Tag: fossils (page 2 of 2)

Dinosaur Researchers Say They’re in a ‘Golden Age’ of Discovery Due to the ‘Jurassic Park’ effect




Excerpt from nbcnews.com

This was a great year for dinosaurs. Dreadnoughtus, "Jar Jar Binks," and a swimming Spinosaurus all made headlines — and 2015 could hold even more surprises. 

It wasn't always like this. From 1984 to 1994, there were about 15 new dinosaur species named per year. This year, nearly one species was discovered every week. 

"We're absolutely in a golden age of dinosaur discovery," David Evans, who oversees dinosaur research at the Royal Ontario Museum, told NBC News. "It is probably a better time to be a dinosaur paleontologist now than any other time in the last century." 

The 'Jurassic Park' effect

When it comes to finding dinosaurs in the dirt, paleontologists are using the same tools that they were 30 years ago. Satellite images might give them a better view of dig sites, but for the most part the process has not changed much. 

So why are there so many dinosaur discoveries these days? More people are looking for them. Evans estimates that the number of dinosaur paleontologists has more than quadrupled in the last 30 years. 

Every paleontologist interviewed for this story pointed to one catalyst for the paleontology boom: Steven Spielberg's 1993 blockbuster "Jurassic Park." 

"It put the most lifelike, scientifically accurate dinosaurs ever on the big screen," Evans said. "That helped the public moved beyond the classical view of dinosaurs as slow, dim-twitted creatures."
Famed Montana State University paleontologist Jack Horner admits he has a special affection for the film. He served as scientific adviser for the original "Jurassic Park" and was the inspiration for Dr. Alan Grant, the movie's protagonist. He also consulted on the upcoming "Jurassic World" starring Chris Pratt.

"'Jurassic Park' attracted an incredible number of people to the field," Horner told NBC News. "I'm hoping that we put together something cool with 'Jurassic World' that people will really like and get more children interested in paleontology." 

Increased interest led to increased paleontology budgets for museums and universities, Evans said. That has made a big difference in places like China and Argentina, relatively unexplored areas where a new generation of paleontologists has unearthed most of the recent headline-grabbing discoveries. 

"The number of dinosaur researchers is much higher now than in the '90s," Thomas Holtz, a vertebrate paleontologist at the University of Maryland, told NBC News. "Anytime you are exploring a region and a slice of time that hasn't been sampled before, chances are that everything you are finding is new."

2014 and beyond

Some of the biggest discoveries of the year were not new species. Instead, they were more complete fossils of dinosaurs the scientific community knew very little about. 

Take Spinosaurus, a massive carnivore that was even bigger than Tyrannosaurus rex. While its teeth indicated it ate fish, scientists were divided on whether it roamed the land and water looking for prey.

This year, the matter was settled. A new paper showed that the dinosaur's unique body structure — tiny hind limbs, dense bones, crocodile-like receptors in its snout — was best suited for the water and caused it to waddle on land. 

"That was probably the most significant find of the year," Horner said. 

There were other big discoveries in 2014. Dreadnoughtus fossils discovered in Argentina belonged to a creature that measured 85 feet (26 meters) long and weighed about 65 tons (59 metric tons), or about as much as a dozen elephants. 


Image: Deinocheirus mirificus, the largest known member of a group of ostrich-like dinosaurs 
This undated handout image provided by Michael Skrepnick, Dinosaurs in Art, Nature Publishing Group, shows a Deinocheirus mirificus, the largest known member of a group of bird-like dinosaurs.

View Article Here Read More

World’s Oldest Art Identified in Half-Million-Year-Old Zigzag

A jagged line etched on a fossil mussel shell may be the oldest evidence of geometric art.Photograph by Wim Lustenhouwer, VU University Amsterdam(Reuters) - It's a simple zigzag design scratched onto the surface of a freshwater mussel shell on t...

View Article Here Read More

Study: Neanderthals were not human after all, but separate species

  Excerpt from  dailydigestnews.comThe nose knows whether or not Neanderthals are members of our own species. Turns out the differences in the Neanderthal nose compared to that of modern day humans could be substantial enough to consider N...

View Article Here Read More

The Mission to land robot on comet to take final step







Excerpt from  theglobeandmail.com
By Ivan Semeniuk

Half a billion kilometres from Earth and 10 years into its remarkable journey, a small robot is about to plunge into space history.

Pending a final green light from mission controllers on Tuesday night, the robot – nicknamed Philae (fee-lay) – will detach from its mother ship and try to hook itself onto one of the most challenging and mysterious objects in the solar system.



It’s a high-risk manoeuvre with plenty of unknowns. But if it works, then the probe will be able to show us what no one has ever experienced: what it’s like to stand on the surface of a comet.

“Comets are new territory,” said Ralf Gellert, a professor of physics at the University of Guelph. “There could be some big surprises.”

Prof. Gellert should know. Fifteen years ago, he helped build one of the instruments on the dishwasher-size lander that will reveal the comet’s composition. No such direct measurement has been made before. Even designing how the instrument should work was fraught with challenges since there was so little known about what kind of surface the lander might find itself on.

“Is it an ice ball with rock and trace metals, or a rock ball with ice on it … or ice below the surface? We didn’t know,” he said.
And scientists still don’t.

When the European Space Agency launched the Rosetta mission in 2004, the mission’s target – Comet Churyumov-Gerasimenko – was little more than a fuzzy blip in astronomers’ telescopes. But Rosetta just arrived in August and it’s been in orbit around the comet since then.

What was assumed to be a single, homogeneous lump of ice and rock has turned out to be a bizarre-looking object in two parts, arranged a bit like the head and body of a rubber duck. By October, scientists had zeroed in on the head portion, which is four kilometres across at its widest point, and settled on a landing site.

Remote sensing data from Rosetta suggest that the comet is quite porous, with a surface that is as black as coal and somewhat warmer than expected. In other words, Philae will probably not be landing on skating-rink-hard ice. Yet, whether the surface will be crusty like a roadside snowbank, fluffy like cigarette ash, or something else entirely is anyone’s guess.

And while scientists and engineers say they’ve done everything they can think of to maximize the lander’s chance of success, they acknowledge it’s entirely possible that Philae will encounter something it can’t handle and smash to bits or sink into oblivion.


Yet the landing is more than a daring jaunt to see what has never been seen before. Comets are also among the most primitive bodies in the solar system. Each one is an amalgam of ice and rock that has been around since Earth and its sister planets formed billions of years ago. In a sense, comets are the leftovers of that process – primordial fossils from the birth of the solar system.

The instrument Prof. Gellert worked on, known as the alpha particle X-ray spectrometer (APXS), will help illuminate this early period by making precise measurements of the comet’s elemental ingredients.

It is carried on a robot arm that will place a radioactive source near the comet’s surface. The particles and X-rays the comet material gives off as a result of this exposure will provide detailed information about what chemical elements the comet contains. This will be augmented by another experiment designed to drill and extract a comet sample for analysis inside the lander.

Prof. Gellert, who has also been closely involved in NASA’s Mars rover missions, said Rosetta’s long timeline and the many unknowns related to the comet makes this week’s landing a trickier proposition than landing on Mars – but also a tremendously exciting one.

“I think it’s a matter of hope for the best and see what happens.”

View Article Here Read More

Ancient village discovered in Arizona’s Petrified Forest

Part of the Blue Mesa Trail in Arizona's Petrified Forest National Park. (Photo: T. Scott Williams, AP)Excerpt fromusatoday.comArchaeologists recently discovered an ancient village in Arizona's Petrified Forest National Park. The village dates to betw...

View Article Here Read More

Mysteries of the Early Human Ancestors #1 ~ Why did we grow large brains?

Human brains are about three times as large as those of our early australopithecines ancestors that lived 4 million to 2 million years ago, and for years, scientists have wondered how our brains got so big. A new study suggests social competition could be behind the increase in brain size. Credit NIH, NADA

livescience.com

There are many ways to try to explain why human brains today are so big compared to those of early humans, but the major cause may be social competition, new research suggests. 

But with several competing ideas, the issue remains a matter of debate. 

Compared to almost all other animals, human brains are larger as a percentage of body weight. And since the emergence of the first species in our Homo genus (Homo habilis) about 2 million years ago, the human brain has doubled in size. And when compared to earlier ancestors, such as australopithecines that lived 4 million to 2 million years ago, our brains are three times as large. For years, scientists have wondered what could account for this increase.

The three major hypotheses have focused on climate change, the demands of ecology, and social competition. A new statistical analysis of data on 175 fossil skulls supports the latter hypothesis. 

Behind the hypotheses

The climate idea proposes that dealing with unpredictable weather and major climate shifts may have increased the ability of our ancestors to think ahead and prepare for these environmental changes, which in turn led to a larger, more cognitively adept brain.
The ecology hypothesis states that, as our ancestors migrated away from the equator, they encountered environmental changes, such as less food and other resources. "So you have to be a little bit more clever to figure it out," said David Geary, a professor from the University of Missouri. Also, less parasite exposure could have played a role in the makings of a bigger brain. When your body combats parasites, it cranks up its immune system, which uses up calories that could have gone to boost brain development. Since there are fewer parasites farther away from the equator, migrating north or south could have meant that our predecessors had more opportunity to grow a larger brain because their bodies were not fighting off as many pathogens.


Finally, other researchers think that social competition for scarce resources influenced brain size. As populations grow, more people are contesting for the same number of resources, the thinking goes. Those with a higher social status, who are "a little bit smarter than other folks" will have more access to food and other goods, and their offspring will have a higher chance of survival, Geary said.


Those who are not as socially adept will die off, pushing up the average social "fitness" of the group. "It's that type of process, that competition within a species, for status, for control of resources, that cycles over and over again through multiple generations, that is a process that could easily explain a very, very rapid increase in brain size," Geary said.

Weighing the options

To examine which hypothesis is more likely, Geary and graduate student Drew Bailey analyzed data from 175 skull fossils — from humans and our ancestors — that date back to sometime between 10,000 ago and 2 million years ago.


The team looked at multiple factors, including how old the fossils were, where they were found, what the temperature was and how much the temperature varied at the time the Homo species lived, and the level of parasites in the area. They also looked at the population density of the region in order to measure social competition, "assuming that the more fossils you find in a particular area at a particular time, the more likely the population was larger," Geary said.


They then used a statistical analysis to test all of the variables at once to see how well they predicted brain size. "By far the best predictor was population density," Geary said. "And in fact, it seemed that there was very little change in brain size across our sample of fossil skulls until we hit a certain population size. Once that population density was hit, there was a very quick increase in brain size," he said.


Looking at all the variables together allowed the researchers to "separate out which variables are really important and which variables may be correlated for other reasons," added Geary. While the climate variables were still significant, their importance was much lower than that of population density, he said. The results were published in the March 2009 issue of the journal Human Nature.


Questions linger

The social competition hypothesis "sounds good," said Ralph Holloway, an anthropologist at Columbia University, who studies human brain evolution. But, he adds: "How would you ever go about really testing that with hard data?" 

He points out that the sparse cranium data "doesn’t tell you anything about the differences in populations for Homo erectus, or the differences in populations of Neanderthals." For example, the number of Homo erectus crania that have been found in Africa, Asia, Indonesia and parts of Europe is fewer than 25, and represent the population over hundreds of thousands of years, he said. 

"You can't even know the variation within a group let alone be certain of differences between groups," Holloway said. Larger skulls would be considered successful, but "how would you be able to show that these were in competition?" 

However, Holloway is supportive of the research. "I think these are great ideas that really should be pursued a little bit more," he said. 

Alternative hypotheses

Holloway has another hypothesis for how our brains got so big. He thinks that perhaps increased gestation time in the womb or increased dependency time of children on adults could have a played role. The longer gestation or dependency time "would have required more social cooperation and cognitive sophistication on the part of the parents," he said. Males and females would have needed to differentiate their social roles in a complementary way to help nurture the child. The higher level of cognition needed to perform these tasks could have led to an increase in brain size.


Still other hypotheses look at diet as a factor. Some researchers think that diets high in fish and shellfish could have provided our ancestors with the proper nutrients they needed to grow a big brain.
And another idea is that a decreased rate of cell death may have allowed more brain neurons to be synthesized, leading to bigger noggins. 

Ultimately, no theory can be absolutely proven, and the scant fossil record makes it hard to test hypotheses. "If you calculate a generation as, let's say, 20 years, and you know that any group has to have a minimal breeding size, then the number of fossils that we have that demonstrates hominid evolution is something like 0.000001 percent," Holloway said. "So frankly, I mean, all hypotheses look good."

View Article Here Read More

Evolution Versus Creation ~ Blowing the lid off the missing link Homo Erectus discovery!

Java Man or Homo ErectusTo set the table for this short video snippet of a lecture given by John Harris, transitional fossils are alleged fossil discoveries of early man that link present day humans to one or more primitive species. The term missing li...

View Article Here Read More
Newer posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑