Tag: foundation (page 2 of 8)

VLA photos 18 years apart show dramatic difference in young stellar system

Excerpt from bulletinstandard.com  A pair of pictures of a young star, produced 18 years apart, has revealed a dramatic distinction that is giving astronomers with a exclusive, "real-time" appear at how enormous stars create in the e...

View Article Here Read More

Surface of Venus revealed by new radio telescope data


https://i0.wp.com/www.smnweekly.com/wp-content/uploads/2015/03/Surface-of-Venus-revealed-by-new-radio-telescope-data.jpg?resize=605%2C608



Excerpt from smnweekly.com
By David M. DeMar

New radio telescope data from the National Radio Astronomy Observatory has revealed for the first time ever just what Venus has under its thick veil of clouds that otherwise occlude its surface from view.
25 million miles distant from us, Venus looks to the naked eye – or through a light telescope – much like a cloudy marble, thanks to the thick cloudbanks of carbon dioxide ringing the planet. However, the surface underneath, long a mystery to planetary scientists, has been laid bare thanks to the work of Puerto Rico’s Arecibo Observatory radio transmitter and the Green Bank Telescope, a radio telescope located in West Virginia and operated by the National Science Foundation.
The two facilities worked together with the NRAO in order to uncover the hidden surface of Mars. Arecibo sent radar signals to Venus, where they penetrated the thick atmosphere and bounced off the ground. The returning radio signals were picked up by the GBT in West Virginia in a process known as bistatic radar; the result is a radar image that shows craters and mountains strewn across the surface of Venus at a surprisingly high resolution.
The image is bisected by a dark line, representing areas where it’s particularly difficult to receive useful image data through the use of bistatic radar. However, scientists are intending to compare multiple images as time goes by in order to identify any active geologic processes on the surface of Venus such as volcanic activity.
It’s no particularly easy task to compare radar images in search of evidence of any change in this manner says Smithsonian senior scientist Bruce Campbell, but the work will continue. Campbell, who works at the National Air and Space Museum in the nation’s capital and is associated with the center for Earth and Planetary Studies, added that combining images from the latest NRAO endeavor and others will yield large amounts of data on how the surface of Venus might be altered by other processes.
The radar data, and a scientific paper based on it, will be published in April in Icarus, the scientific journal dedicated to studies of the solar system.

View Article Here Read More

Billionaire teams up with NASA to mine the moon




Excerpt from cnbc.com
By Susan Caminiti



Moon Express, a Mountain View, California-based company that's aiming to send the first commercial robotic spacecraft to the moon next year, just took another step closer toward that lofty goal. 

Earlier this year, it became the first company to successfully test a prototype of a lunar lander at the Kennedy Space Center in Florida. The success of this test—and a series of others that will take place later this year—paves the way for Moon Express to send its lander to the moon in 2016, said company co-founder and chairman Naveen Jain.

Moon Express conducted its tests with the support of NASA engineers, who are sharing with the company their deep well of lunar know-how. The NASA lunar initiative—known as Catalyst—is designed to spur new commercial U.S. capabilities to reach the moon and tap into its considerable resources.In addition to Moon Express, NASA is also working with Astrobotic Technologies of Pittsburgh, Pennsylvania, and Masten Space Systems of Mojave, California, to develop commercial robotic spacecrafts. 

Jain said Moon Express also recently signed an agreement to take over Space Launch Complex 36 at Cape Canaveral. The historic launchpad will be used for Moon Express's lander development and flight-test operations. Before it was decommissioned, the launchpad was home to NASA's Atlas-Centaur rocket program and its Surveyor moon landers.

"Clearly, NASA has an amazing amount of expertise when it comes to getting to the moon, and it wants to pass that knowledge on to a company like ours that has the best chance of being successful," said Jain, a serial entrepreneur who also founded Internet companies Infospace and Intelius. He believes that the moon holds precious metals and rare minerals that can be brought back to help address Earth's energy, health and resource challenges. 

Among the moon's vast riches: gold, cobalt, iron, palladium, platinum, tungsten and Helium-3, a gas that can be used in future fusion reactors to provide nuclear power without radioactive waste. "We went to the moon 50 years ago, yet today we have more computing power with our iPhones than the computers that sent men into space," Jain said. "That type of exponential technological growth is allowing things to happen that was never possible before."

An eye on the Google prize

Source: MoonExpress

Helping to drive this newfound interest in privately funded space exploration is the Google Lunar X Prize. It's a competition organized by the X Prize Foundation and sponsored by Google that will award $30 million to the first company that lands a commercial spacecraft on the moon, travels 500 meters across its surface and sends high-definition images and video back to Earth—all before the end of 2016.

Moon Express is already at the front of the pack. In January it was awarded a $1 million milestone prize from Google for being the only company in the competition so far to test a prototype of its lander. "Winning the X prize would be a great thing," said Jain. "But building a great company is the ultimate goal with us." When it comes to space exploration, he added, "it's clear that the baton has been passed from the government to the private sector."

Testing in stages

Jain said Moon Express has been putting its lunar lander through a series of tests at the space center. The successful outing earlier this year involved tethering the vehicle—which is the size of a coffee table—to a crane in order to safely test its control systems. "The reason we tethered it to the crane is because the last thing we wanted was the aircraft to go completely haywire and hurt someone," he said. 

At the end of March, the company will conduct a completely free flight test with no tethering. The lander will take off from the pad, go up and sideways, then land back at the launchpad. "This is to test that the vehicle knows where to go and how to get back to the launchpad safely," Jain explained.


Once all these tests are successfully completed, Jain said the lander—called MX-1—will be ready to travel to the moon. The most likely scenario is that it will be attached to a satellite that will take the lander into a low orbit over the Earth. From there the MX-1 will fire its own rocket, powered by hydrogen peroxide, and launch from that orbit to complete its travel to the moon's surface. 

The lander's first mission is a one-way trip, meaning that it's not designed to travel back to the Earth, said Jain. "The purpose is to show that for the first time, a company has developed the technology to land softly on the moon," he said. "Landing on the moon is not the hard part. Landing softly is the hard part." 

That's because even though the gravity of the moon is one-sixth that of the Earth's, the lander will still be traveling down to the surface of the moon "like a bullet," Jain explained. Without the right calculations to indicate when its rockets have to fire in order to slow it down, the lander would hit the surface of the moon and break into millions of pieces. "Unlike here on Earth, there's no GPS on the moon to tell us this, so we have to do all these calculations first," he said. 

Looking ahead 15 or 20 years, Jain said he envisions a day when the moon is used as a sort of way station enabling easier travel for exploration to other planets. In the meantime, he said the lander's second and third missions could likely involve bringing precious metals, minerals and even moon rocks back to Earth. "Today, people look at diamonds as this rare thing on Earth," Jain said.
He added, "Imagine telling someone you love her by giving her the moon."

View Article Here Read More

Scientists Believe Oxygen Free Methane Based Aliens Might Exist on Icy Saturn Moon Titan





Excerpt from viralglobalnews.com

A group of scientists at Cornell University believe that Titan, one of Saturn’s moons, may be a haven of life. However, it would not be in the form that human beings know. Methane based life forms might live on Titan, the scientists have said, after they created a model of an oxygen free life form which would be able to thrive in the icy, unforgiving conditions that Saturn’s moon offers.
They studied the various forms of cell membranes that exist on Earth, which are made up of lipid bi-layer structures. The Cornell scientists said such membranes would not be able to exist in environments where liquid water could not be present, according to Design and Trend.
Titan has plenty of lakes filled with methane, so that means it might not be habitable in the way that scientists had formerly described habitability. However, Dr. James Stevenson and his team thinks that contrarily structured membranes could offer the foundation for life to exist on Saturn’s moon. The model they created used organic nitrogen mixtures, so that the new structure could easily function on Titan in the richness of the methane that exists in liquid form there.

 Titan

Dr. Stevenson said it was Isaac Asimov, the celebrated sci-fi writer, who first gave the rudimentary inspiration for the idea in the paper he penned, which was called the Not as We Know It essay. It was written about non-water-based life forms. Because Saturn’s moon is the only known celestial form in the solar system to have naturally occurring fluids on its surface, except for the Earth, the group of scientists believe it to be a possible perfect foundation for life forms to develop.
Dr. Paulette Clancy, who has helped lead the group, constructed an “azotosome.” It is comparable in name origin to liposome which comes from the Greek words lipos and soma. An azotosome comes from the French word for nitrogen. Therefore, the word is describing a nitrogen body.
Instead of trying to find alien life within the area that surrounds the Sun where water exists in liquid form, the group decided to try and imagine a new kind of cell, grounded on methane instead of water. Clancy and the team were dumbfounded to find that this new projected model presented an alike stability to the cell membranes already here on Earth.
Dr. Clancy seemed very anxious to carry on the group’s work and find out how such compounds would truly work in the methane atmosphere. Dr. Jonathan Lunine, who is a top expert in Titan and also one of the co-authors of the study, thinks that it might be possible in the future to in fact test these theories by actually examing organic material from Saturn’s moon. In the years to come, Dr. Lunine stated that probes might be sent to Titan to gather the needed material by floating down on the methane seas of the moon of Saturn.
The group discovered a compound they named acrylonitrile azotosome, which appeared to show good stability. It had a strong barricade to decomposition, and a suppleness that was similar to phospholipid membranes that exist on Earth. Acrylonitrile is a poisonous, colorless, liquid organic compound that is used in the production of acrylic fibers and thermoplastics and it is present in Titan’s atmosphere as well.
They have written up about their discovery and what they believe to be possible. The scientists’ paper was printed up in the journal Science Advances on Friday.

View Article Here Read More

Another Problem for Evolution Theory? ‘Big Brain’ Gene Found in Humans, But Not in Chimps



Image: Mouse brain
M. Florio and W. Huttner / Max Planck Institute
This embryonic mouse cerebral cortex was stained to identify cell nuclei (in blue) and a marker for deep-layer neurons (in red). The human-specific gene known as ARHGAP11B was selectively expressed in the right hemisphere: Note the folding of the neocortical surface.

Excerpt from  nbcnews.com

By Tia Ghose

ave the way for the rise of human intelligence by dramatically increasing the number of neurons found in a key brain region. 

This gene seems to be uniquely human: It is found in modern-day humans, Neanderthals and another branch of extinct humans called Denisovans, but not in chimpanzees. 

By allowing the brain region called the neocortex to contain many more neurons, the tiny snippet of DNA may have laid the foundation for the human brain's massive expansion.
"It is so cool that one tiny gene alone may suffice to affect the phenotype of the stem cells, which contributed the most to the expansion of the neocortex," said study lead author Marta Florio, a doctoral candidate in molecular and cellular biology and genetics at the Max Planck Institute of Molecular Cell Biology and Genetics in Dresden, Germany. 

She and her colleagues found that the gene, called ARHGAP11B, is turned on and highly activated in the human neural progenitor cells, but isn't present at all in mouse cells. This tiny snippet of DNA, just 804 genetic bases long, was once part of a much longer gene. Somehow, this fragment was duplicated, and the duplicated fragment was inserted into the human genome. 

In follow-up experiments, the team inserted and turned on this DNA snippet in the brains of mice. The mice with the gene insertion grew what looked like larger neocortex regions. 

The researchers reviewed a wide variety of genomes from modern-day and extinct species — confirming that Neanderthals and Denisovans had this gene, while chimpanzees and mice do not. That suggests that the gene emerged soon after humans split off from chimpanzees, and that it helped pave the way for the rapid expansion of the human brain. 

Florio stressed that the gene is probably just one of many genetic changes that make human cognition special.

The gene was described in a paper published online Thursday by the journal Science.

View Article Here Read More

Mars One mission cuts candidate pool down to 100 aspiring colonists

Excerpt from mashable.comOnly 100 people are still competing for four seats on a one-way trip to Mars advertised by Dutch nonprofit Mars One.In its latest round of cuts, the foundation cut its applicant pool from 660 to 100 finalists on Tuesday. More ...

View Article Here Read More

Every Black Hole Contains a New Universe


At the center of spiral galaxy M81 is a supermassive black hole about 70 million times more massive than our sun.



Excerpt from insidescience.org
A physicist presents a solution to present-day cosmic mysteries.



By: 
Nikodem Poplawski, Inside Science Minds Guest Columnist



(ISM) -- Our universe may exist inside a black hole. This may sound strange, but it could actually be the best explanation of how the universe began, and what we observe today. It's a theory that has been explored over the past few decades by a small group of physicists including myself. 
Successful as it is, there are notable unsolved questions with the standard big bang theory, which suggests that the universe began as a seemingly impossible "singularity," an infinitely small point containing an infinitely high concentration of matter, expanding in size to what we observe today. The theory of inflation, a super-fast expansion of space proposed in recent decades, fills in many important details, such as why slight lumps in the concentration of matter in the early universe coalesced into large celestial bodies such as galaxies and clusters of galaxies.
But these theories leave major questions unresolved. For example: What started the big bang? What caused inflation to end? What is the source of the mysterious dark energy that is apparently causing the universe to speed up its expansion?
The idea that our universe is entirely contained within a black hole provides answers to these problems and many more. It eliminates the notion of physically impossible singularities in our universe. And it draws upon two central theories in physics.
Nikodem Poplawski displays a "tornado in a tube." The top bottle symbolizes a black hole, the connected necks represent a wormhole and the lower bottle symbolizes the growing universe on the just-formed other side of the wormhole. Credit: Indiana University
In this picture, spins in particles interact with spacetime and endow it with a property called "torsion." To understand torsion, imagine spacetime not as a two-dimensional canvas, but as a flexible, one-dimensional rod. Bending the rod corresponds to curving spacetime, and twisting the rod corresponds to spacetime torsion. If a rod is thin, you can bend it, but it's hard to see if it's twisted or not.

The first is general relativity, the modern theory of gravity. It describes the universe at the largest scales. Any event in the universe occurs as a point in space and time, or spacetime. A massive object such as the Sun distorts or "curves" spacetime, like a bowling ball sitting on a canvas. The Sun's gravitational dent alters the motion of Earth and the other planets orbiting it. The sun's pull of the planets appears to us as the force of gravity.

The second is quantum mechanics, which describes the universe at the smallest scales, such as the level of the atom. However, quantum mechanics and general relativity are currently separate theories; physicists have been striving to combine the two successfully into a single theory of "quantum gravity" to adequately describe important phenomena, including the behavior of subatomic particles in black holes.
A 1960s adaptation of general relativity, called the Einstein-Cartan-Sciama-Kibble theory of gravity, takes into account effects from quantum mechanics. It not only provides a step towards quantum gravity but also leads to an alternative picture of the universe. This variation of general relativity incorporates an important quantum property known as spin. Particles such as atoms and electrons possess spin, or the internal angular momentum that is analogous to a skater spinning on ice.

Spacetime torsion would only be significant, let alone noticeable, in the early universe or in black holes. In these extreme environments, spacetime torsion would manifest itself as a repulsive force that counters the attractive gravitational force coming from spacetime curvature. As in the standard version of general relativity, very massive stars end up collapsing into black holes: regions of space from which nothing, not even light, can escape.
Here is how torsion would play out in the beginning moments of our universe. Initially, the gravitational attraction from curved space would overcome torsion's repulsive forces, serving to collapse matter into smaller regions of space. But eventually torsion would become very strong and prevent matter from compressing into a point of infinite density; matter would reach a state of extremely large but finite density. As energy can be converted into mass, the immensely high gravitational energy in this extremely dense state would cause an intense production of particles, greatly increasing the mass inside the black hole.
The increasing numbers of particles with spin would result in higher levels of spacetime torsion. The repulsive torsion would stop the collapse and would create a "big bounce" like a compressed beach ball that snaps outward. The rapid recoil after such a big bounce could be what has led to our expanding universe. The result of this recoil matches observations of the universe's shape, geometry, and distribution of mass.
In turn, the torsion mechanism suggests an astonishing scenario: every black hole would produce a new, baby universe inside. If that is true, then the first matter in our universe came from somewhere else. So our own universe could be the interior of a black hole existing in another universe. Just as we cannot see what is going on inside black holes in the cosmos, any observers in the parent universe could not see what is going on in ours.
The motion of matter through the black hole's boundary, called an "event horizon," would only happen in one direction, providing a direction of time that we perceive as moving forward. The arrow of time in our universe would therefore be inherited, through torsion, from the parent universe.
Torsion could also explain the observed imbalance between matter and antimatter in the universe. Because of torsion, matter would decay into familiar electrons and quarks, and antimatter would decay into "dark matter," a mysterious invisible form of matter that appears to account for a majority of matter in the universe.
Finally, torsion could be the source of "dark energy," a mysterious form of energy that permeates all of space and increases the rate of expansion of the universe. Geometry with torsion naturally produces a "cosmological constant," a sort of added-on outward force which is the simplest way to explain dark energy. Thus, the observed accelerating expansion of the universe may end up being the strongest evidence for torsion.
Torsion therefore provides a theoretical foundation for a scenario in which the interior of every black hole becomes a new universe. It also appears as a remedy to several major problems of current theory of gravity and cosmology. Physicists still need to combine the Einstein-Cartan-Sciama-Kibble theory fully with quantum mechanics into a quantum theory of gravity. While resolving some major questions, it raises new ones of its own. For example, what do we know about the parent universe and the black hole inside which our own universe resides? How many layers of parent universes would we have? How can we test that our universe lives in a black hole?
The last question can potentially be investigated: since all stars and thus black holes rotate, our universe would have inherited the parent black hole’s axis of rotation as a "preferred direction." There is some recently reported evidence from surveys of over 15,000 galaxies that in one hemisphere of the universe more spiral galaxies are "left-handed", or rotating clockwise, while in the other hemisphere more are "right-handed", or rotating counterclockwise. In any case, I believe that including torsion in geometry of spacetime is a right step towards a successful theory of cosmology.

View Article Here Read More

New internet neutrality: FCC chairman proposes strong new rules

Excerpt from mercurynews.comThe federal government's top communications regulator on Wednesday called for strong new rules to bar Internet and wireless providers from blocking, slowing or discriminating against consumers' access to particular websi...

View Article Here Read More

California breaks ground on bullet train project despite opposition, as price tag soars





Excerpt from foxnews.com

Despite cost overruns, lawsuits, public opposition and a projected completion date 13 years behind schedule, California Gov. Jerry Brown broke ground Tuesday on what is to become the most expensive public works project in U.S. history: the California bullet train. 

Over the next 1,000 days, California is estimated to spend roughly $4 million a day on the project. 

The high-speed train, set to be finished in 2033, originally was supposed to deliver passengers from San Francisco to Los Angeles in two hours and 40 minutes. That was the promise when voters narrowly approved $10 billion in bonds for the project in 2008. Since then, however, the estimated trip time has grown considerably, and the train has encountered persistent problems -- as experts uncovered misrepresentations in the ballot proposition, and opponents sued to stop the project on environmental and fiscal grounds. 

"We're talking about real money here," said Kris Vosburgh, executive director of taxpayer watchdog group Howard Jarvis Taxpayers Association. "This is money that's not available for health care or education, for public safety, or put back in taxpayers' pockets so they have something to spend. This is money being drawn out of the system for a program that is going to serve very few people." 

Much about the project has changed since it was sold to the public. 
Voters were told the project would cost just $33 billion. Once experts crunched the numbers, however, the price tag soared to $98 billion. It was supposed to whoosh riders from Southern California to the Bay Area in less than three hours, but now it’s more than four hours due to changing track configurations and route adjustments. The train was supposed to get people off the freeway and reduce carbon emissions, but a panel of experts now says any carbon savings will be nominal. (A drive by car takes just over 6 hours. Ed.) 

Further, ridership projections have been cut by two-thirds from a projected 90 million to 30 million a year. Fewer riders means higher prices. According to a panel of transportation experts hired by the Reason Foundation, Citizens Against Government Waste and the Howard Jarvis Taxpayers Association, tickets will exceed $80 -- not $50 -- and the system will require annual subsidies of more than $300 million annually. 

"The public has turned sour on this plan but the governor, to paraphrase Admiral Farragut, has taken a position of 'damn the people, full speed ahead'," Vosburgh said. 

Undaunted by critics, Brown broke ground in Fresno on Tuesday on the first 29-mile segment of the train's system. Under Brown's direction, the California High Speed Rail Authority has gone to court to seek an exemption from an environmental quality law the state imposes on other projects but not this one. Brown also convinced the state Legislature to dedicate an annual revenue stream from the state's carbon tax, to help pay for the bullet train. 
"It's a long project, a bold project and one that will transform the Central Valley," Brown said Monday as he began his fourth and final term as governor. 

Once construction begins, supporters say it will be harder to stop the project. Several lawsuits linger, but a bigger question concerns the money: Where will it come from? If every penny committed to the project is added up, the project is still more than $30 billion short. Republicans in Congress are vowing not to commit a dollar more than President Obama approved in 2012. 

"For years now, Governor Brown and the high-speed rail authority have turned the idea of high-speed rail into a public albatross far beyond what Californians envisioned or voted for," House Majority Leader Kevin McCarthy, R-Calif., said in a statement released Tuesday. "Sadly, today's groundbreaking is a political maneuver. Supporters of the railroad in Sacramento can't admit their project is deeply flawed, and they won't give up on it despite the cost. But these political tricks are exactly what the American people are tired of and what the new Republican Congress is committed to ending." 

Supporters don't see waste. They argue the project will reduce freeway gridlock, offer competition to air travel and provide an alternative to trucking freight. 

Environmentalists also have opposed the project, suing and claiming the construction project would harm 11 endangered species and worsen air quality in the already dirty Central Valley. They lost when a federal judge ruled the project did not have to adhere to the state Environmental Quality Act, unlike other projects. Additional legal challenges remain, but supporters believe once the train leaves the station and ground is broken, there's no going back. 

"The legacy of the Brown family is that they have been big thinkers, but also big builders," said Democratic state Assemblyman Henry Perea. "I think this is an opportunity for the legislature to step up, support Governor Brown. "

View Article Here Read More

Time Travel to 2038 ~ With Dr Robert Schoch, George Noory, John Van Auken & James Tyberonn

  Fascinating discussion of 2038, Time Travel & Reincarnational Sequence with James Tyberonn (Earth-Keeper) George Noory (Coast to Coast AM Host), Dr Robert Schoch ( NY Times Best Selling Author) and John Van Auken (Edgar Cayce Foundation).

View Article Here Read More

Mars Capsule Test Heralds New Space Age With Musk Alongside NASA




Excerpt from
bloomberg.com

The U.S. is preparing to launch the first craft developed to fly humans to Mars, presaging a second space age -- this one fueled by billionaires like Elon Musk rather than a Cold War contest with the Soviet Union. 

An unmanned version of the Orion spaceship built by Lockheed Martin Corp. (LMT) is scheduled for liftoff tomorrow to an altitude of 3,600 miles (5,800 kilometers), the farthest from Earth by a vehicle designed for people since the Apollo program was scrapped in 1972. 

Entrepreneurs such as Musk and longtime contractors like Lockheed are helping shape the technology needed to find other homes for humanity in the solar system with an eye to one day commercializing their work. 

“These are really exciting times for space exploration and for our nation as we begin to return to the ability to fly humans to space,” said Jim Crocker, vice president and general manager of civil space at Lockheed Martin Space Systems. “What Orion is about is going further into space than humans have ever gone before.”
Photographer: Brent Lewis/The Denver Post via Getty Images

Launched from Kennedy Space Center in Florida atop a Delta IV rocket, the Orion capsule will test the riskiest systems needed to carry astronauts far beyond the moon, although its first flight will cover only about 2 percent of the 238,900-mile distance to the lunar surface.

Speed Limit

After orbiting earth twice, Orion will accelerate to 20,000 miles per hour during descent, mimicking the speeds of a craft returning from a mission to deep space. The capsule is supposed to make a parachute-cushioned splashdown in the Pacific Ocean off Mexico’s Baja peninsula. 

To explore the universe, the National Aeronautics and Space Administration must first redevelop capabilities abandoned more than 40 years ago when the U.S. shifted focus from Apollo’s lunar forays to rocketing crews a few hundred miles to low Earth orbit.
NASA has used Russian craft to reach the International Space Station since the space shuttle program ended in 2011. 

In a strategic shift, the Obama administration canceled plans to return to the moon, turning some flights to commercial companies while setting its sights -- and limited funds -- on pioneering deep space. The Orion capsule was originally commissioned in 2006 for the defunct Constellation program.

Musk, Bezos

Those moves paved the way for technology chieftains including Musk and Amazon.com Inc. (AMZN) founder Jeff Bezos to pursue their own space ambitions. 

Musk founded Hawthorne, California-based SpaceX in 2002 with the goal of enabling people to live on other planets, a massive endeavor that would require innovations such as reusable rocket stages to lower costs. 

Mars is also in focus for NASA as the space agency maps plans to “pioneer the space frontier,” according to a May 29 white paper.

$22 Billion

NASA proposes an initial $22 billion effort that includes two other Orion missions over the next eight years and building a powerful new rocket. The Delta IV being used tomorrow is manufactured by United Launch Alliance, a Lockheed-Boeing Co. (BA) venture.

A new Space Launch System rocket being developed by the partnership is slated to hoist the next Orion craft beyond the moon in fiscal 2018, Lockheed’s Crocker said in a phone interview. The first manned Orion mission is slated for early in the next decade.
NASA’s plans are “sketchy” beyond that, aside from broad goals to capture asteroid samples in the 2020s and reach Mars a decade later, said Marco Caceres, director of space studies with Fairfax, Virginia-based consultant Teal Group. 

Average Distance

While Mars’s distance from Earth varies because of the two planets’ orbits, the average is about 140 million miles, almost 600 times longer than a trip to the moon. It’s so far that radio communications take as long as 20 minutes to travel each way, according to Bill Hill, NASA’s deputy associate administrator for exploration systems development. 


Entrepreneurs such as Musk will have opportunities to get involved as NASA refines capsule and rocket designs. NASA plans to develop two larger rockets beyond the initial launch vehicle, which will be capable of hauling a 70-metric ton payload. 

“We’re not taking any options off the table,” Hill said. “We want to be sufficiently flexible so that if we find a new path, we can introduce it and not change course.” 

Expense, shifting political priorities and the lack of a clear NASA road map could still derail the latest effort as they did the Apollo program in the early 1970s, said Micah Walter-Range, director of research analysis with the Space Foundation, a non-profit organization based in Colorado Springs, Colorado. 

“All of the challenges that exist are surmountable,” Walter-Range said by phone. “It’s just a question of having the money to do it.”

View Article Here Read More

NASA Is Building a Sustainable ‘Highway’ for Unprecedented Deep Space Exploration

Excerpt from huffingtonpost.comIn early December, NASA will take an important step into the future with the first flight test of the Orion spacecraft -- the first vehicle in history capable of taking humans to multiple destinations in deep space. An...

View Article Here Read More

The Astonishing Sumerian Kings List ~ Did Sumerian Kings Rule for Thousands of Years? By Greg Giles


https://i0.wp.com/sumerianshakespeare.com/media/eff4fb62c807457effff8059ffffe417.jpg?resize=640%2C340
All four sides of the Sumerian kings list artifact

The following work is a translation provided by Oxford University (England), of a prism now in the Weld-Blundell collection of the Ashmolean Museum in Oxford, England. Known more popularly as the Sumerian kings list, it is a list compiled from fifteen or more different texts, tracing the rulers of certain Sumerian cities in succession. The original form of the list is believed to go back to approximately 2,000 BC.  


What is remarkable about this list is the lengths of reigns of a number of kings, some listed as long as 43,200 years. I find several possibilities for the long reigns inscribed on this artifact.  

1. This artifact is a hoax. I do not see this as likely however, as this artifact appears to be taken seriously by credible sources, namely Oxford University.  

2. The scribes and artisans who created the list erred. I do not see this as a very likely explanation either, as even the most mathematically challenged scribe would have noticed the hugely obvious oversights.  

3. The lengths of reigns was propaganda, conning the masses into seeing their kings as more god-like. This scenario is at least plausible, as history books state that as recently as the 20th century, the Japanese people believed their emperor Hirohito was a god, only to be shocked to learn the truth as he made public appearances after Japan's defeat at the end of World War 2. 

4. A handful of modern day scholars believe the years listed are multiplied equations, with kings receiving exaggerated lengths of reigns dependent upon their achievements while ruler. I see this as possible, though I am not convinced. Why choose such an odd way to honor a past king? Sumerians have preserved in tablet and other forms such accurate record keeping on so many varied subjects. Would they really choose to distort their records, records they carefully preserved for future generations, to honor past kings? There is also a lack of solid evidence to support this theory. 

5. Humans lived far longer life spans in our past. I see this theory as certainly possible.  

6. Ancient Sumerian kings were of extraterrestrial origin. 

What I find most intriguing is that possibilities number 5 & 6 appear the most likely explanations to the Sumerian king list.

Greg Giles     

 

.

The Sumerian king list: Translation provided by Oxford University etcsl.orinst.ox.ac.uk

(In the following translation, mss. are referred to by the sigla used by Vincente 1995; from those listed there, mss. Fi, Go, P6, and WB 62 were not used; if not specified by a note, numerical data come from ms. WB.)
1-39After the kingship descended from heaven, the kingship was in Eridug. In Eridug, Alulim became king; he ruled for 28800 years. Alaljar ruled for 36000 years. 2 kings; they ruled for 64800 years. Then Eridug fell and the kingship was taken to Bad-tibira. In Bad-tibira, En-men-lu-ana ruled for 43200 years. En-men-gal-ana ruled for 28800 years. Dumuzid, the shepherd, ruled for 36000 years. 3 kings; they ruled for 108000 years. Then Bad-tibira fell (?) and the kingship was taken to Larag. In Larag, En-sipad-zid-ana ruled for 28800 years. 1 king; he ruled for 28800 years. Then Laragfell (?) and the kingship was taken to Zimbir. In Zimbir, En-men-dur-ana became king; he ruled for 21000 years. 1 king; he ruled for 21000 years. Then Zimbir fell (?) and the kingship was taken to Curuppag. In Curuppag, Ubara-Tutu became king; he ruled for 18600 years. 1 king; he ruled for 18600 years. In 5 cities 8 kings; they ruled for 241200 years. Then the flood swept over.
40-94After the flood had swept over, and the kingship had descended from heaven, the kingship was in Kic. In Kic, Jucur became king; he ruled for 1200 years. Kullassina-bel ruled for 960 (ms. P2+L2 has instead: 900) years. Nanjiclicma ruled for (ms. P2+L2 has:) 670 (?) years. En-tarah-ana ruled for (ms. P2+L2 has:) 420 years ......, 3 months, and 3 1/2 days. Babum ...... ruled for (ms. P2+L2 has:) 300 years. Puannumruled for 840 (ms. P2+L2 has instead: 240) years. Kalibum ruled for 960 (ms. P2+L2 has instead:900) years. Kalumum ruled for 840 (mss. P3+BT14, Su1 have instead:900) years. Zuqaqip ruled for 900 (ms. Su1 has instead: 600)years. (In mss. P2+L2, P3+BT14, P5, the 10th and 11th rulers of the dynasty precede the 8th and 9th.) Atab (mss. P2+L2, P3+BT14, P5 have instead: Aba) ruled for 600 years. Macda, the son of Atab, ruled for 840 (ms. Su1 has instead:720) years. Arwium, the son of Macda, ruled for 720 years. Etana, the shepherd, who ascended to heaven and consolidated all the foreign countries, became king; he ruled for 1500 (ms. P2+L2 has instead: 635) years. Balih, the son of Etana, ruled for 400 (mss. P2+L2, Su1 have instead: 410) years. En-me-nuna ruled for 660 (ms. P2+L2 has instead:621) years. Melem-Kic, the son of En-me-nuna, ruled for 900 years. (ms. P3+BT14 adds:) 1560 are the years of the dynasty of En-me-nuna . Barsal-nuna, the son of En-me-nuna,(mss. P5, P3+BT14 have instead: Barsal-nuna) ruled for 1200 years. Zamug, the son of Barsal-nuna, ruled for 140 years. Tizqar, the son of Zamug, ruled for 305 years. (ms. P3+BT14 adds:) 1620 + X ....... Ilku ruled for 900 years. Iltasadum ruled for 1200 years. En-men-barage-si, who made the land of Elamsubmit, became king; he ruled for 900 years. Aga, the son of En-men-barage-si, ruled for 625 years. (ms. P3+BT14 adds:) 1525 are the years of the dynasty of En-men-barage-si. 23 kings; they ruled for 24510 years, 3 months, and 3 1/2 days. Then Kic was defeated and the kingship was taken to E-ana.
95-133In E-ana, Mec-ki-aj-gacer, the son of Utu, became lord and king; he ruled for 324 (ms. P2+L2 has instead: 325)years. Mec-ki-aj-gacer entered the sea and disappeared. Enmerkar, the son of Mec-ki-aj-gacer, the king of Unug, who built Unug (mss. L1+N1, P2+L2 have instead: under whom Unug was built), became king; he ruled for 420 (ms. TL has instead: 900 + X) years. (ms. P3+BT14 adds:) 745 are the years of the dynasty of Mec-ki-aj-gacer. (ms TL adds instead: ......; he ruled for 5 + X years.) Lugalbanda, the shepherd, ruled for 1200 years. Dumuzid, the fisherman, whose city was Kuara, ruled for 100 (ms. TL has instead: 110) years. (ms. P3+BT14 adds:) He captured En-me-barage-si single-handed. Gilgamec, whose father was a phantom (?), the lord of Kulaba, ruled for 126 years. Ur-Nungal, the son of Gilgamec, ruled for 30 years. Udul-kalama, the son of Ur-Nungal (ms. Su1 has instead: Ur-lugal), ruled for 15 years. La-ba'cum ruled for 9 years. En-nun-tarah-ana ruled for 8 years. Mec-he, the smith, ruled for 36 years. Melem-ana (ms. Su2 has instead:Til-kug (?) ......) ruled for 6 (ms. Su2 has instead: 900)years. Lugal-kitun (?) ruled for 36 (ms. Su2 has instead: 420)years. 12 kings; they ruled for 2310 (ms. Su2 has instead: 3588) years. Then Unug was defeated and the kingship was taken to Urim.
134-147In Urim, Mec-Ane-pada became king; he ruled for 80 years. Mec-ki-aj-Nanna(ms. P2+L2 has instead: Mec-ki-aj-nuna), the son of Mec-Ane-pada, became king; he ruled for 36 (ms. P2+L2 has instead: 30)years. Elulu ruled for (mss. L1+N1, P2+L2, P3+BT14 have:) 25 years. Baluluruled for (mss. L1+N1, P2+L2, P3+BT14 have:) 36 years. (mss. L1+N1, P2+L2 have:) 4 kings; they ruled for (mss. L1+N1, P2+L2, P3+BT14 have:) 171 years. Then Urim was defeated and the kingship was taken to Awan.
148-159In Awan, ...... became king; he ruled for ...... years. ...... ruled for ...... years. ...... ruled for 36 years. 3 kings; they ruled for 356 years. Then Awan was defeated and the kingship was taken to Kic.
160-178In Kic, Susuda, the fuller, became king; he ruled for 201 + X years. Dadasig ruled for (ms. vD has:) 81 years. Mamagal, the boatman, ruled for 360 (ms. L1+N1 has instead: 420) years. Kalbum, the son of Mamagal (ms. WB has instead:Magalgal), ruled for 195 (ms. L1+N1 has instead: 132)years. Tuge (?) ruled for 360 years. Men-nuna, (ms. L1+N1 adds:) the son of Tuge (?), ruled for 180 years. (in mss. L1+N1, TL, the 7th and 8th rulers of the dynasty are in reverse order) ...... ruled for 290 years. Lugalju ruled for 360 (ms. L1+N1 has instead:420) years. 8 kings; they ruled for 3195 (ms. L1+N1 has instead: 3792) years. Then Kic was defeated and the kingship was taken to Hamazi.
179-185In Hamazi, Hadanic became king; he ruled for 360 years. 1 king; he ruled for 360 years. Then Hamazi was defeated and the kingship was taken (ms. P3+BT14 has instead: was returned a second time) to Unug.
(In mss. IB, L1+N1, TL, the 2nd dynasty of Unug of ll. 185-191 is preceded by the 2nd dynasty of Urim of ll. 192-203.)
186-192In Unug, En-cakanca-ana became king; he ruled for 60 years. Lugal-ure(ms. P3+BT14 has instead: Lugal-kinice-dudu (?)) ruled for 120 years. Argandea ruled for 7 years. (ms. L1+N1 has:) 3 kings; they ruled for (ms. L1+N1 has:) 187 years. Then Unug was defeated (ms. TL has instead:destroyed) and the kingship was taken to Urim.
193-204In Urim, Nani became king; he ruled for (ms. vD has:) 120 + X (ms. IB has instead: 54 + X) years. Mec-ki-aj-Nanna, the son of Nani, ruled for (ms. vD has:) 48years. ......, the son (?) of ......, ruled for (ms. IB has:) 2 years. (ms. IB has:) 3 kings; they ruled for (ms. IB has:) 582 (ms. TL has instead:578) years. (ms. vD has instead: 2 kings; they ruled for 120 + X years.) Then Urimwas defeated (ms. TL has instead: destroyed) and the kingship was taken to Adab.
205-210In Adab, Lugal-Ane-mundu became king; he ruled for (mss. L1+N1, TL have:) 90 years. (mss. L1+N1, TL have:) 1 king; he ruled for (mss. L1+N1, TL have:) 90 years. Then Adab was defeated (ms. TL has instead:destroyed) and the kingship was taken to Mari.
211-223In Mari, Anbu (?) became king; he ruled for 30 (ms. TL has instead:90) years. Anba (?), the son of Anbu (?), ruled for 17 (ms. TL has instead: 7) years. Bazi, the leatherworker, ruled for 30 years. Zizi, the fuller, ruled for 20 years. Limer, the gudu priest, ruled for 30 years. Carrum-iter ruled for 9 (ms. TL has instead: 7) years. 6 kings; they ruled for 136 (ms. TL has instead:184) years. Then Mari was defeated (ms. TL has instead:destroyed) and the kingship was taken to Kic.
224-231In Kic, Kug-Bau, the woman tavern-keeper, who made firm the foundations of Kic, became king; she ruled for 100 years. 1 king; she ruled for 100 years. Then Kic was defeated (ms. TL has instead:destroyed) and the kingship was taken to Akcak.
232-243In Akcak, Unzi became king; he ruled for 30 years. Undalulu ruled for 6(mss. L1+N1, S have instead: 12) years. Urur ruled for (ms. IB has instead: was king (?) for) 6 years. Puzur-Nirah ruled for (mss. IB, L1+N1, S, Su1 have:) 20 years. Icu-Il ruled for (mss. IB, L1+N1, S, Su1 have:) 24 years. Cu-Suen, the son of Icu-Il, ruled for (mss. IB, L1+N1, S, TL have:) 7 (ms. Su1 has instead: 24) years. (mss. S, Su1, TL have:) 6 kings; they ruled for (mss. L1+N1, S, TL have:) 99(ms. Su1 has instead: 116) years (ms. IB has instead: 5 kings; they ruled for (ms. IB has:) 87 years). Then Akcak was defeated (ms. S has instead: Then the reign of Akcak was abolished) and the kingship was taken to Kic.
(mss. IB, S, Su1, Su3+Su4 list the 3rd and 4th dynasty of Kic of ll. 224-231 and ll. 244-258, respectively, as one dynasty)
244-258In Kic, Puzur-Suen, the son of Kug-Bau, became king; he ruled for 25 years. Ur-Zababa, the son of Puzur-Suen, ruled for 400 (mss. P3+BT14, S have instead:6) (ms. IB has instead: 4 + X) years. (ms. P3+BT14 adds:) 131 are the years of the dynasty of Kug-Bau. Zimudar (ms. TL has instead: Ziju-iake) ruled for 30 (ms. IB has instead: 30 + X)years. Uß³i-watar, the son of Zimudar (ms. TL has instead: Ziju-iake), ruled for 7 (ms. S has instead: 6) years. Ectar-muti ruled for 11 (ms. Su1 has instead: 17 (?)) years. Icme-Camacruled for 11 years. (ms. Su1 adds:) Cu-ilicu ruled for 15 years. Nanniya, the jeweller, (ms. Su1 has instead: Zimudar) (ms. IB has instead: ......) ruled for 7 (ms. S has instead: 3) years. 7 kings; they ruled for 491 (ms. Su1 has instead: 485) years (ms. S has instead: 8 kings; they ruled for (ms. S has:) 586 years). Then Kic was defeated (ms. S has instead: Then the reign of Kic was abolished) and the kingship was taken (ms. P3+BT14 has instead: was returned a third time) to Unug.
(ms. IB omits the 3rd dynasty of Unug of ll. 258-263)
259-265In Unug, Lugal-zage-si became king; he ruled for 25 (ms. P3+BT14 has instead: 34) years. 1 king; he ruled for 25 (ms. P3+BT14 has instead: 34)years. Then Unug was defeated(ms. S has instead: Then the reign of Unug was abolished) and the kingship was taken to Agade.
266-296In Agade, Sargon, whose father was a gardener, the cupbearer of Ur-Zababa, became king, the king of Agade, who built Agade (ms. L1+N1 has instead:under whom Agade was built); he ruled for 56 (ms. L1+N1 has instead:55) (ms. TL has instead: 54) years. Rimuc, the son of Sargon, ruled for 9 (ms. IB has instead:7) (ms. L1+N1 has instead: 15) years. Man-icticcu, the older brother of Rimuc, the son of Sargon, ruled for 15 (ms. L1+N1 has instead:7) years. Naram-Suen, the son of Man-icticcu, ruled for (mss. L1+N1, P3+BT14 have:) 56 years. Car-kali-carri, the son of Naram-Suen, ruled for (ms. L1+N1, Su+Su4 have:) 25 (ms. P3+BT14 has instead:24) years. (ms. P3+BT14 adds:) 157 are the years of the dynasty of Sargon. Then who was king? Who was the king? (ms. Su3+Su4 has instead: who was king? Who indeed was king?) Irgigi was king, Imi was king, Nanûm was king (in mss. L1+N1, Su3+Su4, Imi and Nanûm are in reverse order) , Ilulu was king, and the (mss. P3+BT14, S have:) 4 of them ruled for only (mss. P3+BT14, S have:) 3years. Dudu ruled for 21 years. Cu-Durul, the son of Dudu, ruled for 15 (ms. IB has instead: 18) years. 11 kings; they ruled for 181 years (ms. S has instead: 12 kings; they ruled for (ms. S has:) 197 years) (mss. Su1, Su3+Su4, which omit Dudu and Cu-Durul, have instead: 9 kings; they ruled for (ms. Su1 has:) 161 (ms. Su3+Su4 has instead: 177) years. Then Agade was defeated (ms. S has instead: Then the reign of Agade was abolished) and the kingship was taken to Unug.
297-307In Unug, Ur-nijin became king; he ruled for 7 (mss. IB, S have instead: 3) (ms. Su1 has instead:15) (ms. Su3+Su4 has instead: 30)years. Ur-gigir, the son of Ur-nijin, ruled for 6 (ms. IB has instead: 7) (ms. Su1 has instead: 15) (ms. Su3+Su4 has instead: 7) years. Kuda ruled for 6 years. Puzur-ili ruled for 5 (ms. IB has instead: 20) years. Ur-Utu ruled for 6(ms. Su3+Su4 has instead: Ur-Utu), the son of Ur-gigir, ruled for 25 (ms. Su1 has instead: Lugal-melem, the son of Ur-gigir, ruled for 7) years. 5 kings; they ruled for 30 (ms. IB has instead:43) (mss. PÝ+Ha, S have instead:26) years (ms. Su3+Su4, which omits Kuda and Puzur-ili, has instead: 3 kings; they ruled for (ms. Su3+Su4 has:) 47 years). Unug was defeated (ms. S has instead: Then the reign of Unug was abolished) and the kingship was taken to the army (ms. Su3+Su4 has instead:land) of Gutium.
308-334In the army (ms. Su3+Su4 has instead:land) of Gutium, at first no king was famous; they were their own kings and ruled thus for 3 years(ms. L1+N1 has instead: they had no king; they ruled themselves for 5 years). Then Inkicuc (ms. Su3+Su4 has instead:......) ruled for 6 (ms. L1+Ni1 has instead: 7) years. Zarlagabruled for 6 years. Culme (ms. L1+N1 has instead: Yarlagac) ruled for 6 years. Silulumec (ms. Mi has instead:Silulu) ruled for 6(ms. G has instead: 7) years. Inimabakec ruled for 5 (ms. Mi has instead: Duga ruled for 6) years. Igecauc ruled for 6 (ms. Mi has instead: Ilu-an (?) ruled for 3) years. Yarlagab ruled for 15 (ms. Mi has instead: 5) years. Ibate ruled for 3 years. Yarla (ms. L1+N1 has instead:Yarlangab (?)) ruled for 3 years. Kurum (ms. L1+N1 has instead: ......) ruled for 1 (ms. Mi has instead: 3) years. Apil-kin ruled for 3 years. La-erabum (?) ruled for 2 years. Irarum ruled for 2 years. Ibranum ruled for 1 year. Hablumruled for 2 years. Puzur-Suen, the son of Hablum, ruled for 7 years. Yarlaganda ruled for 7 years. ...... ruled for 7 years. Tiriga (?) ruled for 40 days. 21 kings; they ruled for (ms. L1+N1 has:) 124 years and 40 days (ms. Su3+Su4 has instead: 25 years). Then the army of Gutium was defeated (ms. TL has instead: destroyed) and the kingship was taken to Unug.
335-340In Unug, Utu-hejal became king; he ruled for 427 years, ...... days (ms. IB has instead: 26 years, 2 + X months, and 15 days) (ms. J has instead: 7 years, 6 months, and 15 days) (ms. TL has instead: 7 years, 6 months, and 5 days). 1 king; he ruled for 427 years, ...... days (ms. J has instead: 7 years, 6 months, and 15 days) (ms. TL has instead: 7 years, 6 months, and 5 days). Then Unug was defeated and the kingship was taken to Urim.
341-354In Urim, Ur-Namma became king; he ruled for 18 years. Culgi, the son of Ur-Namma, ruled for 46 (mss. Su3+Su4, TL have instead: 48) (ms. P5 has instead:58) years. Amar-Suena, the son of Culgi, ruled for 9(ms. Su3+Su4 has instead: 25) years. Cu-Suen, the son of Amar-Suena, ruled for 9 (ms. P5 has instead: 7) (ms. Su1 has instead: 20 + X) (ms. Su3+Su4 has instead: 16) years. Ibbi-Suen, the son of Cu-Suen, ruled for 24 (mss. P5, Su1 have instead:25) (ms. Su3+Su4 has instead: 15)(ms. TL has instead: 23 (?)) years. 4 kings; they ruled for 108 years (mss. J, P5, Su1, Su3+Su4 have instead: 5 kings; they ruled for (ms. P5 has:) 117 (ms. Su1 has instead: 120 + X) (ms. Su3+Su4 has instead: 123) years). Then Urim was defeated (ms. P5 has instead: Then the reign of Urim was abolished). (ms. Su3+Su4 adds:) The very foundation of Sumer was torn out (?). The kingship was taken to Isin.
355-377In Isin, Icbi-Erra became king; he ruled for 33(ms. P5 has instead: 32) years. Cu-ilicu, the son of Icbi-Erra, ruled for 20 (ms. P5 has instead: 10) (ms. Su1 has instead: 15) years. Iddin-Dagan, the son of Cu-ilicu, ruled for 21 (ms. Su1 has instead: 25) years. Icme-Dagan, the son of Iddin-Dagan, ruled for (mss. P2, P5 have:) 20 (ms. Mi has instead:18) years. Lipit-Ectar, the son of Icme-Dagan (ms. P2 has instead:Iddin-Dagan), ruled for (mss. L1+N1, P2, P5 have:) 11 years. Ur-Ninurta (mss. L1+N1, P2 add:) , the son of Ickur-- may he have years of abundance, a good reign, and a sweet life --ruled for (ms. P5 has:) 28 years. Bur-Suen, the son of Ur-Ninurta, ruled for 21 years. Lipit-Enlil, the son of Bur-Suen, ruled for 5 years. Erra-imitti ruled for 8 (mss. P5, TL have instead: 7)years. (ms. P5 adds:) ...... ruled for ...... 6 months. Enlil-bani ruled for 24 years. Zambiya ruled for 3 years. Iter-pica ruled for 4 years. Ur-dul-kugaruled for 4 years. Suen-magirruled for 11 years. (ms. P5 adds:) Damiq-ilicu, the son of Suen-magir, ruled for 23 years. 14 kings; they ruled for 203 years (ms. P5 has instead: 225 years and 6 months).
(Mss. P2+L2, L1+N1 and P4+Ha conclude with a summary of the post-diluvian dynasties; the translation of ll. 378-431 uses numerical data from each mss. but follows the wording of P2+L2 and L1+N1)
378-431A total of 39 kings ruled for 14409 + X years, 3 months and 3 1/2 days, 4 times in Kic. A total of 22 kings ruled for 2610 + X years, 6 months and 15 days, 5 times in Unug. A total of 12 kings ruled for 396 years, 3 times in Urim. A total of 3 kings ruled for 356 years, once in Awan. A total of 1 king ruled for 420 years, once in Hamazi.16 lines missing
A total of 12 (?) kings ruled for 197 (?) years, once in Agade. A total of 21 (ms. P4+Ha has instead: 23) kings ruled for 125 years and 40 days (ms. P4+Ha has instead: 99 years), once in the army of Gutium. A total of 11 (ms. P4+Ha has instead: 16) kings ruled for 159 (ms. P4+Ha has instead: 226)years, once in Isin. There are 11 cities, cities in which the kingship was exercised. A total of 134 (ms. P4+Ha has instead: 139) kings, who altogether ruled for 28876 + X (ms. P4+Ha has instead: 3443 + X) years. 21.







Revision history

03.ix.1999 : GZ : adapting translation
04.xii.1999 : JAB : proofreading
08.xii.1999 : GC : tagging
14.i.2000 : ER : proofreading SGML
14.i.2000 : ER : converting to HTML 4.0
7.ix.2001 : ER : header and footer reformatted; substantive content of file not changed

View Article Here Read More
Older posts Newer posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑