Tag: fast (page 4 of 12)

New internet neutrality: FCC chairman proposes strong new rules

Excerpt from mercurynews.comThe federal government's top communications regulator on Wednesday called for strong new rules to bar Internet and wireless providers from blocking, slowing or discriminating against consumers' access to particular websi...

View Article Here Read More

How Obama wants to spend Americans’ money next year: an agency-by-agency look


PHOTO: President Barack Obama's new $4 trillion budget plan is distributed by the Senate Budget Committee as it arrives on Capitol Hill in Washington, early Monday, Feb. 02, 2015. The fiscal blueprint for the budget year that begins Oct. 1, seeks to raise taxes on wealthier Americans and corporations and use the extra income to lift the fortunes of families who have felt squeezed during tough economic times. Republicans, who now hold the power in Congress, are accusing the president of seeking to revert to tax-and-spend policies that will harm the economy while failing to do anything about soaring spending on government benefit programs. (AP Photo/J. Scott Applewhite)
President Barack Obama's new $4 trillion budget plan is distributed by the Senate Budget Committee as it arrives on Capitol Hill in Washington, early Monday, Feb. 02, 2015. The fiscal blueprint for the budget year that begins Oct. 1, seeks to raise taxes on wealthier Americans and corporations and use the extra income to lift the fortunes of families who have felt squeezed during tough economic times. Republicans, who now hold the power in Congress, are accusing the president of seeking to revert to tax-and-spend policies that will harm the economy while failing to do anything about soaring spending on government benefit programs. (AP Photo/J. Scott Applewhite)


Excerpt from therepublic.com 

WASHINGTON — Sure, $4 trillion sounds like a lot. But it goes fast when your budget stretches from aging highways to medical care to space travel and more.

Here's an agency-by-agency look at how President Barack Obama would spend Americans' money in the 2016 budget year beginning Oct. 1:


HEALTH AND HUMAN SERVICES
Up or down? Up 4.3 percent
What's new? Medicare could negotiate prices for cutting-edge drugs.
Highlights:
— The president's proposed health care budget asks Congress to authorize Medicare to negotiate what it pays for high-cost prescription drugs and for biologics, including advanced medications for diseases such as rheumatoid arthritis. Currently, private insurers bargain on behalf of Medicare beneficiaries. Drug makers have beaten back prior proposals to give Medicare direct pricing power. But the introduction of a $1,000-a-pill hepatitis-C drug last year may have shifted the debate.
— Tobacco taxes would nearly double, to extend health insurance for low-income children. The federal cigarette tax would rise from just under $1.01 per pack to about $1.95 per pack. Taxes on other tobacco products also would go up. That would provide financing to pay for the Children's Health Insurance Program through 2019. The federal-state program serves about 8 million children, and funding technically expires Sept. 30. The tobacco tax hike would take effect in 2016.
— Starting in 2019, the proposal increases Medicare premiums for high-income beneficiaries and adds charges for new enrollees. The charges for new enrollees include a home health copayment, changes to the Part B deductible, and a premium surcharge for seniors who've also purchased a kind of supplemental insurance whose generous benefits are seen as encouraging overuse of Medicare services.
— There's full funding for ongoing implementation of Obama's health care law.
—The plan would end the budget sequester's 2 percent cut in Medicare payments to service providers and repeal another budget formula that otherwise will result in sharply lower payments for doctors. But what one hand gives, the other hand takes away. The budget also calls for Medicare cuts to hospitals, insurers, drug companies and other service providers.
The numbers:
Total spending: $1.1 trillion, including about $1 trillion on benefit programs including Medicare and Medicaid, already required by law.
Spending that needs Congress' annual approval: $80 billion.

NASA
Up or down? Up 2.9 percent
What's new? Not much. Just more money for planned missions.
Highlights:
—The exploration budget — which includes NASA's plans to grab either an asteroid or a chunk of an asteroid and haul it closer to Earth for exploration by astronauts — gets a slight bump in funding. But the details within the overall exploration proposal are key. The Obama plan would put more money into cutting-edge non-rocket space technology; give a 54 percent spending jump to money sent to private firms to develop ships to taxi astronauts to the International Space Station; and cut by nearly 12 percent spending to build the next government big rocket and capsule to carry astronauts. Congress in the past has cut the president's proposed spending on the private firms and technology and boosted the spending on the government big rocket and capsule.
—The president's 0.8 percent proposed increase in NASA science spending is his first proposed jump in that category in four years. It's also the first proposed jump in years in exploring other planets. It includes extra money for a 2020 unmanned Martian rover and continued funding for an eventual robotic mission to Jupiter's moon Europa. But the biggest extra science spending goes to study Earth.
— Obama's budget would cut aeronautics research 12 percent from current spending and slash NASA's educational spending by 25 percent. It also slightly trims the annual spending to build the over-budget multi-billion dollar James Webb Space Telescope, which will eventually replace the Hubble Space Telescope and is scheduled to launch in 2018.
The numbers:
Total spending: $18.5 billion
Spending that needs Congress' annual approval: $18.5 billion

TRANSPORTATION
Up or down? Up 31 percent
What's new? A plan to tackle an estimated $2 trillion in deferred maintenance for the nation's aging infrastructure by boosting highway and transit spending to $478 billion over six years.
Highlights:
— The six-year highway and transit plan would get a one-time $238 billion infusion from the general treasury. Some of the money would be offset by taxing the profits of U.S. companies that haven't been paying taxes on income made overseas. That infusion comes on top of the $35 billion a year that normally comes from gasoline and diesel taxes and other transportation fees.
— The proposal also includes tax incentives to encourage private investment in infrastructure, and an infrastructure investment bank to help finance major transportation projects.
— The new infrastructure investment would be front-loaded. The budget proposes to spend the money over six years and pay for the programs over 10 years.
— The proposal also includes a new Interagency Infrastructure Permitting Improvement Center to coordinate efforts across nearly 20 federal agencies and bureaus to speed up the permitting process. For example, the Coast Guard, Corps of Engineers and Transportation Department are trying to synchronize their reviews of projects such as bridges that cross navigation channels.
The numbers:
Total spending: $94.5 billion, including more than $80 billion already required by law, mostly for highway and transit aid to states and improvement grants to airports.
Spending that needs Congress' annual approval: $14.3 billion.

Associated Press writers Ricardo Alonso-Zaldivar, Seth Borenstein, Joan Lowy and Connie Cass contributed to this report.

View Article Here Read More

6 Supermaterials That Could Change Our World


Graphene

Excerpt from gizmodo.com

Graphene isn't the only game-changing material to come out of a lab. From aerogels nearly as light as air to metamaterials that manipulate light, here are six supermaterials that have the potential to transform the world of the future.

Self-healing Materials — Bioinspired Plastics

6 Supermaterials That Could Change Our World 
Self-healing plastic. Image credit: UIUC


The human body is very good at fixing itself. The built environment is not. Scott White at the University of Illinois at Urbana Champlain has been engineering bioinspired plastics that can self-heal. Last year, White's lab created a new polymer that oozes to repair a visible hole. The polymer is embedded with a vascular system of liquids that when broken and combined, clot just like blood. While other materials have been able to heal microscopic cracks, this new one repaired a hole 4 millimeter wide with cracks radiating all around it. Not big deal for a human skin, but a pretty big deal for plastic.

Engineers have also been envisioning concrete, asphalt, and metal that can heal themselves. (Imagine a city with no more potholes!) The rub, of course, lies in making them cheap enough to actually use, which is why the first applications for self-healing materials are most likely to be in space or in remote areas on Earth. 

Thermoelectric Materials — Heat Scavengers

6 Supermaterials That Could Change Our World 
Power blocks with thermoelectric material sued inside Alphabet Energy 's generator. Image credit: Alphabet Energy


If you've ever had a laptop burn up in your lap or touched the hot hood of car, then you've felt evidence of waste. Waste heat is the inevitable effect of running any that device that uses power. One estimate puts the amount of waste heat as two-thirds of all energy used. But what if there was a way to capture all that wasted energy? The answer to that "what if" is thermoelectric materials, which makes electricity from a temperature gradient.

Last year, California-based Alphabet Energy introduced a thermoelectric generator that plugs right into the exhaust pipe of ordinary generator, turning waste heat back into useful electricity. Alphabet Energy's generator uses a relatively cheap and naturally occurring thermoelectric material called tetrahedrite. Alphabet Energy says tetrahedrite can reach 5 to 10 percent efficiency.
Back in the lab, scientists have also been tinkering with another promising and possibly even more efficient thermoelectric material called skutterudite, which is a type of mineral that contains cobalt. Thermoelectric materials have already had niche applications—like on spacecraft—but skutterudite could get cheap and efficient enough to be wrapped around the exhaust pipes of cars or fridges or any other power-hogging machine you can think of. [Nature, MIT Technology Review, New Scientist]

Perovskites — Cheap Solar Cells

6 Supermaterials That Could Change Our World 
Solar cells made of perovskites. Image credit: University of Oxford


The biggest hurdle in moving toward renewable energy is, as these things always are, money. Solar power is getting ever cheaper, but making a plant's worth of solar cells from crystalline silicon is still an expensive, energy-intensive process. There's an alternative material that has the solar world buzzing though, and that's perovskites. 

Perovskites were first discovered over a century ago, but scientists are only just realizing its potential. In 2009, solar cells made from perovskites had a solar energy conversion efficiency of a measly 3.8 percent. In 2014, the number had leapt to 19.3 percent. That may not seem like much compared to traditional crystalline silicon cells with efficiencies hovering around 20 percent, but there's two other crucial points to consider: 1) perovskites have made such leaps and bounds in efficiency in just a few years that scientist think it can get even better and 2) perovskites are much, much cheaper. 

Perovskites are a class of materials defined by a particular crystalline structure. They can contain any number of elements, usually lead and tin for perovskites used in solar cells. These raw materials are cheap compared to crystalline silicon, and they can be sprayed onto glass rather than meticulously assembled in clean rooms. Oxford Photovoltaics is one of the leading companies trying to commercialize perovskites, which as wonderful as they have been in the lab, still do need to hold up in the real world. [WSJ, IEEE Spectrum, Chemical & Engineering News, Nature Materials]

Aerogels — Superlight and Strong

6 Supermaterials That Could Change Our World 
Image credit: NASA

Aerogels look like they should not be real. Although ghostly and ethereal, they can easily withstand the heat of a blowtorch and the weight of a car. The material is almost what exactly the name implies: gels where where the liquid has been replaced entirely by air. But you can see why it's also been called "frozen smoke" or "blue smoke." The actual matrix of an aerogel can be made of any number of substances, including silica, metal oxides, and, yes, also graphene. But the fact that aerogel is actually mostly made of air means that it's an excellent insulator (see: blowtorch). Its structure also makes it incredibly strong (see: car).

Aerogels do have one fatal flaw though: brittleness, especially when made from silica. But NASA scientists have been experimenting with flexible aerogels made of polymers to use insulators for spacecraft burning through the atmosphere. Mixing other compounds into even silica-based aerogels could make them more flexible. Add that to aerogel's lightness, strength, and insulating qualities, and that's one incredible material. [New Scientist, Gizmodo]

Metamaterials — Light Manipulators

If you've heard of metamaterials, you likely heard about it in a sentence that also mentioned "Harry Potter" and "invisibility cloak." And indeed, metamaterials, whose nanostructures are design to scatter light in specific ways, could possibly one day be used to render objects invisible—though it still probably wouldn't be as magical as Harry Potter's invisibility cloak. 

What's more interesting about metamaterials is that they don't just redirect visible light. Depending on how and what a particular metamaterial is made of, it can also scatter microwaves, radiowaves, or the little-known T-rays, which are between microwaves and infrared light on the electromagnetic spectrum. Any piece of electromagnetic spectrum could be manipulated by metamaterials. 

That could be, for example, new T-ray scanners in medicine or security or a compact radio antennae made of metamaterials whose properties change on the fly. Metamaterials are at the promising but frustrating cusp where the theoretical possibilities are endless, but commercialization is still a long, hard road. [Nature, Discover Magazine]

Stanene — 100 percent efficient conductor

6 Supermaterials That Could Change Our World 
The molecular structure of stanene. Image credit: SLAC


Like the much better known graphene, stanene is also made of a single layer of atoms. But instead of carbon, stanene is made of tin, and this makes all the difference in allowing stanene to possibly do what even wondermaterial extraordinaire graphene cannot: conduct electricity with 100 percent efficiency.

Stanene was first theorized in 2013 by Stanford professor Shoucheng Zhang, whose lab specializes in, along other things, predicting the electronic properties of materials like stanene. According to their models, stanene is a topological insulator, which means its edges are a conductor and its inside is an insulator. (Think of a chocolate-covered ice cream bar. Chocolate conductor, ice cream insulator.) 

This means stanene could conduct electricity with zero resistance even, crucially, at room temperature. Stanene's properties have yet to been tested experimentally—making a single-atom sheet tin is no easy task—but several of Zhang's predictions about other topological insulators have proven correct.

If the predictions about stanene bear out, it could revolutionize the microchips inside all your devices. Namely, the chips could get a lot more powerful. Silicon chips are limited by the heat created by electrons zipping around—work 'em too fast and they'll simply get too hot. Stanene, which conducts electricity 100 percent efficiency, would have no such problem. [SLAC, Physical Review Letters, Scientific American]

View Article Here Read More

Scientists Slow Down The Speed Of Light in Lab


Photon race rendering
Two photons, or particles of light approach a finish line used to determine if light can travel at different speeds through the air. Illustration courtesy University of Glasgow

Excerpt from popsci.com


Light passes through air at about 299,000,000 meters per second, an accepted constant that hasn’t been challenged—until now. By manipulating a single particle of light as it passed through free space, researchers have found a way to slow down the speed of light through air.

Scientists have known for a while how fast light passes through different mediums, such as water or glass, and how to slow that speed down. But researchers at the University of Glasgow and Heriot-Watt University decided to take this concept further and see if the speed of light could be changed as it passes through gases.
To make that happen, the team decided to look at individual light particles, or photons. “Measuring with single photons is the cleanest experiment you can get,” Jacquiline Romero, one of the study’s lead authors and a physics professor at the University of Glasgow, tells Popular Science. The group wanted to explicitly establish that different photons have different velocities depending on their placement within a light beam's structure. Depending on where a photon is in a light beam, it has either a slower or faster relative speed. It's similar to a group of runners: Even as the group stays together, the one at the front has to constantly be moving faster than the ones at the side or in the back. Daniel Giovannini, another study lead author from the University of Glasgow, says that researchers have known this for a while, but the team wanted to know just how slow the photons in the 'back of the pack' are moving.

The experiment set out to measure the arrival times of single photons, Romero says. To do that, the researchers passed one photon through a filter, which changed the photon's structure. They then compared the velocity of this photon to an unstructured photon. The researchers were able to decrease the velocity of the structured photon through air by 0.001 percent, which seems quite small, but the amount was not accidental. “We had to try it out and convince ourselves that it can be done and that it’s real,” Giovannini says. He and Romero say they anticipate the results will be divisive, between people who think the conclusion is obvious and those who think it’s a groundbreaking experiment.

The study was published January 23 in Science Express.

View Article Here Read More

Mysterious radio signal from space caught live for first time




Excerpt from foxnews.com

Astronomers in Australia have picked up an “alien” radio signal from space for the first time as it occurred. The signal, or radio “burst”, was discovered on May 15, 2014, though it’s just being reported by the Monthly Notices of the Royal Astronomical Society. “The burst was identified within 10 seconds of its occurrence,” said Emily Petroff, a doctoral student from Melbourne’s Swinburne University of Technology. “The importance of the discovery was recognized very quickly and we were all working very excitedly to contact other astronomers and telescopes around the world to look at the location of the burst.”
Emerging from an unknown source, these bursts are bright flashes of radio waves that emit as much energy in a few milliseconds as the sun does in 24 hours.  “The first fast radio burst was discovered in 2007,” Petroff tells FoxNews.com, “and up until our discovery there were 8 more found in old or archival data.” While researchers use telescopes in Hawaii, India, Germany, Chile, California, and the California Islands to search for bursts, it is the CSIRO Parkes radio telescope in Eastern Australia that is the first to catch one as its happening.
The cause of these mysterious signals remains unknown, with possible theories ranging from black holes to alien communication. However, UFO hunters shouldn’t get too excited. According to Petroff, “We're confident that they're coming from natural sources, that is to say it's probably not aliens, but we haven't solved the case completely. The two most promising theories at the moment are that these bursts could be produced either by a star producing a highly energetic flare, or from a neutron star collapsing to make a black hole. Both of these things would be from sources in far-away galaxies just reaching us from billions of light years away.”
Catching the bursts as they happen is key to finding the source, and though Petroff’s team scrambled upon making their discovery, they didn’t move fast enough to find the afterglow and pin down the cause. “Finding one in real-time has been the goal for a while because we would then be able to act on it and mobilize other telescopes to look that way,” Petroff says. “We did this in the case of this real-time discovery, but we didn't get on the target until about eight hours later with other telescopes, at which time nothing was found.” However, they were able to eliminate a few possible causes, such as gamma-ray bursts from exploding stars and supernovae. Also, the team was able to determine that the source had been near an object with a sizeable magnetic field from the way the wavelengths were polarized.
While the source of the fast radio burst remains a mystery, the team remains hopeful that they can learn from their mistakes and one day solve the case. “All we can do is learn from our experience with this discovery and create a more efficient system for next time,” Petroff says. “We still spend a large amount of time looking for fast radio bursts with the Parkes telescope and the next time we are in the right place at just the right time, we'll be able to act faster than ever before and hopefully solve the mystery once and for all!”

View Article Here Read More

The Mystery of the Ghost Ship Lunatic

The Lunatic Piran found abandoned Jure Stwerk at the Helm           ...

View Article Here Read More

Meteorite is ‘hard drive’ from space ~ Researchers decode ancient recordings from asteroid ~ BBC


Pallasite meteorite
The Esquel meteorite consists of gem-quality crystals embedded in metal.



Excert from bbc.com

Researchers have decoded ancient recordings from fragments of an asteroid dating back billions of years to the start of the Solar System. 

They found tiny "space magnets" in meteorites which retain a memory of the birth and death of the asteroid's core.
Like the data recorded on the surface of a computer hard drive, the magnetic signals written in the space rock reveal how Earth's own metallic core and magnetic field may one day die.

The work appears in Nature journal.

Using a giant X-ray microscope, called a synchrotron, the team was able to read the signals that formed more than four-and-a-half billion years ago, soon after the birth of the Solar System.

Start Quote

It's like a cosmic archaeological mission”
Dr James Bryson University of Cambridge
The meteorites are pieces of a parent asteroid that originally came from asteroid belt, between Mars and Jupiter.
They represents the left-over fragments of a planet that failed to form. The magnetic recording within it traps a signal of the precise moments when an iron-rich core formed in the asteroid as well as when it froze, killing its magnetic field.
The new picture of metallic core solidification in the asteroid provide clues about the magnetic field and iron-rich core of Earth.
Core values "Ideas about how the Earth's core evolved through [our planet's] history are really changing at the moment," lead researcher Dr Richard Harrison, from the University of Cambridge, told BBC News.
"We believe that Earth's magnetic field is linked to core solidification. Earth's solid inner core may have started to form at very interesting time in terms of the evolution of life on Earth.
"By studying an asteroid we get to see this in fast forward. We can see the start of core solidification in the magnetic records as well as its end, and start to think about how these processes work on Earth."

Magnetic fieldThe Earth's magnetic field will likely die off when the core completely freezes
The meteorites studied by the team originally fell to Earth in Argentina, and are composed of gem-quality crystals enclosed in a metallic matrix of iron and nickel. 

Tiny particles, smaller than one thousandth the width of a human hair, trapped within the metal have retained the magnetic signature of the parent asteroid from its birth in the early Solar System.

"We're taking ancient magnetic field measurements in nano-scale materials to the highest ever resolution in order to piece together the magnetic history of asteroids - it's like a cosmic archaeological mission," said Dr James Bryson, the paper's lead author. 

"Since asteroids are much smaller than Earth, they cooled much more quickly, so these processes occur on a shorter timescales, enabling us to study the whole process of core solidification."

Prof Wyn William, from the University of Edinburgh, who was not involved in the study, commented: "To be able to get a time stamp on these recordings, to get a cooling rate and the time of solidification, is fantastic. It's a very nice piece of work."

The key to the long-lived stability of the recording is the atomic-scale structure of the iron-nickel particles that grew slowly in the asteroid core and survived in the meteorites. 

Making a final comment on the results, Dr Harrison said: "In our meteorites we've been able to capture both the beginning and end of core freezing, which will help us understand how these processes affected the Earth in the past and provide a possible glimpse of what might happen in the future." 

View Article Here Read More

Extraterrestrial Neighbors? Study Says Blast Of Unknown Radio Waves Came From Outside Our Galaxy

Excerpt from  npr.org On a graph, they look like detonations. Scientists call them "fast radio bursts," or FRBs, mysterious and strong pulses of radio waves that seemingly emanate far from the Milky Way. The bursts are rare; they normall...

View Article Here Read More

Age of stars can now be pinned to their spin

Excerpt from bbc.comAstronomers have proved that they can accurately tell the age of a star from how fast it is spinning. We know that stars slow down over time, but until recently there was little data to support exact calculations. For ...

View Article Here Read More

How Much Does it Cost to Build a Tiny House?




Excerpt from tinyhousetalk.com

If you’ve been wondering how much does it cost to build a tiny house you’re at the right place. Designing and building your own tiny house is a great way to create a mortgage-free lifestyle fast.
So it’s no wonder that you’d be interested… But the question is, “how much?”

Question: So How Much Does it Cost to Build a Tiny House?


Answer: Usually Around $25,000 to $30,000

This is for a relatively ‘high end’ tiny home on wheels with all of the amenities of home you’d be looking at around $25,000 to $30,000 in materials to build it yourself.

This figure normally includes buying a brand new trailer, professional construction plans, your appliances, and other materials brand new at the store.

Of course it’s always possible to do it for $13,173, $9,802, $21,204, or even $65,439 but this is just an estimation so you know what to expect and what I’ve believe to be most common but..


Here’s How You Can Do It For Less

  • Find and use recycled materials on places like Craigslist and Habitat Restores.
  • Use less expensive but reliable materials and appliances.
  • Do absolutely all of the labor yourself and with the help of friends and family.
  • Do your due diligence researching and designing to avoid costly mistakes.
  • Take time to find a good deal on the right used trailer instead of buying a brand new one.
  • Take the time to salvage another structure or recreational vehicle so you can use them to build your tiny home.
  • Find useful or reclaimable appliances on Craigslist or your nearest Habitat ReStore.

View Article Here Read More

The Future of Technology in 2015?




Excerpt from
cnet.com


The year gone by brought us more robots, worries about artificial intelligence, and difficult lessons on space travel. The big question: where's it all taking us?

Every year, we capture a little bit more of the future -- and yet the future insists on staying ever out of reach.
Consider space travel. Humans have been traveling beyond the atmosphere for more than 50 years now -- but aside from a few overnights on the moon four decades ago, we have yet to venture beyond low Earth orbit.
Or robots. They help build our cars and clean our kitchen floors, but no one would mistake a Kuka or a Roomba for the replicants in "Blade Runner." Siri, Cortana and Alexa, meanwhile, are bringing some personality to the gadgets in our pockets and our houses. Still, that's a long way from HAL or that lad David from the movie "A.I. Artificial Intelligence."
Self-driving cars? Still in low gear, and carrying some bureaucratic baggage that prevents them from ditching certain technology of yesteryear, like steering wheels.
And even when these sci-fi things arrive, will we embrace them? A Pew study earlier this year found that Americans are decidedly undecided. Among the poll respondents, 48 percent said they would like to take a ride in a driverless car, but 50 percent would not. And only 3 percent said they would like to own one.
"Despite their general optimism about the long-term impact of technological change," Aaron Smith of the Pew Research Center wrote in the report, "Americans express significant reservations about some of these potentially short-term developments" such as US airspace being opened to personal drones, robot caregivers for the elderly or wearable or implantable computing devices that would feed them information.
Let's take a look at how much of the future we grasped in 2014 and what we could gain in 2015.

Space travel: 'Space flight is hard'

In 2014, earthlings scored an unprecedented achievement in space exploration when the European Space Agency landed a spacecraft on a speeding comet, with the potential to learn more about the origins of life. No, Bruce Willis wasn't aboard. Nobody was. But when the 220-pound Philae lander, carried to its destination by the Rosetta orbiter, touched down on comet 67P/Churyumov-Gerasimenko on November 12, some 300 million miles from Earth, the celebration was well-earned.
A shadow quickly fell on the jubilation, however. Philae could not stick its first landing, bouncing into a darker corner of the comet where its solar panels would not receive enough sunlight to charge the lander's batteries. After two days and just a handful of initial readings sent home, it shut down. For good? Backers have allowed for a ray of hope as the comet passes closer to the sun in 2015. "I think within the team there is no doubt that [Philae] will wake up," lead lander scientist Jean-Pierre Bibring said in December. "And the question is OK, in what shape? My suspicion is we'll be in good shape."
The trip for NASA's New Horizons spacecraft has been much longer: 3 billion miles, all the way to Pluto and the edge of the solar system. Almost nine years after it left Earth, New Horizons in early December came out of hibernation to begin its mission: to explore "a new class of planets we've never seen, in a place we've never been before," said project scientist Hal Weaver. In January, it will begin taking photos and readings of Pluto, and by mid-July, when it swoops closest to Pluto, it will have sent back detailed information about the dwarf planet and its moon, en route to even deeper space.


Also in December, NASA made a first test spaceflight of its Orion capsule on a quick morning jaunt out and back, to just over 3,600 miles above Earth (or approximately 15 times higher than the International Space Station). The distance was trivial compared to those those traveled by Rosetta and New Horizons, and crewed missions won't begin till 2021, but the ambitions are great -- in the 2030s, Orion is expected to carry humans to Mars.
In late March 2015, two humans will head to the ISS to take up residence for a full year, in what would be a record sleepover in orbit. "If a mission to Mars is going to take a three-year round trip," said NASA astronaut Scott Kelly, who will be joined in the effort by Russia's Mikhail Kornienko, "we need to know better how our body and our physiology performs over durations longer than what we've previously on the space station investigated, which is six months."
There were more sobering moments, too, in 2014. In October, Virgin Galactic's sleek, experimental SpaceShipTwo, designed to carry deep-pocketed tourists into space, crashed in the Mojave Desert during a test flight, killing one test pilot and injuring the other. Virgin founder Richard Branson had hoped his vessel would make its first commercial flight by the end of this year or in early 2015, and what comes next remains to be seen. Branson, though, expressed optimism: "Space flight is hard -- but worth it," he said in a blog post shortly after the crash, and in a press conference, he vowed "We'll learn from this, and move forward together." Virgin Galactic could begin testing its next spaceship as soon as early 2015.
The crash of SpaceShipTwo came just a few days after the explosion of an Orbital Sciences rocket lofting an unmanned spacecraft with supplies bound for the International Space Station. And in July, Elon Musk's SpaceX had suffered the loss of one of its Falcon 9 rockets during a test flight. Musk intoned, via Twitter, that "rockets are tricky..."
Still, it was on the whole a good year for SpaceX. In May, it unveiled its first manned spacecraft, the Dragon V2, intended for trips to and from the space station, and in September, it won a $2.6 billion contract from NASA to become one of the first private companies (the other being Boeing) to ferry astronauts to the ISS, beginning as early as 2017. Oh, and SpaceX also has plans to launch microsatellites to establish low-cost Internet service around the globe, saying in November to expect an announcement about that in two to three months -- that is, early in 2015.
One more thing to watch for next year: another launch of the super-secret X-37B space place to do whatever it does during its marathon trips into orbit. The third spaceflight of an X-37B -- a robotic vehicle that, at 29 feet in length, looks like a miniature space shuttle -- ended in October after an astonishing 22 months circling the Earth, conducting "on-orbit experiments."

Self-driving cars: Asleep at what wheel?

Spacecraft aren't the only vehicles capable of autonomous travel -- increasingly, cars are, too. Automakers are toiling toward self-driving cars, and Elon Musk -- whose name comes up again and again when we talk about the near horizon for sci-fi tech -- says we're less than a decade away from capturing that aspect of the future. In October, speaking in his guise as founder of Tesla Motors, Musk said: "Like maybe five or six years from now I think we'll be able to achieve true autonomous driving where you could literally get in the car, go to sleep and wake up at your destination." (He also allowed that we should tack on a few years after that before government regulators give that technology their blessing.)
Prototype, unbound: Google's ride of the future, as it looks today Google
That comment came as Musk unveiled a new autopilot feature -- characterizing it as a sort of super cruise control, rather than actual autonomy -- for Tesla's existing line of electric cars. Every Model S manufactured since late September includes new sensor hardware to enable those autopilot capabilities (such as adaptive cruise control, lane-keeping assistance and automated parking), to be followed by an over-the-air software update to enable those features.
Google has long been working on its own robo-cars, and until this year, that meant taking existing models -- a Prius here, a Lexus there -- and buckling on extraneous gear. Then in May, the tech titan took the wraps off a completely new prototype that it had built from scratch. (In December, it showed off the first fully functional prototype.) It looked rather like a cartoon car, but the real news was that there was no steering wheel, gas pedal or brake pedal -- no need for human controls when software and sensors are there to do the work.
Or not so fast. In August, California's Department of Motor Vehicles declared that Google's test vehicles will need those manual controls after all -- for safety's sake. The company agreed to comply with the state's rules, which went into effect in September, when it began testing the cars on private roads in October.
Regardless of who's making your future robo-car, the vehicle is going to have to be not just smart, but actually thoughtful. It's not enough for the car to know how far it is from nearby cars or what the road conditions are. The machine may well have to make no-win decisions, just as human drivers sometimes do in instantaneous, life-and-death emergencies. "The car is calculating a lot of consequences of its actions," Chris Gerdes, an associate professor of mechanical engineering, said at the Web Summit conference in Dublin, Ireland, in November. "Should it hit the person without a helmet? The larger car or the smaller car?"

Robots: Legging it out

So when do the robots finally become our overlords? Probably not in 2015, but there's sure to be more hand-wringing about both the machines and the artificial intelligence that could -- someday -- make them a match for homo sapiens. At the moment, the threat seems more mundane: when do we lose our jobs to a robot?
The inquisitive folks at Pew took that very topic to nearly 1,900 experts, including Vint Cerf, vice president at Google; Web guru Tim Bray; Justin Reich of Harvard University's Berkman Center for Internet & Society; and Jonathan Grudin, principal researcher at Microsoft. According to the resulting report, published in August, the group was almost evenly split -- 48 percent thought it likely that, by 2025, robots and digital agents will have displaced significant numbers of blue- and white-collar workers, perhaps even to the point of breakdowns in the social order, while 52 percent "have faith that human ingenuity will create new jobs, industries, and ways to make a living, just as it has been doing since the dawn of the Industrial Revolution."


Still, for all of the startling skills that robots have acquired so far, they're often not all there yet. Here's some of what we saw from the robot world in 2014:
Teamwork: Researchers at the École Polytechnique Fédérale De Lausanne in May showed off their "Roombots," cog-like robotic balls that can join forces to, say, help a table move across a room or change its height.
A sense of balance: We don't know if Boston Dynamics' humanoid Atlas is ready to trim bonsai trees, but it has learned this much from "The Karate Kid" (the original from the 1980s) -- it can stand on cinder blocks and hold its balance in a crane stance while moving its arms up and down.
Catlike jumps: MIT's cheetah-bot gets higher marks for locomotion. Fed a new algorithm, it can run across a lawn and bound like a cat. And quietly, too. "Our robot can be silent and as efficient as animals. The only things you hear are the feet hitting the ground," MIT's Sangbae Kim, a professor of mechanical engineering, told MIT News. "This is kind of a new paradigm where we're controlling force in a highly dynamic situation. Any legged robot should be able to do this in the future."
Sign language: Toshiba's humanoid Aiko Chihira communicated in Japanese sign language at the CEATEC show in October. Her rudimentary skills, limited for the moment to simple messages such as signed greetings, are expected to blossom by 2020 into areas such as speech synthesis and speech recognition.
Dance skills: Robotic pole dancers? Tobit Software brought a pair, controllable by an Android smartphone, to the Cebit trade show in Germany in March. More lifelike was the animatronic sculpture at a gallery in New York that same month -- but what was up with that witch mask?
Emotional ambition: Eventually, we'll all have humanoid companions -- at least, that's always been one school of thought on our robotic future. One early candidate for that honor could be Pepper, from Softbank and Aldebaran Robotics, which say the 4-foot-tall Pepper is the first robot to read emotions. This emo-bot is expected to go on sale in Japan in February.

Ray guns: Ship shape

Damn the photon torpedoes, and full speed ahead. That could be the motto for the US Navy, which in 2014 deployed a prototype laser weapon -- just one -- aboard a vessel in the Persian Gulf. Through some three months of testing, the device "locked on and destroyed the targets we designated with near-instantaneous lethality," Rear Adm. Matthew L. Klunder, chief of naval research, said in a statement. Those targets were rather modest -- small objects mounted aboard a speeding small boat, a diminutive Scan Eagle unmanned aerial vehicle, and so on -- but the point was made: the laser weapon, operated by a controller like those used for video games, held up well, even in adverse conditions.

Artificial intelligence: Danger, Will Robinson?

What happens when robots and other smart machines can not only do, but also think? Will they appreciate us for all our quirky human high and low points, and learn to live with us? Or do they take a hard look at a species that's run its course and either turn us into natural resources, "Matrix"-style, or rain down destruction?
laser-weapon-system-on-uss-ponce.jpg
When the machines take over, will they be packing laser weapons like this one the US Navy just tried out? John F. Williams/US Navy
As we look ahead to the reboot of the "Terminator" film franchise in 2015, we can't help but recall some of the dire thoughts about artificial intelligence from two people high in the tech pantheon, the very busy Musk and the theoretically inclined Stephen Hawking.
Musk himself more than once in 2014 invoked the likes of the "Terminator" movies and the "scary outcomes" that make them such thrilling popcorn fare. Except that he sees a potentially scary reality evolving. In an interview with CNBC in June, he spoke of his investment in AI-minded companies like Vicarious and Deep Mind, saying: "I like to just keep an eye on what's going on with artificial intelligence. I think there is potentially a dangerous outcome."
He has put his anxieties into some particularly colorful phrases. In August, for instance, Musk tweeted that AI is "potentially more dangerous than nukes." And in October, he said this at a symposium at MIT: "With artificial intelligence, we are summoning the demon. ... You know all those stories where there's the guy with the pentagram and the holy water and he's like... yeah, he's sure he can control the demon, [but] it doesn't work out."
Musk has a kindred spirit in Stephen Hawking. The physicist allowed in May that AI could be the "biggest event in human history," and not necessarily in a good way. A month later, he was telling John Oliver, on HBO's "Last Week Tonight," that "artificial intelligence could be a real danger in the not too distant future." How so? "It could design improvements to itself and outsmart us all."
But Google's Eric Schmidt, is having none of that pessimism. At a summit on innovation in December, the executive chairman of the far-thinking tech titan -- which in October teamed up with Oxford University to speed up research on artificial intelligence -- said that while our worries may be natural, "they're also misguided."

View Article Here Read More

Must-See Geminid Meteor Shower Peaks This Weekend: An Observer’s Guide



2014 Geminid Meteor Shower Sky Map


Excerpt from
space.com

The spectacular Geminid Meteor shower hits peak activity this weekend. Though competing with some unfortunate moonlight, the shower still should make for a must-see astronomical event.

While moonlight will somewhat hinder this year's Geminid meteor shower, intrepid observers with good weather and low light pollution should still be able to catch a good meteor show Saturday (Dec. 13) night.

"If you have not seen a mighty Geminid fireball arcing gracefully across an expanse of sky, then you have not seen a meteor," note astronomers David Levy and Stephen Edberg. 


Even if you can't see the meteor display from your part of the world, you can watch them online. The online Slooh Community Observatory will host a live webacst of the Geminid meteor display on Saturday night beginning at 8 p.m. EST (0100 Dec. 14 GMT).You can also watch the Slooh webcast directly:http://live.slooh.com/. NASA meteor expert Bill Cooke will also host a live Geminids webchat on Saturday night from 11 p.m. to 3 a.m. EST (0400 to 0800 GMT), as well as a live webcast.
You can watch the webcasts of the Geminid shower live on Space.com, starting at 8 p.m. EST, courtesy of Slooh and NASA. The Italy-based Virtual Telescope Project will also host a Geminds webcast, beginning at 9 p.m. EST (0200 GMT).

Although the bright moon will be high in the sky by 11:30 p.m. local time Saturday (Dec. 13) (during the shower's peak), skywatchers can still catch a potentially incredible show before the moon creeps above the horizon, washing out the sky. Stargazers might be able to see an average of one or two Geminid meteors per minute Saturday before the moon rises.

By around 9 p.m., the constellation Gemini — the part of the sky where the meteors seem to emanate from — will have climbed more than one-third of the way up from the horizon. Meteor sightings should begin to really increase noticeably thereafter. By around 2 a.m., the last-quarter moon will be low in the east-southeast, but Gemini will stand high overhead. So you might still see a good number of meteors in spite of the moon's presence.

A brilliant shower

The Geminids are, for those willing to brave the chill of a December night, a very fine winter shower, and usually the most satisfying of all the annual showers. They can even surpass the brilliant August Perseid meteor shower.

Studies of past displays show that the Geminid shower is rich both in slow, bright, graceful meteors and fireballs, as well as in faint meteors, with relatively fewer objects of medium brightness. Many Geminids appear yellowish in hue; some even appear to form jagged or divided paths.     

These meteors travel at a medium speed and appear to emanate, specifically, from near the bright star Castor, in the constellation of Gemini, the Twins, hence the name "Geminid." In apparent size, that's less than half the width of the moon. As such, this is a rather sharply defined radiant as most meteor showers go. It suggests the stream is "young," perhaps only several thousand years old.

Generally speaking, depending on your location, Castor begins to come up above the east-northeast horizon right around the time evening twilight comes to an end. As the Gemini constellation begins to climb the eastern sky just after darkness falls, there is a fair chance of perhaps catching sight of some "Earth-grazing" meteors. Earthgrazers are long, bright shooting stars that streak overhead from a point near to even just below the horizon. Such meteors are so distinctive because they follow long paths nearly parallel to the Earth's atmosphere. 

Because Geminid meteoroids are several times denser than the comet dust that supply most meteor showers and because of the relatively slow speed with which the Geminids encounter Earth (22 miles or 35 kilometers per second), these meteors appear to linger a bit longer in view than most. As compared to an Orionid or Leonid meteor that can whiz across your line of sight in less than a second, a Geminid meteor moves only about half as fast. Personally, their movement reminds me of field mice scooting from one part of the sky to another.

View Article Here Read More

MIT Scientists Found an Invisible Force Field Protecting Earth






Excerpt from
wallstreetotc.com

The invisible force field seems to be taken from a Star-Trek movie script – it’s invisible, it’s steady, and it doesn’t allow harmful cosmic radiation penetrating into our planet’s atmosphere. Massachusetts Institute of Technology researchers say it was first noticed by two NASA spacecrafts orbiting the Van Allen radiation belt on a 7,200 miles (11,000 km) altitude.

This new invisible force field protecting Earth does a very good job at blocking highly radioactive electrons populating Earth’s upper atmospheric region. NASA said these “ultrarelativistic” electrons were extremely aggressive and they easily circulate in space at speeds very close to the speed of light. They also fry everything on their way from spacecrafts to communication satellites. NASA launched two probe crafts, the Van Allen probes, for the sole purpose of studying these electrons and improving the safety level of their spacecrafts and crew.

NASA says although these electrons are attracted towards Earth by its magnetic field, they cannot get closer than 7,200 miles to it due an invisible shield-like barrier, never detected before. This barrier protects Earth from harmful cosmic radiation and has already done a good job in the past by deflecting several solar blows directed towards Earth. It seems that this mysterious force field operates on low frequency electromagnetism, but its source is still uncertain.

In the end, researchers found out that the barrier was probably generated by the plasmaspheric hiss, a phenomenon occurring in the upper parts of the atmosphere. This plasmaspheric hiss deviates from orbit the fast-moving dangerous particles, and sets them on a parallel plan to one of the Earth’s magnetic field lines, forcing them to fall into the atmosphere, collide with neutrally charged particles, and disappear.

Mary Hudson, professor of physics, said the new NASA observations made over more than two years through its Van Allen probes confirmed the inner barrier’s existence, and brought invaluable new information to the particle acceleration theory.

View Article Here Read More
Older posts Newer posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑