Tag: flow (page 2 of 21)

Cintamani

Cintamani is a sacred stone which came from Sirius star system. Millions of years ago, during a Galactic superwave, a planet orbiting Sirius A exploded. Its fragments traveled in all directions, some of them reaching Earth after long journey through in...

View Article Here Read More

Why I Love Mercury Retrograde And Why You Could Too!

by Ines SuljMercury has just gone retrograde again. This time in Gemini, the sign it rules.All the planets, except Sun and Moon, go in apparent backward motion from time to time, yet the Mercury retrograde seems to be the most famous one. Almost everyone knows about it, including the people who know nothing about astrology and those who don’t even believe in it.In astrology, when a planet is in retrograde, it doesn’t actually move backwards in the sky. It only a [...]

View Article Here Read More

7 Reasons You Need More Magnesium

Margie King, GuestMagnesium is the fourth most abundant mineral in your body.  But few people fully appreciate this miraculous mineral. The human genome project reveals that 3,751 human proteins have binding sites for magnesium.[i]  And so far we know this one essential mineral activates over 350 biochemical processes in the body to keep things flowing.Here are just seven good reasons to get more magnesium today. 1. Prevent Migraines. According to University of Vermo [...]

View Article Here Read More

17 Surprising Reasons You’re Stressed Out





Excerpt from huffingtonpost.com
By Amanda MacMillan


You're probably all too aware of the major sources of stress in your life -- money, your terrible commute, the construction workers who start jackhammering at 5 a.m. But stress and anxiety don't have to just come from obvious or even negative sources. "There are plenty of chronic strains and low-grade challenges that don't necessarily overwhelm you in the moment, but almost take more of a toll in the long run," says Scott Schieman, Ph.D., professor of sociology at the University of Toronto. These are some of unexpected reasons why you might feel anxious or agitated. By recognizing them for what they are, says Schieman, you can better prepare to cope.

1. Your Significant Other
Even if you have a blissfully happy relationship with your live-in partner or spouse, you're both bound to do things that get on each other's nerves. "Early in the relationship, it's usually about space and habits -- like whether you squeeze the toothpaste from the middle or the bottom of the tube," says Ken Yeager, Ph.D., associate professor of psychiatry at the Ohio State University Wexner Medical Center. "Later on, you might clash over parenting style or financial issues, and finding a unified front to face these issues together." So what's the key to surviving and thriving in your life together? Finding balance, says Yeager: spending the right amount of time together (not too much and not too little), making compromises, keeping communication open and honest, and remembering to acknowledge what you love about each other on a daily basis.


2. Everyday Annoyances
We're told not to sweat the small stuff, but sometimes it's the little things that have the biggest impact on our mood: the never-ending phone calls with your insurance company, the rude cashier at the grocery store, the 20 minutes you lose looking for a parking space. "We let these things bother us because they trigger unconscious fears," says Yeager -- fears of being seen as irresponsible, of being bullied or embarrassed, or of being late all the time, for example. "Sometimes you need to take a step back and realize that you're doing the best you can given the circumstances." 


3. Other People's Stress
Stress is contagious, according to a 2014 German study: In a series of experiments, most participants who simply observed others completing a stressful task experienced an increase themselves in production of the stress hormone cortisol -- a phenomenon known as empathic stress. You can also experience stress when someone you know is affected by a traumatic event, like a car crash or a chronic illness. "You start to worry, 'Oh my gosh, could that happen to me?'," says Yeager. "We tend not to think about these things until they hit close to home."


4. Social Media social media
It may seem like Facebook is the only way you keep up with the friends you don't see regularly -- which, during particularly busy times, can be just about all of them. The social network also has a downside, according to a 2015 study from the Pew Research Center: It can make you aware of stressful situations in your friends' lives, which in turn can add more stress to your life. The Pew report didn't find that social media users, overall, had higher levels of stress, but previous studies have suggested that frequent social-media use can be associated with negative body image and prolonged breakup pain.


5. Distraction
A distraction can be a good thing then when it takes your mind off of a stressful situation or difficult decision, like when you take a break from work to meet a friend for lunch. But it works the other way, as well: When you're so busy thinking about something else that you can't enjoy what's going on around you, that kind of distraction can be a recipe for stress. Practicing mindfulness gives you brain the refresh it needs, says Richard Lenox, director of the Student Counseling Center at Texas Tech University. Paying full attention to your surroundings when you're walking and driving can help, he adds. "Stress and anxiety tend to melt away when our mind is focused on the present." 


6. Your Childhood
Traumatic events that happened when you were a kid can continue to affect your stress levels and overall health into adulthood. A 2014 University of Wisconsin-Madison study found that these childhood experiences may actually change parts of the brain responsible for processing stress and emotion. The way you were raised can also have a lasting impact on your everyday angst, suggests a 2014 Johns Hopkins University study. Researchers found that children of parents with social anxiety disorders are more likely to develop "trickle-down anxiety" -- not simply because of their genes, but because of their parents' behaviors toward them such as a lack of warmth and emotion, or high levels of criticism and doubt.


7. Tea And Chocolate
You probably know to take it easy on the coffee when you're already feeling on edge. "Caffeine is always going to make stress worse," says Yeager. But you may not think as much about drinking several cups of tea at once, or chowing down on a bar of dark chocolate -- both of which can contain nearly as much caffeine as a cup of joe. "Chocolate is a huge caffeine source," says Yeager. "I know people who don't drink coffee but they'll eat six little candy bars in a two-hour period because they want the same kind of jolt." Too much caffeine, in any form, can cause problems with sleep, digestion, and irritability. 


8. Your Expectations woman trail running
When things don't go the way you've planned, do you tend to get upset and act defensively, or do you roll with the punches and set off on a new plan? If it's the former, you could be contributing to a mindset of pessimism and victimization that will slowly wear you down, even when things may not be as bad as they seem. "Your level of serenity is inversely proportionate to your expectations," says Yeager. That doesn't mean you shouldn't set ambitious goals for yourself or settle for less than what you want, of course, but being realistic about what's truly possible is important, as well.


9. Your Reaction To Stress
If you tend to deal with stressful situations by working long hours, skipping your workouts, and bingeing on junk food, we've got some bad news: You're only making it worse. "We know that physical activity and healthy foods will help your body better deal with stress, and yet we often avoid them when we need them the most," says Yeager. "People really need to think about this downward spiral we get into and work harder to counteract it."


10. Multitasking
Think you're being super efficient by tackling four tasks at once? Chances are you're not -- and it's only decreasing your productivity while increasing your stress. A 2012 University of Irvine study, for example, found that people who responded to emails all day long while also trying to get their work done experienced more heart-rate variability (an indicator of mental stress) than those who waited to respond to all of their emails at one time. Focusing on one task at a time can ensure that you're doing that job to the best of your abilities and getting the most out of it, so you won't have to worry about or go back and fix it later, says Schieman. And don't worry: You'll have enough time to do it all. In fact, you may discover you have more time than you thought.


11. Your Favorite Sport
Watching a tight game of college hoops can stress you out -- even if your alma mater wins. "The body doesn't distinguish between 'bad' stress from life or work and 'good' stress caused by game-day excitement," says Jody Gilchrist, a nurse practitioner at the University of Alabama at Birmingham’s Heart and Vascular Clinic. Watching sports can even trigger the body's sympathetic nervous system, releasing adrenaline and reducing blood flow to the heart. Those temporary consequences aren't usually anything to be concerned about, but over time, chronic stress can lead to high blood pressure and increased disease risk. And, of course, it doesn't help if you're adding alcohol and binge-eating to a situation that's already stressful on your body. You may not be able to control the outcome of the game, says Gilchrist, but you can limit its effects on your own body. 


12. Digital Devices laptop in bed
Whether you're using it for work or play, technology may play a large role in your mental health, says Yeager. Using computers or e-readers too close to bedtime could lead to sleep problems, he says, and spending too much time virtually socializing can make real-life interactions seem extra stressful. (Plus, texting doesn't trigger the same feel-good hormones as face-to-face talk does.) Then there's the dreaded "work creep," says Schieman, when smartphones allow employees to be tethered to their jobs, even during off-hours. "People say they're only going to check email for an hour while they're on vacation, but the problem with email is that they're filled with responsibilities, new tasks, and dilemmas that are going to be hard to compartmentalize and put out of your head once that hour is up."


13. Your (Good) Health
While it may not be as stressful as having a chronic illness or getting bad news at the doctor's office, even people in the best shape of their lives worry about their bodies, their diets, and their fitness levels. In fact, people who take healthy living to an extreme may experience some rather unhealthy side effects. People who follow low-carb diets, for example, are more likely to report being sad or stressed out, while those on any kind of restrictive meal plan may feel more tired than usual. And it's not unheard of for someone to become obsessed with healthy eating (known as orthorexia) or working out (gymorexia). Like any form of perfectionism, these problems can be stressful at best, and extremely dangerous at worst.


14. Housework
Does folding laundry help you feel calm, or does it make your blood boil? If you're in a living situation where you feel you're responsible for an unfair share of work, even chores you once enjoyed may start to feel like torture. "Dividing up housework and parenting responsibilities can be tricky, especially if both partners work outside the home," says Schieman. "And whether you define that division of labor as equal or unequal can really change your attitude toward it."


15. Uncertainty
Stress can be defined as any perceived or actual threat, says Yeager, so any type of doubt that's looming over you can contribute to your anxiety levels on a daily basis. "When you know something could change at any minute, you always have your guard up and it's hard to just relax and enjoy anything." Financial uncertainty may be the most obvious stressor -- not being sure if you'll keep your job during a round of layoffs, or not knowing how you'll pay your credit card bill. Insecurities in other areas of life, like your relationship or your housing status, can eat away at you too.


16. Your Pet bulldog puppy
No matter how much you love your furry friends, there's no question that they add extra responsibility to your already full plate. Even healthy animals need to be fed, exercised, cleaned up after, and given plenty of attention on a regular basis -- and unhealthy ones can be a whole other story. "Pets can be the most positive source of unconditional love, but at the same time they require an extreme amount of energy," says Yeager. People also tend to underestimate the stress they'll experience when they lose a pet. "I've had people in my office tell me they cried more when their dog died than when their parent died. It's a very emotional connection."


17. Your Education
Having a college degree boosts your odds of landing a well-paying job, so although you're less likely to suffer from money-related anxiety, your education can bring on other types of stress, according to a 2014 study by Schieman and his University of Toronto colleagues. His research found that highly educated people were more likely to be stressed out thanks to job pressures, being overworked, and conflicts between work and family. "Higher levels of authority come with a lot more interpersonal baggage, such as supervising people or deciding whether they get promotions," says Schieman. "With that type of responsibility, you start to take things like incompetency and people not doing their jobs more personally, and it bothers you more."

View Article Here Read More

Buried Mars Glaciers are Brimming With Water

Researchers have identified thousands of glacier-like formations on the planet.
NASA/Levy et al./Nanna Karlsson



Excerpt from news.discovery.com

Glaciers beneath the dusty sands of Mars contain enough water to coat the planet with more than three feet of ice, a new study shows.
“We have calculated that the ice in the glaciers is equivalent to over 150 billion cubic meters of ice — that much ice could cover the entire surface of Mars with 1.1 meters (3.6 feet) of ice,” Nanna Bjørnholt Karlsson, a post-doctoral researcher the Niels Bohr Institute at the University of Copenhagen, said in a statement.

Radar images previously revealed thousands of buried glacier-like formations in the planet’s northern and southern hemispheres.
That data has now been incorporated into computer models of ice flow to determine the glaciers’ size and hence how much water they contain.

“We have looked at radar measurements spanning 10 years back in time to see how thick the ice is and how it behaves. A glacier is, after all, a big chunk of ice and it flows and gets a form that tells us something about how soft it is. We then compared this with how glaciers on Earth behave and from that we have been able to make models for the ice flow,” she said.

The glaciers are located in belts around Mars between 30 degrees and 50 degrees latitude, roughly equivalent to just south of Denmark’s location on Earth. The glaciers are found on both the northern and southern hemispheres.

The finding could be an important clue to what happened to Mars’ water. The planet, which is now a cold, dry desert, once had oceans, lakes and habitats suitable for microbial life, results from past and ongoing science missions show.

“The ice at the mid-latitudes is an important part of Mars’ water reservoir,” Karlsson said.

Scientists suspect the thick layer of dust covering the ice has saved if from evaporating out into space.

The study appears in this week’s Geophysical Research Letters.

View Article Here Read More

Strange find on Titan sparks chatter about life


Titan


Excerpt from nbcnews.com

Studies may suggest methane-based organic processes ... but maybe not  
New findings have roused a great deal of hoopla over the possibility of life on Saturn's moon Titan, which some news reports have further hyped up as hints of extraterrestrials.
However, scientists also caution that aliens might have nothing to do with these findings.

All this excitement is rooted in analyses of chemical data returned by NASA's Cassini spacecraft. One study suggested that hydrogen was flowing down through Titan's atmosphere and disappearing at the surface. Astrobiologist Chris McKay at NASA's Ames Research Center speculated that this could be a tantalizing hint that hydrogen is getting consumed by life.

"It's the obvious gas for life to consume on Titan, similar to the way we consume oxygen on Earth," McKay said.

Another study investigating hydrocarbons on Titan's surface found a lack of acetylene, a compound that could be consumed as food by life that relies on liquid methane instead of liquid water to live.
"If these signs do turn out to be a sign of life, it would be doubly exciting because it would represent a second form of life independent from water-based life on Earth," McKay said.
However, NASA scientists caution that aliens might not be involved at all.

"Scientific conservatism suggests that a biological explanation should be the last choice after all non-biological explanations are addressed," said Mark Allen, principal investigator with the NASA Astrobiology Institute Titan team. "We have a lot of work to do to rule out possible non-biological explanations. It is more likely that a chemical process, without biology, can explain these results."
McKay told Space.com that "both results are still preliminary."

To date, methane-based life forms are only speculative, with McKay proposing a set of conditions necessary for these kinds of organisms on Titan in 2005. Scientists have not yet detected this form of life anywhere, although there are liquid-water-based microbes on Earth that thrive on methane or produce it as a waste product. 

On Titan, where temperatures are around minus-290 degrees Fahrenheit (-179 degrees Celsius), any organisms would have to use a substance that is liquid as its medium for living processes. Water itself cannot do, because it is frozen solid on Titan's surface. The list of liquid candidates is very short — liquid methane and related molecules such as ethane. Previous studies have found Titan to have lakes of liquid methane.

Missing hydrogen? 

The dearth of hydrogen Cassini detected is consistent with conditions that could produce methane-based life, but do not conclusively prove its existence, cautioned researcher Darrell Strobel, a Cassini interdisciplinary scientist based at Johns Hopkins University in Baltimore. Strobel wrote the paper on hydrogen appearing online in the journal Icarus.


Strobel looked at densities of hydrogen in different parts of the atmosphere and at the surface. Previous models from scientists had predicted that hydrogen molecules, a byproduct of ultraviolet sunlight breaking apart acetylene and methane molecules in the upper atmosphere, should be distributed fairly evenly throughout the atmospheric layers.

Strobel's computer simulations suggest a hydrogen flow down to the surface at a rate of about 10,000 trillion trillion molecules per second. 

"It's as if you have a hose and you're squirting hydrogen onto the ground, but it's disappearing," Strobel said. "I didn't expect this result, because molecular hydrogen is extremely chemically inert in the atmosphere, very light and buoyant. It should 'float' to the top of the atmosphere and escape."

Strobel said it is not likely that hydrogen is being stored in a cave or underground space on Titan. An unknown mineral could be acting as a catalyst on Titan's surface to help convert hydrogen molecules and acetylene back to methane.

Although Allen commended Strobel, he noted "a more sophisticated model might be needed to look into what the flow of hydrogen is."

Consumed acetylene? 

Scientists had expected the sun's interactions with chemicals in the atmosphere to produce acetylene that falls down to coat Titan's surface. But when Cassini mapped hydrocarbons on Titan's surface, it detected no acetylene on the surface, according to findings appearing online in the Journal of Geophysical Research.


Instead of alien life on Titan, Allen said one possibility is that sunlight or cosmic rays are transforming the acetylene in icy aerosols in the atmosphere into more complex molecules that would fall to the ground with no acetylene signature.

In addition, Cassini detected an absence of water ice on Titan's surface, but loads of benzene and another as-yet-unidentified material, which appears to be an organic compound. The researchers said that a film of organic compounds is covering the water ice that makes up Titan's bedrock. This layer of hydrocarbons is at least a few millimeters to centimeters thick, but possibly much deeper in some places. 

"Titan's atmospheric chemistry is cranking out organic compounds that rain down on the surface so fast that even as streams of liquid methane and ethane at the surface wash the organics off, the ice gets quickly covered again," said Roger Clark, a Cassini team scientist based at the U.S. Geological Survey in Denver. "All that implies Titan is a dynamic place where organic chemistry is happening now."

All this speculation "is jumping the gun, in my opinion," Allen said.

"Typically in the search for the existence of life, one looks for the presence of evidence -- say, the methane seen in the atmosphere of Mars, which can't be made by normal photochemical processes," Allen added. "Here we're talking about absence of evidence rather than presence of evidence — missing hydrogen and acetylene — and oftentimes there are many non-life processes that can explain why things are missing."

These findings are "still a long way from evidence of life," McKay said. "But it could be interesting."

View Article Here Read More

‘Firefly’ Starship to Blaze a Trail to Alpha Centauri?

The Icarus Interstellar 'Firefly' starship concept could use novel nuclear fusion techniques to power its way to Alpha Centauri within 100 years.Adrian MannExcerpt from news.discovery.com As part of Icarus Interstellar's continuing series ...

View Article Here Read More

How 40,000 Tons of Cosmic Dust Falling to Earth Affects You and Me


Picture of The giant star Zeta Ophiuchi is having a "shocking" effect on the surrounding dust clouds in this infrared image from NASA's Spitzer Space Telescope
In this infrared image, stellar winds from a giant star cause interstellar dust to form ripples. There's a whole lot of dust—which contains oxygen, carbon, iron, nickel, and all the other elements—out there, and eventually some of it finds its way into our bodies.
Photograph by NASA, JPL-Caltech

We have stardust in us as old as the universe—and some that may have landed on Earth just a hundred years ago.

Excerpt from National Geographic
By Simon Worrall

Astrophysics and medical pathology don't, at first sight, appear to have much in common. What do sunspots have to do with liver spots? How does the big bang connect with cystic fibrosis?
Book jacket courtesy of schrijver+schrijver

Astrophysicist Karel Schrijver, a senior fellow at the Lockheed Martin Solar and Astrophysics Laboratory, and his wife, Iris Schrijver, professor of pathology at Stanford University, have joined the dots in a new book, Living With the Stars: How the Human Body Is Connected to the Life Cycles of the Earth, the Planets, and the Stars.

Talking from their home in Palo Alto, California, they explain how everything in us originated in cosmic explosions billions of years ago, how our bodies are in a constant state of decay and regeneration, and why singer Joni Mitchell was right.

"We are stardust," Joni Mitchell famously sang in "Woodstock." It turns out she was right, wasn't she?

Iris: Was she ever! Everything we are and everything in the universe and on Earth originated from stardust, and it continually floats through us even today. It directly connects us to the universe, rebuilding our bodies over and again over our lifetimes.

That was one of the biggest surprises for us in this book. We really didn't realize how impermanent we are, and that our bodies are made of remnants of stars and massive explosions in the galaxies. All the material in our bodies originates with that residual stardust, and it finds its way into plants, and from there into the nutrients that we need for everything we do—think, move, grow. And every few years the bulk of our bodies are newly created.

Can you give me some examples of how stardust formed us?

Karel: When the universe started, there was just hydrogen and a little helium and very little of anything else. Helium is not in our bodies. Hydrogen is, but that's not the bulk of our weight. Stars are like nuclear reactors. They take a fuel and convert it to something else. Hydrogen is formed into helium, and helium is built into carbon, nitrogen and oxygen, iron and sulfur—everything we're made of. When stars get to the end of their lives, they swell up and fall together again, throwing off their outer layers. If a star is heavy enough, it will explode in a supernova.

So most of the material that we're made of comes out of dying stars, or stars that died in explosions. And those stellar explosions continue. We have stuff in us as old as the universe, and then some stuff that landed here maybe only a hundred years ago. And all of that mixes in our bodies.

Picture of the remnants of a star that exploded in a supernova
Stars are being born and stars are dying in this infrared snapshot of the heavens. You and I—we come from stardust.
Photograph by NASA, JPL-Caltech, University of Wisconsin


Your book yokes together two seemingly different sciences: astrophysics and human biology. Describe your individual professions and how you combined them to create this book.

Iris: I'm a physician specializing in genetics and pathology. Pathologists are the medical specialists who diagnose diseases and their causes. We also study the responses of the body to such diseases and to the treatment given. I do this at the level of the DNA, so at Stanford University I direct the diagnostic molecular pathology laboratory. I also provide patient care by diagnosing inherited diseases and also cancers, and by following therapy responses in those cancer patients based on changes that we can detect in their DNA.

Our book is based on many conversations that Karel and I had, in which we talked to each other about topics from our daily professional lives. Those areas are quite different. I look at the code of life. He's an astrophysicist who explores the secrets of the stars. But the more we followed up on our questions to each other, the more we discovered our fields have a lot more connections than we thought possible.

Karel: I'm an astrophysicist. Astrophysicists specialize in all sorts of things, from dark matter to galaxies. I picked stars because they fascinated me. But no matter how many stars you look at, you can never see any detail. They're all tiny points in the sky.

So I turned my attention to the sun, which is the only star where we can see what happens all over the universe. At some point NASA asked me to lead a summer school for beginning researchers to try to create materials to understand the things that go all the way from the sun to the Earth. I learned so many things about these connections I started to tell Iris. At some point I thought: This could be an interesting story, and it dawned on us that together we go all the way, as she said, from the smallest to the largest. And we have great fun doing this together.

We tend to think of our bodies changing only slowly once we reach adulthood. So I was fascinated to discover that, in fact, we're changing all the time and constantly rebuilding ourselves. Talk about our skin.

Iris: Most people don't even think of the skin as an organ. In fact, it's our largest one. To keep alive, our cells have to divide and grow. We're aware of that because we see children grow. But cells also age and eventually die, and the skin is a great example of this.
It's something that touches everything around us. It's also very exposed to damage and needs to constantly regenerate. It weighs around eight pounds [four kilograms] and is composed of several layers. These layers age quickly, especially the outer layer, the dermis. The cells there are replaced roughly every month or two. That means we lose approximately 30,000 cells every minute throughout our lives, and our entire external surface layer is replaced about once a year.

Very little of our physical bodies lasts for more than a few years. Of course, that's at odds with how we perceive ourselves when we look into the mirror. But we're not fixed at all. We're more like a pattern or a process. And it was the transience of the body and the flow of energy and matter needed to counter that impermanence that led us to explore our interconnectedness with the universe.

You have a fascinating discussion about age. Describe how different parts of the human body age at different speeds.

Iris: Every tissue recreates itself, but they all do it at a different rate. We know through carbon dating that cells in the adult human body have an average age of seven to ten years. That's far less than the age of the average human, but there are remarkable differences in these ages. Some cells literally exist for a few days. Those are the ones that touch the surface. The skin is a great example, but also the surfaces of our lungs and the digestive tract. The muscle cells of the heart, an organ we consider to be very permanent, typically continue to function for more than a decade. But if you look at a person who's 50, about half of their heart cells will have been replaced.

Our bodies are never static. We're dynamic beings, and we have to be dynamic to remain alive. This is not just true for us humans. It's true for all living things.

A figure that jumped out at me is that 40,000 tons of cosmic dust fall on Earth every year. Where does it all come from? How does it affect us?

Karel: When the solar system formed, it started to freeze gas into ice and dust particles. They would grow and grow by colliding. Eventually gravity pulled them together to form planets. The planets are like big vacuum cleaners, sucking in everything around them. But they didn't complete the job. There's still an awful lot of dust floating around.

When we say that as an astronomer, we can mean anything from objects weighing micrograms, which you wouldn't even see unless you had a microscope, to things that weigh many tons, like comets. All that stuff is still there, being pulled around by the gravity of the planets and the sun. The Earth can't avoid running into this debris, so that dust falls onto the Earth all the time and has from the very beginning. It's why the planet was made in the first place. 

Nowadays, you don't even notice it. But eventually all that stuff, which contains oxygen and carbon, iron, nickel, and all the other elements, finds its way into our bodies.

When a really big piece of dust, like a giant comet or asteroid, falls onto the Earth, you get a massive explosion, which is one of the reasons we believe the dinosaurs became extinct some 70 million years ago. That fortunately doesn't happen very often. But things fall out of the sky all the time. [Laughs]

Many everyday commodities we use also began their existence in outer space. Tell us about salt.

Karel: Whatever you mention, its history began in outer space. Take salt. What we usually mean by salt is kitchen salt. It has two chemicals, sodium and chloride. Where did they come from? They were formed inside stars that exploded billions of years ago and at some point found their way onto the Earth. Stellar explosions are still going on today in the galaxy, so some of the chlorine we're eating in salt was made only recently.

You study pathology, Iris. Is physical malfunction part of the cosmic order?

Iris: Absolutely. There are healthy processes, such as growth, for which we need cell division. Then there are processes when things go wrong. We age because we lose the balance between cell deaths and regeneration. That's what we see in the mirror when we age over time. That's also what we see when diseases develop, such as cancers. Cancer is basically a mistake in the DNA, and because of that the whole system can be derailed. Aging and cancer are actually very similar processes. They both originate in the fact that there's a loss of balance between regeneration and cell loss.

Cystic fibrosis is an inherited genetic disease. You inherit an error in the DNA. Because of that, certain tissues do not have the capability to provide their normal function to the body. My work is focused on finding changes in DNA in different populations so we can understand better what kinds of mutations are the basis of that disease. Based on that, we can provide prognosis. There are now drugs that target specific mutations, as well as transplants, so these patients can have a much better life span than was possible 10 or 20 years ago.

How has writing this book changed your view of life—and your view of each other?

Karel: There are two things that struck me, one that I had no idea about. The first is what Iris described earlier—the impermanence of our bodies. As a physicist, I thought the body was built early on, that it would grow and be stable. Iris showed me, over a long series of dinner discussions, that that's not the way it works. Cells die and rebuild all the time. We're literally not what were a few years ago, and not just because of the way we think. Everything around us does this. Nature is not outside us. We are nature.

As far as our relationship is concerned, I always had a great deal of respect for Iris, and physicians in general. They have to know things that I couldn't possibly remember. And that's only grown with time.

Iris: Physics was not my favorite topic in high school. [Laughs] Through Karel and our conversations, I feel that the universe and the world around us has become much more accessible. That was our goal with the book as well. We wanted it to be accessible and understandable for anyone with a high school education. It was a challenge to write it that way, to explain things to each other in lay terms. But it has certainly changed my view of life. It's increased my sense of wonder and appreciation of life.

In terms of Karel's profession and our relationship, it has inevitably deepened. We understand much better what the other person is doing in the sandboxes we respectively play in. [Laughs]

View Article Here Read More

As Dawn spacecraft closes in on Ceres, things start to look ‘rough’


Ceres: Dawn spies dwarf planet
This image, taken 147,000 miles from Ceres by NASA's Dawn spacecraft, is part of a series of views representing the best look so far at the dwarf planet. The spacecraft is set to enter orbit March 6. (NASA)

Eat your heart out, Hubble! NASA’s Dawn spacecraft is in the home stretch of its journey to Ceres and has snapped the best images yet of the dwarf planet. Grainy as they are, the new views of the 590-mile-wide world are already turning up unexpected features on the surface.
“What we expect at Ceres is to be surprised, so it’s getting off to a good start,” said deputy principal investigator Carol Raymond.
The images, taken 147,000 miles from Ceres on Jan. 25, are 30% higher-resolution than the images taken by NASA’s Hubble Space Telescope in 2003 and 2004. They measure 43 pixels wide, a significant improvement over Dawn’s images from earlier this month, which were 27 pixels across.
The images show significant brightness and darkness variations over the surface – particularly a bright spot gleaming in the northern hemisphere and darker spots in the southern hemisphere. While the scientists were aware of those major spots, they weren’t expecting to see quite so much texture on the surface, said Raymond, a geophysicist at the Jet Propulsion Laboratory.

Ceres is fairly warm by ice-world standards; temperatures generally range from 180 to 240 Kelvin (or minus-136 degrees Fahrenheit to minus-28 degrees Fahrenheit), Raymond said. Theoretically, the ice on Ceres’ surface should start to flow as it warms up, smoothing out any bumps such as those from impact craters. But the brightness variations across the surface make it appear very rough, she said.
“This is just starting to illuminate the fact that Ceres is one of these unique bodies that has astrobiological potential ... and it’s just continued to become more intriguing as we’ve been marching inexorably closer,” she added.

Ceres was not the first stop in Dawn’s 3-billion-mile journey. The first was the protoplanet Vesta, which is vastly different from its fellow mega-asteroid, Ceres. Where Vesta is dry and lumpy, Ceres is icy and round, massive enough to have been pulled into a planet-like shape. Scientists want to find out why these two space-fossils from the early solar system ended up with such different geophysical life stories.
At least with Vesta, there were meteorites linked to the asteroid that planetary scientists can study, Raymond pointed out. For Ceres, there are no such space rocks found on Earth – so the researchers have somewhat less of an idea of what to expect.

“I am excited,” Raymond said. “Just having had the wild ride at Vesta, I’m also just in awe of what’s going to happen. It’s going to be amazing.”

View Article Here Read More

Gullies suggest comet Vesta once had flowing water on its surface



This image of the giant asteroid Vesta was taken by NASA's Dawn spacecraft, as part of a rotation characterization sequence on July 24, 2011


Excerpt from natmonitor.com

NASA’s Dawn spacecraft is currently approaching the dwarf planet Ceres, the largest object in the asteroid belt that lies between Mars and Jupiter. However, from 2011 to 2013 Dawn collected extensive data on Vesta, the second largest object in the asteroid belt and one of the largest known comets in our solar system.

The data collected from Vesta is still being analyzed and will continue to be for years to come. As the data is examined interesting new information about the giant asteroid is coming to light. Vesta which is very cold and has no atmosphere has long thought to be dry. A new study published in the journal Earth and Planetary Science Letters casts doubt on that assumption.
While there are certainly no rivers and lakes on Vesta, photographs taken by Dawn show evidence of short lived flows of water mobilized material on the surface.

“Nobody expected to find evidence of water on Vesta. The surface is very cold and there is no atmosphere, so any water on the surface evaporates. However, Vesta is proving to be a very interesting and complex planetary body,” said Jennifer Scully, postgraduate researcher at the University of California, Los Angeles in a statement.

The research could change some basic assumptions in planetary science.

“These results, and many others from the Dawn mission, show that Vesta is home to many processes that were previously thought to be exclusive to planets. We look forward to uncovering even more insights and mysteries when Dawn studies Ceres,” said UCLA’s Christopher Russell, principal investigator for the Dawn mission.
The curved gullies on vesta are very different from what would be expected from dry material flows, say the researchers.

“We’re not suggesting that there was a river-like flow of water. We’re suggesting a process similar to debris flows, where a small amount of water mobilizes the sandy and rocky particles into a flow. These features on Vesta share many characteristics with those formed by debris flows on Earth and Mars,“ said Scully.

The leading theory so far is that Vesta has small patches of ice beneath the surface, possibly deposited by impacts from other comets. Later impacts could have heated the ice enough to thaw some of the water, releasing it into the crater.

View Article Here Read More

Invisible shield in space protects Earth from ‘killer electrons’


A cloud of cold, charged gas around Earth, called the plasmasphere and seen here in purple, interacts with the particles in Earth's radiation belts — shown in grey— to create an impenetrable barrier that blocks the fastest electrons from moving in closer to our planet. Image by NASA/Goddard
A cloud of cold, charged gas around Earth, called the plasmasphere and seen here in purple, interacts with the particles in Earth’s radiation belts — shown in grey— to create an impenetrable barrier that blocks the fastest electrons from moving in closer to our planet. These findings were published in Nature magazine on Nov. 26, 2014. Image by NASA/Goddard



Excerpt from pbs.org

A team led by professors and scientists from the University of Colorado at Boulder have discovered an invisible shield in space that blocks Earth from so-called “killer electrons,” according to findings published in Nature on Thursday.

“Somewhat like the shields created by force fields on Star Trek that were used to repel alien weapons, we are seeing an invisible shield blocking these electrons,” said Professor Daniel N. Baker, the lead author of the study in a press release.

“It’s an extremely puzzling phenomenon.”

According to NASA, “killer electrons” are the devilish doppelgangers of Earth’s subatomic allies.

While the flow of electrons is used as electricity to power everything from cell phones to light bulbs, when electrons reach high speeds like that of more than 100,000 miles per second in space, they can become dangerous and have been known to destroy satellites and even injure astronauts.

The shield, said to be located some 7,200 miles from Earth and impenetrable, lies within the Van Allen radiation belts, two rings around Earth containing potent electrons and protons trapped by the Earth’s magnetic field.

In 2008, NASA’s STEREO spacecraft, discovered that electrons turn into speedy, destructive “killer electrons” in part when picked up in the Belts by powerful radio waves known as whistlers.

Luckily though: “It’s almost like theses electrons are running into a glass wall in space,” said Baker of the shield, which was discovered using data collected by NASA’s Van Allen probes.

View Article Here Read More

Possibility of Water in Mars’ History Grows with Volcanic-Heating Theory

The martian surface may have once been flowing with liquid water, under an atmosphere contaminated by volcanoes on Mars. Image: IttizExcerpt from techtimes.comVolcanoes may have once been active on Mars, possibly warming the planet enough for liquid ...

View Article Here Read More

Extreme Storms on Uranus Puzzle Astronomers


Infrared Uranus
These infrared images of the planet Uranus show a white spot that is actually a massive storm on the planet. This image was recorded by the Keck II telescope atop Mauna Kea in Hawaii on Aug. 6, 2014 in the 2.2-micron wavelength.


Excerpt from  space.com
By Elizabeth Howell

Uranus is finally having some summer storms, seven years after the planet reached its closest approach to the sun, leaving scientists wondering why the massive storms are so late.

The usually quiet gas giant now has such "incredibly active" weather that some of the features are even visible to amateurs, said Imke de Pater, the project's lead researcher and an astronomer at the University of California, Berkeley. Astronomers first announced the extreme storms on Uranus in August, and have been trying to understand them ever since.

This is by far the most active weather de Pater's team has seen on Uranus in the past decade, examining its storms and northern convective features. It also paints a different picture of the quiet planet Voyager 2 saw when the NASA spacecraft flew by in 1986.


uranus
An infrared composite image of the two hemispheres of Uranus obtained with Keck Telescope adaptive optics. The component colors of blue, green, and red were obtained from images made at near infrared wavelengths of 1.26, 1.62, and 2.1 microns respectively. The images were obtained on July 11 and 12, 2004. The North pole is at 4 o'clock. Lawrence Sromovsky, University of Wisconsin-Madison/W.W. Keck Observatory

"This type of activity would have been expected in 2007, when Uranus' once-every-42-year equinox occurred and the sun shined directly on the equator," research co-investigator Heidi Hammel, of the Association of Universities for Research in Astronomy, said in a statement. "But we predicted that such activity would have died down by now. Why we see these incredible storms now is beyond anybody's guess."

But here's where the mystery comes in: As far as anyone can tell, Uranus has no source of internal heat. Sunlight is thought to be responsible for changes in its atmosphere, such as storms. But the sun's light is currently weak in Uranus' northern hemisphere, so scientists are puzzled as to why that area is so active today.

 


Huge storms on Uranus


Based on the colors and structure of the storm spotted by amateurs, professional astronomers believe it could hint at a vortex deeper in the atmosphere — similar to phenomena spotted on Jupiter, such as the Great Red Spot.

Follow-up observations with the Keck II telescope revealed that the storm was still raging, although it had changed its shape, and possibly its intensity.

Also contributing to the effort was the Hubble Space Telescope, which examined the entire planet of Uranus Oct. 14 in several wavelengths. The observations revealed storms spanning several altitudes, over a distance of about 5,592 miles (9,000 kilometers).

"If, indeed, these features are high-altitude clouds generated by flow perturbations associated with a deeper vortex system, such drastic fluctuations in intensity would indeed be possible," said Larry Sromovsky, a planetary scientist at the University of Wisconsin-Madison who performed the newer work.

View Article Here Read More
Older posts Newer posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑