Tag: flat (page 1 of 4)

Disclosure Process

There are great changes happening in our Solar System. A vast fleet comprised of many motherships of countless positive cosmic races has reached its final parking position on key resonance points within our Solar System to support the process of full Disclosure. Some of those ships can be seen clearly on photos which were taken by our team this week with StratoProbe 5 about 17 km (57,000 feet) above the surface: For the first time in 26,000 years, the Chimera group is lately starting to show signs of worry about the stability of the quarantine status for planet Earth. This is why they are fortifying their defenses within the Air Force Space Command: http://www.ascensionwithearth.com/2017/04/secret-space-program-update-united.html#more http://www.saffm.hq.af.mil/News/Article-Display/Article/1140695/af-announces-major-changes-to-space-enterprise/ Disclosure process is an exponential curve, going slowly at first during the soft Disclosure phase we are experiencing now, but steadily accelerating until we reach the breakthrough at the moment of the Event into full Disclosure. Many seemingly unrelated initiatives of the surface population are part of the same greater plan of the Light forces (Operation PrisonBreak) to penetrate the quarantine. Many space program initiatives in the nearspace, in Earth orbit, on Moon and Mars are expected to experience their breakthrough in the next few years: http://www.cloudsao.com/ANALEMMA-TOWER http://www.space.com/36654-virgin-galactic-fly-space-tourists-2018.html https://sputniknews.com/science/201704261053015674-space-tourism-russia-us-moon-iss/ http://www.ibtimes.com.au/nasa-chief-human-spaceflight-bares-plan-lunar-station-1549696 http://www.zdnet.com/article/china-and-europe-plot-to-build-base-on-the-moon/#ftag=RSSbaffb68 http://www.space.com/36829-this-company-plans-to-mine-the-moon.html http://www.space.com/36858-made-in-space-archinaut-satellite.html Mainstream media are slowly preparing for the announcement of the existence of extraterrestrial life. Although certain negative factions will try to spin this into partial Disclosure, they will not be successful and all mainstream media soft Disclosure announcements are really stepping stones towards full Disclosure and are part of the same Operation PrisonBreak: http://www.ancient-code.com/nasa-mankind-discover-extraterrestrial-life/ http://www.ascensionwithearth.com/2017/04/on-verge-of-most-profound-discovery.html#more https://news.uchicago.edu/article/2017/04/26/recently-discovered-solar-system-could-seed-life-between-adjacent-exoplanets http://nypost.com/2017/04/25/aliens-may-have-existed-in-our-solar-system-long-before-us/ https://www.universetoday.com/135347/look-ancient-civilizations-solar-system/ Scientists are finally discovering the plasma web that spans across the Universe: http://earth-chronicles.com/space/waves-are-found-that-go-through-the-cobweb-of-the-universe.html Which is perfectly described here: http://unifiedfractalfield.com/cosmogenetics/ Dipole Repeller, one of the biggest toroidal structures in the Universe is a sector in this Universe with the Local group of galaxies in its center and two lobes of opposite polarity laterally spaced in both directions. This is the cosmic purification station for the Primary Anomaly with planet Earth in its central null zone. Dipole Repeller is the cosmic dynamo that energizes the process of Compression Breakthrough: https://www.nature.com/articles/s41550-016-0036=&0=& View Article Here Read More

Cintamani

Cintamani is a sacred stone which came from Sirius star system. Millions of years ago, during a Galactic superwave, a planet orbiting Sirius A exploded. Its fragments traveled in all directions, some of them reaching Earth after long journey through in...

View Article Here Read More

Study says the universe may be a hologram






Holograms are two-dimensional pictures that appear to the human eye as three-dimensional objects. Some scientists believe that our universe may behave similarly, existing as a sort of all-encompassing hologram.
As explained by Nature World News, “a mathematical description of the Universe actually requires one fewer dimension than it seems” according to the “holographic principle,” which would indicate that what appears to be a 3-D universe may actually “just be the image of 2-D processes on a huge cosmic horizon.”
Prior to this study, scientists looked into this holographic principle by applying their calculations to a universe presenting Anti de Sitter space. Anti de Sitter is the term used to describe space as having a hyperbolic shape, much like a saddle. This hyperbolic space shape behaves, mathematically, as special relativity would predict.
Special relativity is a theory put forth by Albert Einstein to describe the relationship between space and time, and is especially useful when studying very small particles moving at extreme speeds over cosmic distances. The concept of Anti de Sitter space assumes that spacetime itself is hyperbolic in its natural state, in the absence of matter or energy.
A team at the Vienne University of Technology looked at the holographic principle not in the usual Anti de Sitter space framework, but instead applied the principle to flat spacetime, as represents our physical universe.“Our Universe, in contrast, is quite flat – and on astronomic distances, it has positive curvature,” team member Daniel Grumiller said in a statement.
The team created several gravitational theories that apply to flat space to see if calculations regarding quantum gravity would indicate a holographic description as has occurred in former calculations with theories applied to Anti de Sitter space.
“If quantum gravity in a flat space allows for a holographic description by a standard quantum theory, then there must be physical quantities, which can be calculated in both theories – and the results must agree,” Grumiller said.
The team found that the amount of quantum entanglement required for gravitational theory models expressed the same value in flat quantum gravity as in a low dimensional field theory, showing that the theory of a holographic universe can be successfully applied to the reality of the relatively flat field of spacetime evident in our universe.
“This calculation affirms our assumption that the holographic principle can also be realized in flat spaces. It is evidence for the validity of this correspondence in our universe” team member Max Riegler said.
The results were published in the journal Physical Review Letters.


View Article Here Read More

Amazing Images of Comet 67P/Churyumov-Gerasimenko

Rosetta photo of Comet 67P/C-G.
Comet 67P/C-G is about as large as Central Park of Manhattan Island, New York

Excerpt from nytimes.com

By JONATHAN CORUM 


The European Space Agency’s Rosetta spacecraft caught up with Comet 67P/Churyumov-Gerasimenko last August, then dropped a lander onto the comet in November. Now Rosetta will follow the rubber-duck-shaped comet as it swings closer to the sun.
Scale in miles
Scale in km
Rosetta photo of Comet 67P/C-G.
1/2 MILE

March 9 Rosetta was 45 miles from Comet 67P/C-G when it photographed the comet’s head ringed with a halo of gas and dust. These jets extend from active areas of the comet’s surface and will become much more prominent over the next few months as the comet approaches the sun.
Rosetta photo of Comet 67P/C-G.
1/2 MILE

March 6 The comet’s head is angled down in this image of crisscrossing sunlit jets taken from 53 miles away.
Comet’s location when Rosetta was launched Rosetta launched in March 2004
Earth
Sun
Mars
Rendezvous
with Comet
67P/C-G
Orbit of
Jupiter
Rosetta today

Where is Rosetta? The Rosetta spacecraft took 10 years to match speed and direction with Comet 67P/C-G. The chase ended last August, and Rosetta will now follow the comet in its elliptical orbit as it moves closer to the sun. The spacecraft is no longer orbiting the comet because of increasing dust, but it is planning a series of close flybys.
Rosetta photo of Comet 67P/C-G.
1/2 MILE

March 6 Rosetta was 52 miles away when it looked up at the comet’s flat underbelly. The smooth plain at center covered with large boulders is named Imhotep.
Rosetta photo of Comet 67P/C-G.
1/2 MILE

Feb. 28 Rosetta captured a profile of the comet surrounded by curving jets of gas and dust from active regions. The spacecraft was 64 miles away.

Rosetta photo of Comet 67P/C-G.

Feb. 25–27 One day on Comet 67P/C-G is about 12 hours, the time it takes the comet to spin on its axis. The jets of gas and dust surrounding the comet are thought to curve from a combination of the comet’s rotation and the uneven gravity of its two-lobed structure.
Rosetta photo of Comet 67P/C-G.
1/2 MILE

Feb. 20 The comet’s sunlit underbelly casts a shadow obscuring the neck that joins the two lobes. Rosetta took this image from 74 miles away.
Rosetta photo of Comet 67P/C-G.
1 MILE

Feb. 18 Pale jets of gas and dust surround Comet 67P/C-G, seen from 123 miles away. Bright marks in the background are a mix of stars, camera noise and streaks from small particles ejected from the comet.
Rosetta photo of Comet 67P/C-G.
1/4 MILE
Panorama by The New York Times

Feb. 14 On Valentine’s Day, Rosetta made its first close flyby of the comet, passing within four miles of the surface. Here the spacecraft looks down on the large depression at the top of the comet’s head.

Rosetta photo of Comet 67P/C-G.
500 FEET

Feb. 14 An image of the comet’s underbelly taken six miles above the surface during the Valentine’s Day flyby. The smooth plain in the foreground is called Imhotep.

Rosetta photo of Comet 67P/C-G.
1/2 MILE

Feb. 9 The comet is upside down in this image from 65 miles away, and a fan-shaped jet of dust streams from the comet’s neck region.

Rosetta photo of Comet 67P/C-G.
1/2 MILE

Feb. 6 Jets of gas and dust extend from the comet’s neck and other sunlit areas in this image taken from 77 miles away.

Rosetta photo of Comet 67P/C-G.
1/4 MILE

Feb. 3 This close-up image of the comet’s neck was taken from 18 miles away, and was the last image taken from orbit around Comet 67P/C-G. Rosetta will continue to follow the comet, but will leave its gravity-bound orbit because of increasing dust and instead begin a series of flybys.

Rosetta photo of Comet 67P/C-G.
1/4 MILE

Jan. 31 The comet’s head, neck and back are sunlit in this image taken from 17 miles away. A prominent jet of gas and dust extends from an active region of the surface near the comet’s neck.

Rosetta photo of Comet 67P/C-G.
1/4 MILE

Jan. 16 The tail of the comet’s larger lobe points up, revealing a smooth plain named Imhotep at left. Rosetta was 18 miles away when it took this image.

Rosetta photo of Comet 67P/C-G.
1/4 MILE

Jan. 3 The smooth plain named Imhotep, at center right, lies on the comet’s flat underbelly, seen here from a distance of about 18 miles.

Rosetta photo of Comet 67P/C-G.
1/4 MILE
Cheops
IMHOTEP

Dec. 14, 2014 The large triangular boulder on the flat Imhotep plain is named Cheops, after the Egyptian pyramid. The spacecraft was about 12 miles from the comet when it took this image.

Rosetta photo of Comet 67P/C-G.
1/4 MILE

Dec. 10 Sunlight falls between the body and head of the comet, lighting up a large group of boulders in the smooth Hapi region of the comet’s neck. To the right of the boulders, the cliffs of Hathor form the underside of the comet’s head. Rosetta took this image from a distance of 12 miles.

Rosetta photo of Comet 67P/C-G.
1/4 MILE

Dec. 2 The round depression in the middle of the comet’s head is filled with shadow in this image taken 12 miles above the comet.

Rosetta photo of Comet 67P/C-G.
1/4 MILE

Nov. 22 An overexposed image of Comet 67P/C-G from 19 miles away shows faint jets of gas and dust extending from the sunlit side of the comet.

Philae photo from the surface of Comet 67P/C-G.

Nov. 12 Rosetta’s washing-machine sized lander Philae successfully touched down on the comet’s head. But anchoring harpoons failed and Philae bounced twice before going missing in the shadow of a cliff or crater (above). Without sunlight Philae quickly lost power, but might revive as the comet gets closer to the sun. On March 12, Rosetta resumed listening for radio signals from the missing lander.

Rosetta photo of Comet 67P/C-G.

Photo illustration by The New York Times

How big is the comet? The body of Comet 67P/C-G is about as long as Central Park. For images of Rosetta’s rendezvous and the Philae landing, see Landing on a Comet, 317 Million Miles From Home.

Sources: European Space Agency and the Rosetta mission. Images by ESA/Rosetta, except where noted. Some images are composite panoramas created by ESA, and most images were processed by ESA to bring out details of the comet’s activity.

View Article Here Read More

Milky Way Galaxy May Be 50 Percent Bigger Than We Thought

 Excerpt from cbsnews.com Rings of stars thought to surround the Milky Way are actually part of it, according to new research, meaning the galaxy is bigger than previously believed.The findings extend the known width of the Milk...

View Article Here Read More

Great Fuel Economy For Less: 5 Affordable Used Cars That are Surprisingly Good on Gas

Excerpt from autotrader.com By Josh Sadlier   Seems like the only thing automakers want to talk about these days is how their cars suddenly get great fuel economy. Given this relentless chatter, it's tempting to conclude that mos...

View Article Here Read More

8 possible explanations for those bright spots on dwarf planet Ceres

Ceres  Excerpt from cnet.com It's a real-life mystery cliffhanger. We've come up with a list of possible reasons a large crater on the biggest object in the asteroid belt looks lit up like a Christmas tree.  We could be approachin...

View Article Here Read More

NASA releases first ever moving images of dark side of the Moon ~ Video





From wiki

The far side of the Moon, or 'dark side of the moon', is the hemisphere of the Moon that always faces away from Earth. The far side's terrain is rugged, with a multitude of impact craters and relatively few flat lunar maria. It has one of the largest craters in the Solar System, the South Pole–Aitken basin.

About 18 percent of the far side is occasionally visible from Earth due to libration. The remaining 82 percent remained unobserved until 1959, when the Soviet Union's Luna 3 space probe photographed it. The Russian Academy of Sciences published the first atlas of the far side in 1960. In 1968, the Apollo 8 mission's astronauts were the first humans to view this region directly when they orbited the Moon. To date, no one has explored the far side of the Moon on the ground.





Click to zoom

View Article Here Read More

How to See the Ghostly Zodiacal Light of the Night Sky

Excerpt from space.com Over the next two weeks, you have an excellent chance to spot one of the most rarely observed objects in the sky, the zodiacal light. The zodiacal light takes its name from the ancient band of 12 constellations through which the...

View Article Here Read More

The Mystery of the Blonde-haired Tarim Mummies of China



Excerpt from 
historicmysteries.com
By Shelly Barclay

The Tarim Mummies or the Mummies of Xinjiang are mysterious mummies that were discovered in the foothills of the Tian Shan Mountains in China. What is so mysterious about them is that some of them date back to roughly 4,000 years ago, a time when it was thought that there were no westerners in that area. However, there must have been, because the Tarim mummies are Caucasian. Not only that, but they wear similar garments and share similar burial practices of some European countries.



The first of the Tarim mummies was discovered by Wang Binghua in 1978. Wang had been searching for ancient settlements along in the northeast of Xinjiang when a local man directed him to Quizilchoqa. It was there that Wang uncovered the first mysterious Tarim mummy. Over time, these mummies were discovered in four different sites in the Tarim Basin area.  More than one hundred of them have been uncovered so far.


The Tarim mummies are unusually well preserved. This is interesting because the people who buried them did not practice mummification. The sites where these mummies have been found, lie on the edges of the Taklamakan Desert. When these ancient people buried their dead, the hot climate and rocky soil helped to keep the deceased’s body preserved, though it should have decomposed hundreds of years ago. Some of these corpses rival the Ancient Egyptian mummies in their extraordinary preserved state.
Another very strange thing about the Tarim mummies is the attire in which they were buried. If the fact that some of them had blond hair and blue eyes hadn’t given away the fact that they were westerners that had settled in what is now Xinjiang, the clothing they wore when they were buried would have. 


One of the mummies, the Yingpan Man, was six feet six inches tall and wore a red tunic with gold embroidery. He also wore a gold foil burial mask. This burial clothing is far more indicative of western influence than of Eastern. Other Tarim mummies have also been found wearing decidedly western clothing. One of the oddest bits of clothing found any of these mummies are the flat-brimmed pointy “witch hats” that were discovered on the “Witches of Subeshi.”

Researchers have been able to decipher a number of things about the people who buried these mummies since their discovery. This is largely due to the work of Dr. Victor Mair, the man who brought the Tarim mummies into the public eye. It is known that the ancient people rode horses, used chariots and had at least some medical knowledge. One of the Tarim mummies was found with evidence of a surgical wound on its neck, which had been sutured at some point.

Since the discovery of the caucasian-featured Tarim mummies in Xinjiang, scientists have been trying to uncover links between the ancient people who buried these mummies and modern citizens of the area. Thus far, several links have been discovered and hypothesized, but it is difficult to make them public or credible because of political unrest in the area. Nonetheless, there are many people who are certain that the Tarim mummies represent the first Caucasians to settle in the area. If this is fact, then it will mean that western man settled in the area roughly one thousand years before scientists had previously thought they did.

View Article Here Read More

The Weirdest, Coolest Stuff We’ve Learned About Rosetta’s Comet So Far


Various features on a smooth part of the comet's surface in the region named Imhotep.


Excerpt from wired.com

The Rosetta spacecraft has been studying comet 67P/Churyumov-Gerasimenko up close since August, collecting data of unprecedented detail and taking pictures of a starkly beautiful comet-scape. While the Philae lander has enjoyed much of the spotlight—partly thanks to its now-famous triple landing—Rosetta has been making plenty of its own discoveries.  

One of the biggest came last month, when scientists found that the chemical signature of the comet’s water is nothing like that on Earth, contradicting the theory that crashing comets supplied our planet with water. Comet 67P belongs to the Jupiter family of comets, and the findings also imply that these kinds of comets were formed at a wider range of distances from the sun than previously thought, says Michael A’Hearn, a planetary scientist at the University of Maryland, College Park, and member of the Rosetta science team.  

Today, scientists have published the first big set of results from Rosetta in a slew of papers in the journal Science. The results include measurements and analyses of the comet’s shape, structure, surface, and the surrounding dust and gas particles. Here are just a few of the amazing things they’ve discovered about Rosetta’s comet so far: 

The surface is fantastically weird  

The comet has quite the textured landscape, covered with steep cliffs, boulders, weird bumps, cracks, pits, and smooth terrain. There are fractures of all sizes, including one that’s several yards wide and stretches for more than half a mile along the comet’s neck. Researchers don’t yet know what caused these cracks.  The pits have steep sides and flat bottoms, ranging in size from a few tens to hundreds of feet wide. Jets of dust shoot out from some of the pits, suggesting that the ejection of material formed these features.  Another strange feature is what scientists are calling goosebumps—weird bumpy patches found particularly on steep slopes.

While other features such as pits and fractures range in sizes, all of the goosebumps are about 10 feet wide. No one knows what kind of process would make the bumps, but whatever it is could have played an important part in the comet’s formation. It may be breezy  Rosetta spotted dune- and ripple-like patterns,wind tails behind rocks, and even moats surrounding rocks, suggesting that a light breeze may blow dust along the surface. Such a gentle wind would have to come from gases leaking from below.

Because of the extremely low gravity on the comet, it wouldn’t take a strong gust to blow things around. It may have formed from two separate pieces  Or not. The most distinct feature of comet 67P is its odd, two-lobed shape, which resembles a duck. Although scientists have seen this lobed structure in other comets before, namely Borrelly and Hartley 2, none are as pronounced as comet 67P’s. Borrelly and Hartley 2 look more like elongated potatoes while 67P has a clearly defined head and body. The strange shape suggests the comet was once two separate pieces called cometesimals—what are now the duck’s head and body—that stuck together. 

The other possibility is that erosion ate away the parts around the neck. Preliminary evidence points to the first hypothesis.

“Probably most of us on the OSIRIS team lean toward thinking it was two cometesimals,” A’Hearn said. (OSIRIS is one of Rosetta’s imaging instruments.) But the scientists won’t have conclusive evidence until they study the comet in more detail. For example, they now see layering along the neck—if erosion carved out the comet’s duck shape, they should find the same same layering pattern continuing onto the other side of the neck. 

Black, with a tinge of red  

Even Rosetta’s color pictures show a grayish comet, but if you were to see it in person, you would see a pitch-black chunk of dust and ice, as it reflects only six percent of incoming light. By comparison, the moon reflects 12 percent of incoming light and Earth reflects 31 percent. But comet 67P’s not completely black, as it has a hint of red. Water, water, nowhere?  The comet’s covered in opaque, organic compounds. Although comet 67P is undoubtedly icy, it hardly shows any water ice on its surface at all. 

Which isn’t too surprising, as comets Tempel 1 and Hartley 2 didn’t have much ice on their surfaces either, A’Hearn says. Rosetta has yet to see sunlight reach every side of the comet yet, so there may still be some icy patches hidden from view.  But, researchers do see the comet spraying water vapor into space, which means water ice likely lies just beneath the surface. The ice doesn’t have to be more than a centimeter deep to be invisible from the infrared instruments that detect the ice. Indeed, the data from Philae’s first bounce suggested that there’s a hard layer of ice beneath 4 to 8 inches of dust. 

This duck floats  

If you could find a big enough pond, that is. Like other known comets, the density of comet 67P is about half that of water ice. Initial measurements reveal that it’s also very porous—as much as 80 percent of it may be empty space. Rosetta has found depressions, which may have formed when the surface collapsed over particularly porous material underneath. 

Different from every angle

As the comet nears the sun, it heats up, and ices and other volatile chemicals sublimate, spraying gases into space. So far, the most prominent gases that have been ejected are water vapor, carbon dioxide, and carbon monoxide. They spew out in different amounts from different parts of the comet. In particular, a lot of the water has been observed gushing out from the neck.

The comet will continue to get more active as it reaches its closest approach to the sun in mid-August. It will burst with stronger jets of gas and dust, and maybe even blast off chunks of itself. If the comet is this interesting now, A’Hearn says, just wait until it gets to its nearest point to the sun, when it’s just 1.29 times farther from the sun than Earth is.

View Article Here Read More

Elon Musk Attempts Landing a Rocket on a Boat


Picture of the SpaceX Falcon 9 rocket at Cape Canaveral
A SpaceX Falcon 9 rocket stands ready to boost a Dragon capsule on its fifth commercial resupply mission to the International Space Station. If all goes as planned, the rocket will land on a barge on Saturday.

Excerpt from 
news.nationalgeographic.com


SpaceX chief aims to make rockets reusable by guiding them to a barge instead of letting them splash down. 

Rockets have landed on the moon and on Mars, but now SpaceX rocket maven Elon Musk aims to land one someplace really exotic—a barge floating in the Atlantic Ocean.

The barge, or "autonomous spaceport drone ship" as SpaceX calls it, is scheduled to land its returned rocket on Saturday, about 17 minutes after the planned 4:47 a.m. (EST) launch of a Dragon cargo spacecraft heading to the International Space Station from the Cape Canaveral Air Force Station in Florida.

The point of the barge landing is to recover the rocket's expensive engines and reuse them. Until now, rocket engines have typically been allowed to burn up on reentry or plummet into the ocean, either for disposal or recovery later by boat. If SpaceX pulls off the barge landing, it will be a first for ocean landings.

The barge's landing site, just 300 feet by 170 feet in size (about 90 by 50 meters), will act as the outfielder's glove to catch the massive first stage of the Falcon 9 launch rocket, maneuvered into place by remote control.

"Our main mission is to get cargo to the space station," said SpaceX's Hans Koenigsmann, speaking last week at a NASA briefing. "I'm pretty sure it will be pretty exciting," he said of the attempted controlled landing of the 14-story-tall first stage of the rocket on a flat floating platform.

Failure an Option

SpaceX has successfully landed rocket stages on land, and made a controlled landing on water after a past cargo launch, which still led to the loss of the rocket stage in the drink. Musk has previously suggested that barge landings of stages would expedite their reuse, leading to cheaper rocketry.

Musk gave 50 percent odds of the barge landing working out. ("I pretty much made that up. I have no idea," he added in a recent web chat on Reddit.)

View Article Here Read More

Philae comet lander eludes discovery

Artist's conceptionExcerpt from bbc.comEfforts to find Europe's lost comet lander, Philae, have come up blank. The most recent imaging search by the overflying Rosetta "mothership" can find no trace of the probe. Philae touched down on 67...

View Article Here Read More
Older posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑