” says Marcia McNutt. “People still have a need to fit in, and that need to fit in is so strong that local values and local opinions are always trumping science. And they will continue to trump science, especially when there is no clear downside to ignoring science.”
Meanwhile the Internet makes it easier than ever for science doubters to find their own information and experts. Gone are the days when a small number of powerful institutions — elite universities, encyclopedias and major news organizations — served as gatekeepers of scientific information. The Internet has democratized it, which is a good thing. But along with cable TV, the Web has also made it possible to live in a “filter bubble” that lets in only the information with which you already agree.
How to penetrate the bubble? How to convert science skeptics? Throwing more facts at them doesn’t help. Liz Neeley, who helps train scientists to be better communicators at an organization called Compass, says people need to hear from believers they can trust, who share their fundamental values. She has personal experience with this. Her father is a climate-change skeptic and gets most of his information on the issue from conservative media. In exasperation she finally confronted him: “Do you believe them or me?” She told him she believes the scientists who research climate change and knows many of them personally. “If you think I’m wrong,” she said, “then you’re telling me that you don’t trust me.” Her father’s stance on the issue softened. But it wasn’t the facts that did it.
If you’re a rationalist, there’s something a little dispiriting about all this. In Kahan’s descriptions of how we decide what to believe, what we decide sometimes sounds almost incidental. Those of us in the science-communication business are as tribal as anyone else, he told me. We believe in scientific ideas not because we have truly evaluated all the evidence but because we feel an affinity for the scientific community. When I mentioned to Kahan that I fully accept evolution, he said: “Believing in evolution is just a description about you. It’s not an account of how you reason.”
Maybe — except that evolution is real. Biology is incomprehensible without it. There aren’t really two sides to all these issues. Climate change is happening. Vaccines save lives. Being right does matter — and the science tribe has a long track record of getting things right in the end. Modern society is built on things it got right.
Doubting science also has consequences, as seen in recent weeks with the measles outbreak that began in California. The people who believe that vaccines cause autism — often well educated and affluent, by the way — are undermining “herd immunity” to such diseases as whooping cough and measles. The anti-vaccine movement has been going strong since a prestigious British medical journal, the Lancet, published a study in 1998 linking a common vaccine to autism. The journal later retracted the study, which was thoroughly discredited. But the notion of a vaccine-autism connection has been endorsed by celebrities and reinforced through the usual Internet filters. (Anti-vaccine activist and actress Jenny McCarthy famously said on “The Oprah Winfrey Show,” “The University of Google is where I got my degree from.”)
In the climate debate, the consequences of doubt are likely to be global and enduring. Climate-change skeptics in the United States have achieved their fundamental goal of halting legislative action to combat global warming. They haven’t had to win the debate on the merits; they’ve merely had to fog the room enough to keep laws governing greenhouse gas emissions from being enacted.
Some environmental activists want scientists to emerge from their ivory towers and get more involved in the policy battles. Any scientist going that route needs to do so carefully, says Liz Neeley. “That line between science communication and advocacy is very hard to step back from,” she says. In the debate over climate change, the central allegation of the skeptics is that the science saying it’s real and a serious threat is politically tinged, driven by environmental activism and not hard data. That’s not true, and it slanders honest scientists. But the claim becomes more likely to be seen as plausible if scientists go beyond their professional expertise and begin advocating specific policies.
It’s their very detachment, what you might call the cold-bloodedness of science, that makes science the killer app. It’s the way science tells us the truth rather than what we’d like the truth to be. Scientists can be as dogmatic as anyone else — but their dogma is always wilting in the hot glare of new research. In science it’s not a sin to change your mind when the evidence demands it. For some people, the tribe is more important than the truth; for the best scientists, the truth is more important than the tribe.

View Article Here Read More

Every Black Hole Contains a New Universe


At the center of spiral galaxy M81 is a supermassive black hole about 70 million times more massive than our sun.



Excerpt from insidescience.org
A physicist presents a solution to present-day cosmic mysteries.



By: 
Nikodem Poplawski, Inside Science Minds Guest Columnist



(ISM) -- Our universe may exist inside a black hole. This may sound strange, but it could actually be the best explanation of how the universe began, and what we observe today. It's a theory that has been explored over the past few decades by a small group of physicists including myself. 
Successful as it is, there are notable unsolved questions with the standard big bang theory, which suggests that the universe began as a seemingly impossible "singularity," an infinitely small point containing an infinitely high concentration of matter, expanding in size to what we observe today. The theory of inflation, a super-fast expansion of space proposed in recent decades, fills in many important details, such as why slight lumps in the concentration of matter in the early universe coalesced into large celestial bodies such as galaxies and clusters of galaxies.
But these theories leave major questions unresolved. For example: What started the big bang? What caused inflation to end? What is the source of the mysterious dark energy that is apparently causing the universe to speed up its expansion?
The idea that our universe is entirely contained within a black hole provides answers to these problems and many more. It eliminates the notion of physically impossible singularities in our universe. And it draws upon two central theories in physics.
Nikodem Poplawski displays a "tornado in a tube." The top bottle symbolizes a black hole, the connected necks represent a wormhole and the lower bottle symbolizes the growing universe on the just-formed other side of the wormhole. Credit: Indiana University
In this picture, spins in particles interact with spacetime and endow it with a property called "torsion." To understand torsion, imagine spacetime not as a two-dimensional canvas, but as a flexible, one-dimensional rod. Bending the rod corresponds to curving spacetime, and twisting the rod corresponds to spacetime torsion. If a rod is thin, you can bend it, but it's hard to see if it's twisted or not.

The first is general relativity, the modern theory of gravity. It describes the universe at the largest scales. Any event in the universe occurs as a point in space and time, or spacetime. A massive object such as the Sun distorts or "curves" spacetime, like a bowling ball sitting on a canvas. The Sun's gravitational dent alters the motion of Earth and the other planets orbiting it. The sun's pull of the planets appears to us as the force of gravity.

The second is quantum mechanics, which describes the universe at the smallest scales, such as the level of the atom. However, quantum mechanics and general relativity are currently separate theories; physicists have been striving to combine the two successfully into a single theory of "quantum gravity" to adequately describe important phenomena, including the behavior of subatomic particles in black holes.
A 1960s adaptation of general relativity, called the Einstein-Cartan-Sciama-Kibble theory of gravity, takes into account effects from quantum mechanics. It not only provides a step towards quantum gravity but also leads to an alternative picture of the universe. This variation of general relativity incorporates an important quantum property known as spin. Particles such as atoms and electrons possess spin, or the internal angular momentum that is analogous to a skater spinning on ice.

Spacetime torsion would only be significant, let alone noticeable, in the early universe or in black holes. In these extreme environments, spacetime torsion would manifest itself as a repulsive force that counters the attractive gravitational force coming from spacetime curvature. As in the standard version of general relativity, very massive stars end up collapsing into black holes: regions of space from which nothing, not even light, can escape.
Here is how torsion would play out in the beginning moments of our universe. Initially, the gravitational attraction from curved space would overcome torsion's repulsive forces, serving to collapse matter into smaller regions of space. But eventually torsion would become very strong and prevent matter from compressing into a point of infinite density; matter would reach a state of extremely large but finite density. As energy can be converted into mass, the immensely high gravitational energy in this extremely dense state would cause an intense production of particles, greatly increasing the mass inside the black hole.
The increasing numbers of particles with spin would result in higher levels of spacetime torsion. The repulsive torsion would stop the collapse and would create a "big bounce" like a compressed beach ball that snaps outward. The rapid recoil after such a big bounce could be what has led to our expanding universe. The result of this recoil matches observations of the universe's shape, geometry, and distribution of mass.
In turn, the torsion mechanism suggests an astonishing scenario: every black hole would produce a new, baby universe inside. If that is true, then the first matter in our universe came from somewhere else. So our own universe could be the interior of a black hole existing in another universe. Just as we cannot see what is going on inside black holes in the cosmos, any observers in the parent universe could not see what is going on in ours.
The motion of matter through the black hole's boundary, called an "event horizon," would only happen in one direction, providing a direction of time that we perceive as moving forward. The arrow of time in our universe would therefore be inherited, through torsion, from the parent universe.
Torsion could also explain the observed imbalance between matter and antimatter in the universe. Because of torsion, matter would decay into familiar electrons and quarks, and antimatter would decay into "dark matter," a mysterious invisible form of matter that appears to account for a majority of matter in the universe.
Finally, torsion could be the source of "dark energy," a mysterious form of energy that permeates all of space and increases the rate of expansion of the universe. Geometry with torsion naturally produces a "cosmological constant," a sort of added-on outward force which is the simplest way to explain dark energy. Thus, the observed accelerating expansion of the universe may end up being the strongest evidence for torsion.
Torsion therefore provides a theoretical foundation for a scenario in which the interior of every black hole becomes a new universe. It also appears as a remedy to several major problems of current theory of gravity and cosmology. Physicists still need to combine the Einstein-Cartan-Sciama-Kibble theory fully with quantum mechanics into a quantum theory of gravity. While resolving some major questions, it raises new ones of its own. For example, what do we know about the parent universe and the black hole inside which our own universe resides? How many layers of parent universes would we have? How can we test that our universe lives in a black hole?
The last question can potentially be investigated: since all stars and thus black holes rotate, our universe would have inherited the parent black hole’s axis of rotation as a "preferred direction." There is some recently reported evidence from surveys of over 15,000 galaxies that in one hemisphere of the universe more spiral galaxies are "left-handed", or rotating clockwise, while in the other hemisphere more are "right-handed", or rotating counterclockwise. In any case, I believe that including torsion in geometry of spacetime is a right step towards a successful theory of cosmology.

View Article Here Read More

New internet neutrality: FCC chairman proposes strong new rules

Excerpt from mercurynews.comThe federal government's top communications regulator on Wednesday called for strong new rules to bar Internet and wireless providers from blocking, slowing or discriminating against consumers' access to particular websi...

View Article Here Read More

The Best Star Gazing Binoculars for 2015




Excerpt from space.com

Most people have two eyes. Humans evolved to use them together (not all animals do). People form a continuous, stereoscopic panorama movie of the world within in their minds. With your two eyes tilted upward on a clear night, there's nothing standing between you and the universe. The easiest way to enhance your enjoyment of the night sky is to paint your brain with two channels of stronger starlight with a pair of binoculars. Even if you live in — or near — a large, light-polluted city, you may be surprised at how much astronomical detail you'll see through the right binoculars!
Our editors have looked at the spectrum of current binocular offerings. Thanks to computer-aided design and manufacturing, there have never been more high-quality choices at reasonable prices. Sadly, there's also a bunch of junk out there masquerading as fine stargazing instrumentation. We've selected a few that we think will work for most skywatchers.
There was a lot to consider: magnification versus mass, field of view, prism type, optical quality ("sharpness"), light transmission, age of the user (to match "exit pupil" size, which changes as we grow older), shock resistance, waterproofing and more. 

The best binoculars for you

"Small" astronomy binoculars would probably be considered "medium" for bird watching, sports observation and other terrestrial purposes. This comes about as a consequence of optics (prism type and objective size, mostly). "Large" binoculars are difficult to use for terrestrial applications and have a narrow field of view. They begin to approach telescope quality in magnification, resolution and optical characteristics.

Most of our Editors' Choicesfor stargazing binoculars here are under $300. You can pay more than 10 times that for enormous binocular telescopes used by elite enthusiasts on special mounts! You'll also pay more for ruggedized ("mil spec," or military standard) binoculars, many of which suspend their prisms on shock mounts to keep the optics in precise alignment.

Also, our Editors' Choices use Porro prism optics. Compact binoculars usually employ "roof" prisms, which can be cast more cheaply, but whose quality can vary widely. [There's much more about Porro prisms in our Buyer's Guide.]
We think your needs are best served by reviewing in three categories.
  • Small, highly portable binoculars can be hand-held for viewing ease.
  • Medium binoculars offer higher powers of magnification, but still can be hand-held, if firmly braced.
  • Large binoculars have bigger "objective" lenses but must be mounted on a tripod or counterweighted arm for stability.
Here's a detailed look at our Editor's Choice selections for stargazing binoculars:

Best Small Binoculars 

Editor's Choice: Oberwerk Mariner 8x40 (Cost: $150)

Oberwerk in German means "above work." The brand does indeed perform high-level optical work, perfect for looking at objects above, as well as on the ground or water. Founder Kevin Busarow's Mariner series is not his top of the line, but it benefits greatly from engineering developed for his pricier models. The Oberwerk 8x40’s treat your eyes to an extremely wide field, at very high contrast, with razor-sharp focus; they are superb for observing the broad starscapes of the Milky Way. Just 5.5 inches (14 cm) from front to back and 6.5 inches wide (16.5 cm), the Mariners are compact and rugged enough to be your favorite "grab and go binoculars." But at 37 ounces, they may be more than a small person wants to carry for a long time.


Runner-Up: Celestron Cometron 7x50 (Cost: $30)

Yes, you read that price correctly! These Celestron lightweight, wide-field binoculars bring honest quality at a remarkably low price point. The compromise comes in the optics, particularly the prism's glass type (you might see a little more chromatic aberration around the edges of the moon, and the exit pupil isn't a nice, round circle). Optimized for "almost infinitely distant" celestial objects, these Cometrons won't focus closer than about 30 feet (9.1 meters).  But that's fine for most sports and other outdoor use. If you're gift-buying for multiple young astronomers – or you want an inexpensive second set for yourself – these binoculars could be your answer. Just maybe remind those young folks to be a little careful around water; Celestron claims only that the Cometrons are "water resistant," not waterproof. 


Honorable Mention: Swarovski Habicht 8x30 (Cost: $1,050)

From the legendary Austrian firm of Swarovski Optik, these "bins" are perfect. Really. Very sharp. Very lightweight. Very wide field. Very versatile. And very expensive! Our editors would have picked them if we could have afforded them. 

Honorable Mention: Nikon Aculon 7x50 (Cost: $110) 

Nikon's legendary optical quality and the large, 7mm exit pupil diameter make these appropriate as a gift for younger skywatchers. 

Best Medium Binoculars

Editor's Choice: Celestron SkyMaster 8x56 (Cost: $210)

A solid, chunky-feeling set of quality prisms and lenses makes these binoculars a pleasant, 38oz. handful. A medium wide 5.8 degrees filed of view and large 7mm exit pupil brings you gently into a sweet sky of bright, though perhaps not totally brilliant, stars. Fully dressed in a rubber wetsuit, these SkyMasters are waterproof. Feel free to take them boating or birding on a moist morning. Their optical tubes were blown out with dry nitrogen at the factory, then sealed. So you can expect them not to fog up, at least not from the inside. Celestron's strap-mounting points on the Skymaster 8x56 are recessed, so they don't bother your thumbs, but that location makes them hard to fasten. 


Runner-Up: Oberwerk Ultra 15x70 (Cost: $380)

The most rugged pair we evaluated, these 15x70s are optically outstanding. Seen through the Ultra's exquisitely multi-coated glass, you may find yourself falling in love with the sky all over again. Oberwerk's method of suspending their BAK4 glass Porro prisms offers greater shock-resistance than most competitors’ designs. While more costly than some comparable binoculars, they deliver superior value. Our only complaint is with their mass: At 5.5 lbs., these guys are heavy!  You can hand-hold them for a short while, if you’re lying down. But they are best placed on a tripod, or on a counterweighted arm, unless you like shaky squiggles where your point-source stars are supposed to be. Like most truly big binoculars, the eyepieces focus independently; there’s no center focus wheel. These "binos" are for true astronomers. 


Honorable Mention: Vixen Ascot 10x50 (Cost:$165)

These quirky binoculars present you with an extremely wide field. But they are not crash-worthy – don't drop them in the dark – nor are they waterproof, and the focus knob is not conveniently located. So care is needed if you opt for these Vixen optics. 

Best Large Binoculars

Don't even think about hand-holding this 156-ounce beast! The SkyMaster 25x100 is really a pair of side-by-side 100mm short-tube refractor telescopes. Factor the cost of a sturdy tripod into your purchase decision, if you want to go this big.  The monster Celestron comes with a sturdy support spar for mounting. Its properly multi-coated optics will haul in surprising detail from the sky.  Just make sure your skies are dark; with this much magnification, light pollution can render your images dingy. As with many in the giant and super-giant class of binoculars, the oculars (non-removable eyepieces) focus separately, each rotating through an unusually long 450 degrees.  Getting to critical focus can be challenging, but the view is worth it. You can resolve a bit of detail on face of the new moon (lit by "Earthshine") and pick out cloud bands on Jupiter; tha's pretty astonishing for binoculars. 


Runner-Up: Orion Astronomy 20x80 (Cost: $150)

These big Orions distinguish themselves by price point; they're an excellent value. You could pay 10 times more for the comparably sized Steiners Military Observer 20x80 binoculars! Yes, the Orions are more delicate, a bit less bright and not quite as sharp. But they do offer amazingly high contrast; you'll catch significant detail in galaxies, comets and other "fuzzies." Unusually among such big rigs, the Astronomy 20x80 uses a center focus ring and one "diopter" (rather than independently focusing oculars); if you’re graduating from smaller binoculars, which commonly use that approach, this may be a comfort. These binoculars are almost lightweight enough to hold them by hand. But don't do that, at least not for long periods. And don't drop them. They will go out of alignment if handled roughly. 


Honorable Mention: Barska Cosmos 25x100 (Cost: $230)

They are not pretty, but you're in the dark, right? Built around a tripod-mountable truss tube, these Barskas equilibrate to temperature quickly and give you decent viewing at rational cost. They make for a cheaper version of our Editors' Choice Celestron SkyMasters. 

Honorable Mention: Steiner Observer 20x80 (Cost: $1,500)

Not at all a practical cost choice for a beginning stargazer, but you can dream, can't you? These Steiner binoculars are essentially military optics "plowshared" for peaceful celestial observing. 

Why we chose NOT to review certain types

Image stabilized?

Binoculars with active internal image stabilization are a growing breed. Most use battery-powered gyroscope/accelerometer-driven dynamic optical elements. We have left this type out of our evaluation because they are highly specialized and pricey ($1,250 and up). But if you are considering active stabilization, you can apply the same judgment methods detailed in our Buyer's Guide.

Comes with a camera?

A few binoculars are sold with built-in cameras. That seems like a good idea. But it isn't, at least not for skywatching. Other than Earth's moon, objects in the night sky are stingy with their photons. It takes a lengthy, rock-steady time exposure to collect enough light for a respectable image. By all means, consider these binocular-camera combos for snapping Facebook shots of little Jenny on the soccer field. But stay away from them for astronomy.

Mega monster-sized?

Take your new binoculars out under the night sky on clear nights, and you will fall in love with the universe. You will crave more ancient light from those distant suns. That may translate into a strong desire for bigger stereo-light buckets.

Caution: The next level up is a quantum jump of at least one financial order of magnitude. But if you have the disposable income and frequent access to dark skies, you may want to go REALLY big. Binocular telescopes in this class can feature interchangeable matching eyepieces, individually focusing oculars, more than 30x magnification and sturdy special-purpose tripods. Amateurs using these elite-level stereoscopes have discovered several prominent comets.

Enjoy your universe

If you are new to lens-assisted stargazing, you'll find excellent enhanced views among the binocular choices above. To get in deeper and to understand how we picked the ones we did, jump to our Buyer's Guide: How to Choose Binoculars for Sky Watching.

You have just taken the first step to lighting up your brain with star fire. May the photons be with you. Always. 

Skywatching Events 2015

Once you have your new binoculars, it's time to take them for a spin. This year intrepid stargazers will have plenty of good opportunities to use new gear.

On March 20, for example, the sun will go through a total solar eclipse. You can check out the celestial sight using the right sun-blocking filters for binoculars, but NEVER look at the sun directly, even during a solar eclipse. It's important to find the proper filters in order to observe the rare cosmic show. 

Observers can also take a look at the craggy face of the moon during a lunar eclipse on April 4. Stargazers using binoculars should be able to pick out some details not usually seen by the naked eye when looking at Earth's natural satellite.

Skywatchers should also peek out from behind the binoculars for a chance to see a series of annual meteor showers throughout the year.

View Article Here Read More

Spacecraft found on Mars – and it’s ours




Computer image of the Beagle 2


Excerpt from skyandtelescope.com
By Kelly Beatty  


On December 25, 2003, a British-built lander dropped to the Martian surface and disappeared without a trace. Now we know what happened to it.  It's hard to overstate how valuable the main camera aboard the Mars Reconnaissance Orbiter has been. The craft's High-Resolution Imaging Science Experiment, or HiRISE, uses a 20-inch (0.5-m) f/24 telescope to record details on the Martian surface as small as 0.3 m (about 10 inches). 

Beagle 2 seen from orbit by HiRISE
An overhead view of Beagle 2's landing site on Isidis Planitia shows a bright reflection from the long-lost spacecraft. Apparently it landed safely on December 25, 2003, and had begun to operate when it failed. NASA's Mars Reconnaissance Orbiter recorded this image on December 15, 2014. NASA / JPL / Univ. of Arizona / Univ. of Leicester - See more at: http://www.skyandtelescope.com/astronomy-news/beagle-2-lander-found-on-mars-01192015/#sthash.5KSZ8V6W.dpuf


Primarily it's a powerful tool for studying Martian geology at the smallest scales, and NASA scientists sometimes use it to track the progress (and even the arrivals) of their rovers. Beagle 2 on Mars  The clamshell-like Beagle 2 lander weighed just 30 kg, but it was well equipped to study Martian rocks and dust — and even to search for life. Beagle 2 consortium  But the HiRISE team has also been on a years-long quest to find the remains of Beagle 2, a small lander that had hitchhiked to the Red Planet with the European Space Agency's Mars Express orbiter. It descended to the Martian surface on Christmas Day in 2003 and was never heard from again. Space aficionados have debated its fate ever since. Did parachute failure lead to a crash landing? Did strong surface winds flip the saucer-shaped craft upside down? Did the Martians take it hostage?  Now, thanks to HiRISE, we know more of the story.  
An overhead view of Beagle 2's landing site on Isidis Planitia shows a bright reflection from the long-lost spacecraft. Apparently it landed safely on December 25, 2003, and had begun to operate when it failed. NASA's Mars Reconnaissance Orbiter recorded this image on December 15, 2014. NASA / JPL / Univ. of Arizona / Univ. of Leicester 


Images taken in February 2013 and June 2014 of the landing area in Isidis Planitia showed promising blips near the edge of each frame. A follow-up color view, acquired on December 15th and released three days ago, show a bright spot consistent with Beagle 2. The fully-opened lander would have been less than 2 m (6½ feet) across, so the craft is only barely resolved. Apparently the spacecraft made it to the surface intact, opened its clamshell cover, and had partially deployed its four petal-shaped solar-cell panels before something went awry. Beagle 2 seen from orbit by HiRISE  

One encouraging clue is that the bright reflection changes position slightly from image to image, consistent with sunlight reflecting off different lander panels. Two other unusual spots a few hundred meters away appears to be the lander's parachute and part of the cover that served as a shield during the 5½-km-per-second atmospheric descent...


On December 25, 2003, a British-built lander dropped to the Martian surface and disappeared without a trace. Now we know what happened to it.
It's hard to overstate how valuable the main camera aboard the Mars Reconnaissance Orbiter has been. The craft's High-Resolution Imaging Science Experiment, or HiRISE, uses a 20-inch (0.5-m) f/24 telescope to record details on the Martian surface as small as 0.3 m (about 10 inches). Primarily it's a powerful tool for studying Martian geology at the smallest scales, and NASA scientists sometimes use it to track the progress (and even the arrivals) of their rovers.
Beagle 2 on Mars
The clamshell-like Beagle 2 lander weighed just 30 kg, but it was well equipped to study Martian rocks and dust — and even to search for life.
Beagle 2 consortium
But the HiRISE team has also been on a years-long quest to find the remains of Beagle 2, a small lander that had hitchhiked to the Red Planet with the European Space Agency's Mars Express orbiter. It descended to the Martian surface on Christmas Day in 2003 and was never heard from again. Space aficionados have debated its fate ever since. Did parachute failure lead to a crash landing? Did strong surface winds flip the saucer-shaped craft upside down? Did the Martians take it hostage?
Now, thanks to HiRISE, we know more of the story. Images taken in February 2013 and June 2014 of the landing area in Isidis Planitia showed promising blips near the edge of each frame. A follow-up color view, acquired on December 15th and released three days ago, show a bright spot consistent with Beagle 2. The fully-opened lander would have been less than 2 m (6½ feet) across, so the craft is only barely resolved. Apparently the spacecraft made it to the surface intact, opened its clamshell cover, and had partially deployed its four petal-shaped solar-cell panels before something went awry.
Beagle 2 seen from orbit by HiRISE
An overhead view of Beagle 2's landing site on Isidis Planitia shows a bright reflection from the long-lost spacecraft. Apparently it landed safely on December 25, 2003, and had begun to operate when it failed. NASA's Mars Reconnaissance Orbiter recorded this image on December 15, 2014.
NASA / JPL / Univ. of Arizona / Univ. of Leicester
One encouraging clue is that the bright reflection changes position slightly from image to image, consistent with sunlight reflecting off different lander panels. Two other unusual spots a few hundred meters away appears to be the lander's parachute and part of the cover that served as a shield during the 5½-km-per-second atmospheric descent.
The initial images didn't just show up. They'd been requested and searched by Michael Croon of Trier, Germany, who'd served on the Mars Express operations team. Croon had asked for specific camera targeting through a program called HiWish, through which anyone can submit suggestions for HiRISE images. Read more about this fascinating sleuthing story.
"Not knowing what happened to Beagle 2 remained a nagging worry," comments Rudolf Schmidt in an ESA press release about the find. "Understanding now that Beagle 2 made it all the way down to the surface is excellent news." Schmidt served as the Mars Express project manager at the time.
Built by a consortium of organizations, Beagle 2 was the United Kingdom's first interplanetary spacecraft. The 32-kg (73-pound) lander carried six instruments to study geochemical characteristics of the Martian surface and to test for the presence of life using assays of carbon isotopes. It was named for HMS Beagle, the ship that carried a crew of 73 (including Charles Darwin) on an epic voyage of discovery in 1831–36.
- See more at: http://www.skyandtelescope.com/astronomy-news/beagle-2-lander-found-on-mars-01192015/#sthash.5KSZ8V6W.dpuf

View Article Here Read More

The Future of Technology in 2015?




Excerpt from
cnet.com


The year gone by brought us more robots, worries about artificial intelligence, and difficult lessons on space travel. The big question: where's it all taking us?

Every year, we capture a little bit more of the future -- and yet the future insists on staying ever out of reach.
Consider space travel. Humans have been traveling beyond the atmosphere for more than 50 years now -- but aside from a few overnights on the moon four decades ago, we have yet to venture beyond low Earth orbit.
Or robots. They help build our cars and clean our kitchen floors, but no one would mistake a Kuka or a Roomba for the replicants in "Blade Runner." Siri, Cortana and Alexa, meanwhile, are bringing some personality to the gadgets in our pockets and our houses. Still, that's a long way from HAL or that lad David from the movie "A.I. Artificial Intelligence."
Self-driving cars? Still in low gear, and carrying some bureaucratic baggage that prevents them from ditching certain technology of yesteryear, like steering wheels.
And even when these sci-fi things arrive, will we embrace them? A Pew study earlier this year found that Americans are decidedly undecided. Among the poll respondents, 48 percent said they would like to take a ride in a driverless car, but 50 percent would not. And only 3 percent said they would like to own one.
"Despite their general optimism about the long-term impact of technological change," Aaron Smith of the Pew Research Center wrote in the report, "Americans express significant reservations about some of these potentially short-term developments" such as US airspace being opened to personal drones, robot caregivers for the elderly or wearable or implantable computing devices that would feed them information.
Let's take a look at how much of the future we grasped in 2014 and what we could gain in 2015.

Space travel: 'Space flight is hard'

In 2014, earthlings scored an unprecedented achievement in space exploration when the European Space Agency landed a spacecraft on a speeding comet, with the potential to learn more about the origins of life. No, Bruce Willis wasn't aboard. Nobody was. But when the 220-pound Philae lander, carried to its destination by the Rosetta orbiter, touched down on comet 67P/Churyumov-Gerasimenko on November 12, some 300 million miles from Earth, the celebration was well-earned.
A shadow quickly fell on the jubilation, however. Philae could not stick its first landing, bouncing into a darker corner of the comet where its solar panels would not receive enough sunlight to charge the lander's batteries. After two days and just a handful of initial readings sent home, it shut down. For good? Backers have allowed for a ray of hope as the comet passes closer to the sun in 2015. "I think within the team there is no doubt that [Philae] will wake up," lead lander scientist Jean-Pierre Bibring said in December. "And the question is OK, in what shape? My suspicion is we'll be in good shape."
The trip for NASA's New Horizons spacecraft has been much longer: 3 billion miles, all the way to Pluto and the edge of the solar system. Almost nine years after it left Earth, New Horizons in early December came out of hibernation to begin its mission: to explore "a new class of planets we've never seen, in a place we've never been before," said project scientist Hal Weaver. In January, it will begin taking photos and readings of Pluto, and by mid-July, when it swoops closest to Pluto, it will have sent back detailed information about the dwarf planet and its moon, en route to even deeper space.


Also in December, NASA made a first test spaceflight of its Orion capsule on a quick morning jaunt out and back, to just over 3,600 miles above Earth (or approximately 15 times higher than the International Space Station). The distance was trivial compared to those those traveled by Rosetta and New Horizons, and crewed missions won't begin till 2021, but the ambitions are great -- in the 2030s, Orion is expected to carry humans to Mars.
In late March 2015, two humans will head to the ISS to take up residence for a full year, in what would be a record sleepover in orbit. "If a mission to Mars is going to take a three-year round trip," said NASA astronaut Scott Kelly, who will be joined in the effort by Russia's Mikhail Kornienko, "we need to know better how our body and our physiology performs over durations longer than what we've previously on the space station investigated, which is six months."
There were more sobering moments, too, in 2014. In October, Virgin Galactic's sleek, experimental SpaceShipTwo, designed to carry deep-pocketed tourists into space, crashed in the Mojave Desert during a test flight, killing one test pilot and injuring the other. Virgin founder Richard Branson had hoped his vessel would make its first commercial flight by the end of this year or in early 2015, and what comes next remains to be seen. Branson, though, expressed optimism: "Space flight is hard -- but worth it," he said in a blog post shortly after the crash, and in a press conference, he vowed "We'll learn from this, and move forward together." Virgin Galactic could begin testing its next spaceship as soon as early 2015.
The crash of SpaceShipTwo came just a few days after the explosion of an Orbital Sciences rocket lofting an unmanned spacecraft with supplies bound for the International Space Station. And in July, Elon Musk's SpaceX had suffered the loss of one of its Falcon 9 rockets during a test flight. Musk intoned, via Twitter, that "rockets are tricky..."
Still, it was on the whole a good year for SpaceX. In May, it unveiled its first manned spacecraft, the Dragon V2, intended for trips to and from the space station, and in September, it won a $2.6 billion contract from NASA to become one of the first private companies (the other being Boeing) to ferry astronauts to the ISS, beginning as early as 2017. Oh, and SpaceX also has plans to launch microsatellites to establish low-cost Internet service around the globe, saying in November to expect an announcement about that in two to three months -- that is, early in 2015.
One more thing to watch for next year: another launch of the super-secret X-37B space place to do whatever it does during its marathon trips into orbit. The third spaceflight of an X-37B -- a robotic vehicle that, at 29 feet in length, looks like a miniature space shuttle -- ended in October after an astonishing 22 months circling the Earth, conducting "on-orbit experiments."

Self-driving cars: Asleep at what wheel?

Spacecraft aren't the only vehicles capable of autonomous travel -- increasingly, cars are, too. Automakers are toiling toward self-driving cars, and Elon Musk -- whose name comes up again and again when we talk about the near horizon for sci-fi tech -- says we're less than a decade away from capturing that aspect of the future. In October, speaking in his guise as founder of Tesla Motors, Musk said: "Like maybe five or six years from now I think we'll be able to achieve true autonomous driving where you could literally get in the car, go to sleep and wake up at your destination." (He also allowed that we should tack on a few years after that before government regulators give that technology their blessing.)
Prototype, unbound: Google's ride of the future, as it looks today Google
That comment came as Musk unveiled a new autopilot feature -- characterizing it as a sort of super cruise control, rather than actual autonomy -- for Tesla's existing line of electric cars. Every Model S manufactured since late September includes new sensor hardware to enable those autopilot capabilities (such as adaptive cruise control, lane-keeping assistance and automated parking), to be followed by an over-the-air software update to enable those features.
Google has long been working on its own robo-cars, and until this year, that meant taking existing models -- a Prius here, a Lexus there -- and buckling on extraneous gear. Then in May, the tech titan took the wraps off a completely new prototype that it had built from scratch. (In December, it showed off the first fully functional prototype.) It looked rather like a cartoon car, but the real news was that there was no steering wheel, gas pedal or brake pedal -- no need for human controls when software and sensors are there to do the work.
Or not so fast. In August, California's Department of Motor Vehicles declared that Google's test vehicles will need those manual controls after all -- for safety's sake. The company agreed to comply with the state's rules, which went into effect in September, when it began testing the cars on private roads in October.
Regardless of who's making your future robo-car, the vehicle is going to have to be not just smart, but actually thoughtful. It's not enough for the car to know how far it is from nearby cars or what the road conditions are. The machine may well have to make no-win decisions, just as human drivers sometimes do in instantaneous, life-and-death emergencies. "The car is calculating a lot of consequences of its actions," Chris Gerdes, an associate professor of mechanical engineering, said at the Web Summit conference in Dublin, Ireland, in November. "Should it hit the person without a helmet? The larger car or the smaller car?"

Robots: Legging it out

So when do the robots finally become our overlords? Probably not in 2015, but there's sure to be more hand-wringing about both the machines and the artificial intelligence that could -- someday -- make them a match for homo sapiens. At the moment, the threat seems more mundane: when do we lose our jobs to a robot?
The inquisitive folks at Pew took that very topic to nearly 1,900 experts, including Vint Cerf, vice president at Google; Web guru Tim Bray; Justin Reich of Harvard University's Berkman Center for Internet & Society; and Jonathan Grudin, principal researcher at Microsoft. According to the resulting report, published in August, the group was almost evenly split -- 48 percent thought it likely that, by 2025, robots and digital agents will have displaced significant numbers of blue- and white-collar workers, perhaps even to the point of breakdowns in the social order, while 52 percent "have faith that human ingenuity will create new jobs, industries, and ways to make a living, just as it has been doing since the dawn of the Industrial Revolution."


Still, for all of the startling skills that robots have acquired so far, they're often not all there yet. Here's some of what we saw from the robot world in 2014:
Teamwork: Researchers at the École Polytechnique Fédérale De Lausanne in May showed off their "Roombots," cog-like robotic balls that can join forces to, say, help a table move across a room or change its height.
A sense of balance: We don't know if Boston Dynamics' humanoid Atlas is ready to trim bonsai trees, but it has learned this much from "The Karate Kid" (the original from the 1980s) -- it can stand on cinder blocks and hold its balance in a crane stance while moving its arms up and down.
Catlike jumps: MIT's cheetah-bot gets higher marks for locomotion. Fed a new algorithm, it can run across a lawn and bound like a cat. And quietly, too. "Our robot can be silent and as efficient as animals. The only things you hear are the feet hitting the ground," MIT's Sangbae Kim, a professor of mechanical engineering, told MIT News. "This is kind of a new paradigm where we're controlling force in a highly dynamic situation. Any legged robot should be able to do this in the future."
Sign language: Toshiba's humanoid Aiko Chihira communicated in Japanese sign language at the CEATEC show in October. Her rudimentary skills, limited for the moment to simple messages such as signed greetings, are expected to blossom by 2020 into areas such as speech synthesis and speech recognition.
Dance skills: Robotic pole dancers? Tobit Software brought a pair, controllable by an Android smartphone, to the Cebit trade show in Germany in March. More lifelike was the animatronic sculpture at a gallery in New York that same month -- but what was up with that witch mask?
Emotional ambition: Eventually, we'll all have humanoid companions -- at least, that's always been one school of thought on our robotic future. One early candidate for that honor could be Pepper, from Softbank and Aldebaran Robotics, which say the 4-foot-tall Pepper is the first robot to read emotions. This emo-bot is expected to go on sale in Japan in February.

Ray guns: Ship shape

Damn the photon torpedoes, and full speed ahead. That could be the motto for the US Navy, which in 2014 deployed a prototype laser weapon -- just one -- aboard a vessel in the Persian Gulf. Through some three months of testing, the device "locked on and destroyed the targets we designated with near-instantaneous lethality," Rear Adm. Matthew L. Klunder, chief of naval research, said in a statement. Those targets were rather modest -- small objects mounted aboard a speeding small boat, a diminutive Scan Eagle unmanned aerial vehicle, and so on -- but the point was made: the laser weapon, operated by a controller like those used for video games, held up well, even in adverse conditions.

Artificial intelligence: Danger, Will Robinson?

What happens when robots and other smart machines can not only do, but also think? Will they appreciate us for all our quirky human high and low points, and learn to live with us? Or do they take a hard look at a species that's run its course and either turn us into natural resources, "Matrix"-style, or rain down destruction?
laser-weapon-system-on-uss-ponce.jpg
When the machines take over, will they be packing laser weapons like this one the US Navy just tried out? John F. Williams/US Navy
As we look ahead to the reboot of the "Terminator" film franchise in 2015, we can't help but recall some of the dire thoughts about artificial intelligence from two people high in the tech pantheon, the very busy Musk and the theoretically inclined Stephen Hawking.
Musk himself more than once in 2014 invoked the likes of the "Terminator" movies and the "scary outcomes" that make them such thrilling popcorn fare. Except that he sees a potentially scary reality evolving. In an interview with CNBC in June, he spoke of his investment in AI-minded companies like Vicarious and Deep Mind, saying: "I like to just keep an eye on what's going on with artificial intelligence. I think there is potentially a dangerous outcome."
He has put his anxieties into some particularly colorful phrases. In August, for instance, Musk tweeted that AI is "potentially more dangerous than nukes." And in October, he said this at a symposium at MIT: "With artificial intelligence, we are summoning the demon. ... You know all those stories where there's the guy with the pentagram and the holy water and he's like... yeah, he's sure he can control the demon, [but] it doesn't work out."
Musk has a kindred spirit in Stephen Hawking. The physicist allowed in May that AI could be the "biggest event in human history," and not necessarily in a good way. A month later, he was telling John Oliver, on HBO's "Last Week Tonight," that "artificial intelligence could be a real danger in the not too distant future." How so? "It could design improvements to itself and outsmart us all."
But Google's Eric Schmidt, is having none of that pessimism. At a summit on innovation in December, the executive chairman of the far-thinking tech titan -- which in October teamed up with Oxford University to speed up research on artificial intelligence -- said that while our worries may be natural, "they're also misguided."

View Article Here Read More

Top 6 tips for using ordinary binoculars for stargazing




Excerpt from earthsky.org


Admit it.  You’ve probably got a pair of binoculars lying around your house somewhere. They may be perfect – that’s right, perfect – for beginning stargazing. Follow the links below to learn more about the best deal around for people who want to get acquainted with the night sky: a pair of ordinary binoculars.
1. Binoculars are a better place to start than telescopes
2. Start with a small, easy-to-use size
3. First, view the moon with binoculars.
4. Move on to viewing planets with binoculars.
5. Use your binoculars to explore inside our Milky Way.
6. Use your binoculars to peer beyond the Milky Way.

1. Binoculars are a better place to start than telescopes. The fact is that most people who think they want to buy a telescope would be better off using binoculars for a year or so instead.  That’s because first-time telescope users often find themselves completely confused – and ultimately put off – by the dual tasks of learning the use a complicated piece of equipment (the ‘scope) while at the same time learning to navigate an unknown realm (the night sky).
Beginning stargazers often find that an ordinary pair of binoculars – available from any discount store – can give them the experience they’re looking for.  After all, in astronomy, magnification and light-gathering power let you see more of what’s up there.  Even a moderate form of power, like those provided by a pair of 7×50 binoculars, reveals 7 times as much information as the unaided eye can see.

You also need to know where to look. Many people start with a planisphere as they begin their journey making friends with the stars. You can purchase a planisphere at the EarthSky store. Also consider our Astronomy Kit, which has a booklet on what you can see with your binoculars.

2. Start with a small, easy-to-use size.  Don’t buy a huge pair of binoculars to start with! Unless you mount them on a tripod, they’ll shake and make your view of the heavens shakey, too. The video above – from ExpertVillage – does a good job summing up what you want. And in case you don’t want to watch the video, the answer is that 7X50 binoculars are optimum for budding astronomers.  You can see a lot, and you can hold them steadily enough that jitters don’t spoil your view of the sky.  Plus they’re very useful for daylight pursuits, like birdwatching. If 7X50s are too big for you – or if you want binoculars for a child – try 7X35s.

February 24, 2014 moon with earthshine by Greg Diesel Landscape Photography.
February 24, 2014 moon with earthshine by Greg Diesel Landscape Photography.

3. First, view the moon with binoculars. When you start to stargaze, you’ll want to watch the phase of the moon carefully. If you want to see deep-sky objects inside our Milky Way galaxy – or outside the galaxy – you’ll want to avoid the moon. But the moon itself is a perfect target for beginning astronomers, armed with binoculars. Hint: the best time to observe the moon is in twilight. Then the glare of the moon is not so great, and you’ll see more detail.

You’ll want to start your moon-gazing when the moon is just past new – and visible as a waxing crescent in the western sky after sunset. At such times, you’ll have a beautiful view of earthshine on the moon.  This eerie glow on the moon’s darkened portion is really light reflected from Earth onto the moon’s surface.  Be sure to turn your binoculars on the moon at these times to enhance the view. 
Each month, as the moon goes through its regular phases, you can see the line of sunrise and sunset on the moon progress across the moon’s face. That’s just the line between light and dark on the moon. This line between the day and night sides of the moon is called the terminator line.  The best place to look at the moon from Earth – using your binoculars – is along the terminator line. The sun angle is very low in this twilight zone, just as the sun is low in our sky around earthly twilight.  So, along the terminator on the moon, lunar features cast long shadows in sharp relief.

You can also look in on the gray blotches on the moon called maria, named when early astronomers thought these lunar features were seas.  The maria are not seas, of course, and instead they’re now thought to have formed 3.5 billion years ago when asteroid-sized rocks hit the moon so hard that lava percolated up through cracks in the lunar crust and flooded the impact basins. These lava plains cooled and eventually formed the gray seas we see today.

The white highlands, nestled between the maria, are older terrain pockmarked by thousands of craters that formed over the eons. Some of the larger craters are visible in binoculars. One of them, Tycho, at the six o’clock position on the moon, emanates long swatches of white rays for hundreds of miles over the adjacent highlands. This is material kicked out during the Tycho impact 2.5 million years ago.

View Larger. Photo of Jupiter's moons by Carl Galloway. Thank you Carl! The four major moons of Jupiter - Io, Europa, Ganymede and Callisto - are easily seen through a low-powered telescope. Click here for a chart of Jupiter's moons
Photo of Jupiter’s moons by Earthsky Facebook friend Carl Galloway. Thank you Carl! The four major moons of Jupiter are called Io, Europa, Ganymede and Callisto. This is a telescopic view, but you can glimpse one, two or more moons through your binoculars, too.


4. Move on to viewing planets with binoculars. Here’s the deal about planets.  They move around, apart from the fixed stars.  They are wanderers, right?

You can use our EarthSky Tonight page to locate planets visible around now.  Notice if any planets are mentioned in the calendar on the Tonight page, and if so click on that day’s link.  On our Tonight page, we feature planets on days when they’re easily identifiable for some reason – for example, when a planet is near the moon.  So our Tonight page calendar can help you come to know the planets, and, as you’re learning to identify them, keep your binoculars very handy. Binoculars will enhance your view of a planet near the moon, for example, or two planets near each other in the twilight sky. They add a lot to the fun!

Below, you’ll find some more simple ideas on how to view planets with your binoculars.

Mercury and Venus. These are both inner planets.  They orbit the sun closer than Earth’s orbit.  And for that reason, both Mercury and Venus show phases as seen from Earth at certain times in their orbit – a few days before or after the planet passes between the sun and Earth.  At such times,  turn your binoculars on Mercury or Venus. Good optical quality helps here, but you should be able to see them in a crescent phase. Tip: Venus is so bright that its glare will overwhelm the view. Try looking in twilight instead of true darkness.

Mars. Mars – the Red Planet – really does look red, and using binoculars will intensify the color of this object (or of any colored star). Mars also moves rapidly in front of the stars, and it’s fun to aim your binoculars in its direction when it’s passing near another bright star or planet.

Jupiter. Now on to the real action!  Jupiter is a great binocular target, even for beginners.   If you are sure to hold your binoculars steadily as you peer at this bright planet,  you should see four bright points of light near it.  These are the Galilean Satellites – four moons gleaned through one of the first telescopes ever made, by the Italian astronomer Galileo. Note how their relative positions change from night to night as each moon moves around Jupiter in its own orbit.

Saturn.Although a small telescope is needed to see Saturn’s rings, you can use your binoculars to see Saturn’s beautiful golden color.  Experienced observers sometimes glimpse Saturn’s largest moon Titan with binoculars.  Also, good-quality high-powered binoculars – mounted on a tripod – will show you that Saturn is not round.  The rings give it an elliptical shape.

Uranus and Neptune. Some planets are squarely binocular and telescope targets. If you’re armed with a finder chart, two of them, Uranus and Neptune, are easy to spot in binoculars. Uranus might even look greenish, thanks to methane in the planet’s atmosphere. Once a year, Uranus is barely bright enough to glimpse with the unaided eye . . . use binoculars to find it first. Distant Neptune will always look like a star, even though it has an atmosphere practically identical to Uranus.

There are still other denizens of the solar system you can capture through binocs. Look for the occasional comet, which appears as a fuzzy blob of light. Then there are the asteroids – fully 12 of them can be followed with binoculars when they are at their brightest. Because an asteroid looks star-like, the secret to confirming its presence is to sketch a star field through which it’s passing. Do this over subsequent nights; the star that changes position relative to the others is our solar system interloper.

Milky Way Galaxy arching over a Joshua tree

Pleiades star cluster, also known as the Seven Sisters
Pleiades star cluster, also known as the Seven Sisters





5. Use your binoculars to explore inside our Milky Way.  Binoculars can introduce you to many members of our home galaxy. A good place to start is with star clusters that are close to Earth. They cover a larger area of the sky than other, more distant clusters usually glimpsed through a telescope.

Beginning each autumn and into the spring, look for a tiny dipper-like cluster of stars called the Pleiades.  The cluster – sometimes also called the Seven Sisters – is noticeable for being small yet distinctively dipper-like. While most people say they see only six stars here with the unaided eye, binoculars reveal many more stars, plus a dainty chain of stars extending off to one side. The Pleiades star cluster is looks big and distinctive because it’s relatively close – about 400 light years from Earth. This dipper-shaped cluster is a true cluster of stars in space.  Its members were born around the same time and are still bound by gravity.  These stars are very young, on the order of 20 million years old, in contrast to the roughly five billion years for our sun.

Stars in a cluster all formed from the same gas cloud. You can also see what the Pleiades might have like in a primordial state, by shifting your gaze to the prominent constellation Orion the Hunter. Look for Orion’s sword stars, just below his prominent belt stars. If the night is crisp and clear, and you’re away from urban streetlight glare, unaided eyes will show that the sword isn’t entirely composed of stars. Binoculars show a steady patch of glowing gas where, right at this moment, a star cluster is being born. It’s called the Orion Nebula. A summertime counterpart is the Lagoon Nebula, in Sagittarius the Archer.

With star factories like the Orion Nebula, we aren’t really seeing the young stars themselves. They are buried deep within the nebula, bathing the gas cloud with ultraviolet radiation and making it glow. In a few tens of thousands of years, stellar winds from these young, energetic stars will blow away their gaseous cocoons to reveal a newly minted star cluster.

Scan along the Milky Way to see still more sights that hint at our home galaxy’s complexity. First, there’s the Milky Way glow itself; just a casual glance through binoculars will reveal that it is still more stars we can’t resolve with our eyes . . . hundreds of thousands of them. Periodically, while scanning, you might sweep past what appears to be blob-like, black voids in the stellar sheen. These are dark, non-glowing pockets of gas and dust that we see silhouetted against the stellar backdrop. This is the stuff of future star and solar systems, just waiting around to coalesce into new suns.

Andromeda Galaxy from Chris Levitan Photography.
Andromeda Galaxy from Chris Levitan Photography.

Many people use the M- or W-shaped constellation Cassiopeia to find the Andromeda Galaxy.  See how the star Schedar points to the galaxy?  Click here to expand image.
Many people use the M- or W-shaped constellation Cassiopeia to find the Andromeda Galaxy. See how the star Schedar points to the galaxy?


6. Use your binoculars to view beyond the Milky Way.  Let’s leap out of our galaxy for the final stop in our binocular tour. Throughout fall and winter, she reigns high in the sky during northern hemisphere autumns and winters: Andromeda the Maiden. Centered in the star pattern is an oval patch of light, readily visible to the unaided eye away from urban lights. Binoculars will show it even better.

It’s a whole other galaxy like our own, shining across the vastness of intergalactic space. Light from the Andromeda Galaxy has traveled so far that it’s taken more than 2 million years to reach us.
Two smaller companions visible through binoculars on a dark, transparent night are the Andromeda Galaxy’s version of our Milky Way’s Magellanic Clouds. These small, orbiting, irregularly-shaped galaxies that will eventually be torn apart by their parent galaxy’s gravity.

Such sights, from lunar wastelands to the glow of a nearby island universe, are all within reach of a pair of handheld optics, really small telescopes in their own right: your binoculars.

John Shibley wrote the original draft of this article, years ago, and we’ve been expanding it and updating it ever since. Thanks, John!
Bottom line: For beginning stargazers, there’s no better tool than an ordinary pair of binoculars. This post tells you why, explains what size to get, and gives you a rundown on some of the coolest binoculars sights out there: the moon, the planets, inside the Milky Way, and beyond. Have fun!

View Article Here Read More
Older posts Newer posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑