Tag: experiment (page 4 of 7)

‘God Particle’ analogue spotted outside a supercollider: Scientists find Higgs mode in a superconductor


The God Particle, which is believed to be responsible for all the mass in the universe, was discovered in 2012 using a Cern's supercollider. In this image two high-energy photons collide. The yellow lines are the measured tracks of other particles produced in the collision, which helped lead to the discovery of the God particle
The God Particle, which is believed to be responsible for all the mass in the universe, was discovered in 2012 using a Cern's supercollider. In this image two high-energy photons collide. The yellow lines are the measured tracks of other particles produced in the collision, which helped lead to the discovery of the God particle.


Excerpt from dailymail.co.uk
  • God Particle is believed to be responsible for all the mass in the universe
  • Particle was discovered in 2012 using a Cern's supercollider in Geneva
  • uperconductor experiment suggests the particle could be detected without the huge amounts of energy used at by the Large Hadron Collider
  • LHC is due to come back online next month after an upgrade that has given it a big boost in energy

Scientists have discovered a simulated version of the elusive 'God particle' using superconductors.

The God Particle, which is believed to be responsible for all the mass in the universe, was discovered in 2012 using a Cern's supercollider.

The superconductor experiment suggests that the Higgs particle could be detected without the huge amounts of energy used at by the Large Hadron Collider. 
The results could help scientists better understand how this mysterious particle – also known as the Higgs boson – behaves in different conditions.

'Just as the Cern experiments revealed the existence of the Higgs boson in a high-energy accelerator environment, we have now revealed a Higgs boson analogue in superconductors,' said researcher Aviad Frydman from Bar-Ilan University.

Superconductors are a type of metal that, when cooled to low temperatures, allow electrons to pass through freely.

'The Higgs mode was never actually observed in superconductors because of technical difficulties - difficulties that we've managed to overcome,' Professor Frydman said.

The superconductor experiment suggests that the Higgs particle could be detected without the huge amounts of energy used at by the Large Hadron Collider (pictured)
The superconductor experiment suggests that the Higgs particle could be detected without the huge amounts of energy used at by the Large Hadron Collider (pictured)

WHAT IS THE GOD PARTICLE? 

The 'God Particle', also known as the Higgs boson, was a missing piece in the jigsaw for physicists in trying to understand how the universe works.

Scientists believe that a fraction of a second after the Big Bang that gave birth to the universe, an invisible energy field, called the Higgs field, formed.

This has been described as a kind of 'cosmic treacle' across the universe. 

As particles passed through it, they picked up mass, giving them size and shape and allowing them to form the atoms that make up you, everything around you and everything in the universe.

This was the theory proposed in 1964 by former grammar school boy Professor Higgs that has now been confirmed.

Without the Higgs field particles would simply whizz around space in the same way as light does.

A boson is a type of sub-atomic particle. Every energy field has a specific particle that governs its interaction with what's around it. 

To try to pin it down, scientists at the Large Hadron Collider near Geneva smashed together beams of protons – the 'hearts of atoms' – at close to the speed of light, recreating conditions that existed a fraction of a second after the Big Bang.

Although they would rapidly decay, they should have left a recognisable footprint. This footprint was found in 2012.

The main difficulty was that the superconducting material would decay into something known as particle-hole pairs.

Large amounts of energy – which are usually needed to excite the Higgs mode - tend to break apart the electron pairs that act as the material's charge.

Professor Frydman and his colleagues solved this problem by using ultra-thin superconducting films of Niobium Nitrite (NbN) and Indium Oxide (InO) as something known as the 'superconductor-insulator critical point.'

This is a state in which recent theory predicted the decay of the Higgs would no longer occur.

In this way, they could still excite a Higgs mode even at relatively low energies.

'The parallel phenomenon in superconductors occurs on a different energy scale entirely - just one-thousandth of a single electronvolt,' Professor Frydman added.

'What's exciting is to see how, even in these highly disparate systems, the same fundamental physics is at work.'

The different approach help solve one of the longstanding mysteries of fundamental physics.

The discovery of the Higgs boson verified the Standard Model, which predicted that particles gain mass by passing through a field that slows down their movement through the vacuum of space.

To try to pin it down, scientists at the Large Hadron Collider near Geneva smashed together beams of protons – the 'hearts of atoms' – at close to the speed of light, recreating conditions that existed a fraction of a second after the Big Bang.

Although they would rapidly decay, the also left a recognisable footprint.

Professor Higgs, 83, has been waiting since 1964 for science to catch up with his ideas about the Higgs boson
Professor Higgs, 83, has been waiting since 1964 for science to catch up with his ideas about the Higgs boson

According to Professor Frydman, observation of the Higgs mechanism in superconductors is significant because it reveals how a single type of physical process behaves under different energy conditions.

'Exciting the Higgs mode in a particle accelerator requires enormous energy levels - measured in giga-electronvolts, or 109 eV,' Professor Frydman says.

'The parallel phenomenon in superconductors occurs on a different energy scale entirely - just one-thousandth of a single electronvolt.

'What's exciting is to see how, even in these highly disparate systems, the same fundamental physics is at work.'

The LHC is due to come back online in March after an upgrade that has given it a big boost in energy.

'With this new energy level, the (collider) will open new horizons for physics and for future discoveries,' CERN Director General Rolf Heuer said in a statement.
'I'm looking forward to seeing what nature has in store for us.'

Cern's collider is buried in a 27-km (17-mile) tunnel straddling the Franco-Swiss border at the foot of the Jura mountains.

The LHC in Geneva will come back online in March after an upgrade that has given it a big boost in energy
The LHC in Geneva will come back online in March after an upgrade that has given it a big boost in energy

View Article Here Read More

Why science is so hard to believe?

 
In the recent movie “Interstellar,” set in a futuristic, downtrodden America where NASA has been forced into hiding, school textbooks say the Apollo moon landings were faked.


Excerpt from 


There’s a scene in Stanley Kubrick’s comic masterpiece “Dr. Strangelove” in which Jack D. Ripper, an American general who’s gone rogue and ordered a nuclear attack on the Soviet Union, unspools his paranoid worldview — and the explanation for why he drinks “only distilled water, or rainwater, and only pure grain alcohol” — to Lionel Mandrake, a dizzy-with-anxiety group captain in the Royal Air Force.
Ripper: “Have you ever heard of a thing called fluoridation? Fluoridation of water?”
Mandrake: “Ah, yes, I have heard of that, Jack. Yes, yes.”Ripper: “Well, do you know what it is?”
Mandrake: “No. No, I don’t know what it is, no.”
Ripper: “Do you realize that fluoridation is the most monstrously conceived and dangerous communist plot we have ever had to face?” 

The movie came out in 1964, by which time the health benefits of fluoridation had been thoroughly established and anti-fluoridation conspiracy theories could be the stuff of comedy. Yet half a century later, fluoridation continues to incite fear and paranoia. In 2013, citizens in Portland, Ore., one of only a few major American cities that don’t fluoridate, blocked a plan by local officials to do so. Opponents didn’t like the idea of the government adding “chemicals” to their water. They claimed that fluoride could be harmful to human health.

Actually fluoride is a natural mineral that, in the weak concentrations used in public drinking-water systems, hardens tooth enamel and prevents tooth decay — a cheap and safe way to improve dental health for everyone, rich or poor, conscientious brushers or not. That’s the scientific and medical consensus.
To which some people in Portland, echoing anti-fluoridation activists around the world, reply: We don’t believe you.
We live in an age when all manner of scientific knowledge — from the safety of fluoride and vaccines to the reality of climate change — faces organized and often furious opposition. Empowered by their own sources of information and their own interpretations of research, doubters have declared war on the consensus of experts. There are so many of these controversies these days, you’d think a diabolical agency had put something in the water to make people argumentative.
Science doubt has become a pop-culture meme. In the recent movie “Interstellar,” set in a futuristic, downtrodden America where NASA has been forced into hiding, school textbooks say the Apollo moon landings were faked.


The debate about mandated vaccinations has the political world talking. A spike in measles cases nationwide has President Obama, lawmakers and even potential 2016 candidates weighing in on the vaccine controversy. (Pamela Kirkland/The Washington Post)
In a sense this is not surprising. Our lives are permeated by science and technology as never before. For many of us this new world is wondrous, comfortable and rich in rewards — but also more complicated and sometimes unnerving. We now face risks we can’t easily analyze.
We’re asked to accept, for example, that it’s safe to eat food containing genetically modified organisms (GMOs) because, the experts point out, there’s no evidence that it isn’t and no reason to believe that altering genes precisely in a lab is more dangerous than altering them wholesale through traditional breeding. But to some people, the very idea of transferring genes between species conjures up mad scientists running amok — and so, two centuries after Mary Shelley wrote “Frankenstein,” they talk about Frankenfood.
The world crackles with real and imaginary hazards, and distinguishing the former from the latter isn’t easy. Should we be afraid that the Ebola virus, which is spread only by direct contact with bodily fluids, will mutate into an airborne super-plague? The scientific consensus says that’s extremely unlikely: No virus has ever been observed to completely change its mode of transmission in humans, and there’s zero evidence that the latest strain of Ebola is any different. But Google “airborne Ebola” and you’ll enter a dystopia where this virus has almost supernatural powers, including the power to kill us all.
In this bewildering world we have to decide what to believe and how to act on that. In principle, that’s what science is for. “Science is not a body of facts,” says geophysicist Marcia McNutt, who once headed the U.S. Geological Survey and is now editor of Science, the prestigious journal. “Science is a method for deciding whether what we choose to believe has a basis in the laws of nature or not.”
The scientific method leads us to truths that are less than self-evident, often mind-blowing and sometimes hard to swallow. In the early 17th century, when Galileo claimed that the Earth spins on its axis and orbits the sun, he wasn’t just rejecting church doctrine. He was asking people to believe something that defied common sense — because it sure looks like the sun’s going around the Earth, and you can’t feel the Earth spinning. Galileo was put on trial and forced to recant. Two centuries later, Charles Darwin escaped that fate. But his idea that all life on Earth evolved from a primordial ancestor and that we humans are distant cousins of apes, whales and even deep-sea mollusks is still a big ask for a lot of people.
Even when we intellectually accept these precepts of science, we subconsciously cling to our intuitions — what researchers call our naive beliefs. A study by Andrew Shtulman of Occidental College showed that even students with an advanced science education had a hitch in their mental gait when asked to affirm or deny that humans are descended from sea animals and that the Earth goes around the sun. Both truths are counterintuitive. The students, even those who correctly marked “true,” were slower to answer those questions than questions about whether humans are descended from tree-dwelling creatures (also true but easier to grasp) and whether the moon goes around the Earth (also true but intuitive).
Shtulman’s research indicates that as we become scientifically literate, we repress our naive beliefs but never eliminate them entirely. They nest in our brains, chirping at us as we try to make sense of the world.
Most of us do that by relying on personal experience and anecdotes, on stories rather than statistics. We might get a prostate-specific antigen test, even though it’s no longer generally recommended, because it caught a close friend’s cancer — and we pay less attention to statistical evidence, painstakingly compiled through multiple studies, showing that the test rarely saves lives but triggers many unnecessary surgeries. Or we hear about a cluster of cancer cases in a town with a hazardous-waste dump, and we assume that pollution caused the cancers. Of course, just because two things happened together doesn’t mean one caused the other, and just because events are clustered doesn’t mean they’re not random. Yet we have trouble digesting randomness; our brains crave pattern and meaning.
Even for scientists, the scientific method is a hard discipline. They, too, are vulnerable to confirmation bias — the tendency to look for and see only evidence that confirms what they already believe. But unlike the rest of us, they submit their ideas to formal peer review before publishing them. Once the results are published, if they’re important enough, other scientists will try to reproduce them — and, being congenitally skeptical and competitive, will be very happy to announce that they don’t hold up. Scientific results are always provisional, susceptible to being overturned by some future experiment or observation. Scientists rarely proclaim an absolute truth or an absolute certainty. Uncertainty is inevitable at the frontiers of knowledge.
That provisional quality of science is another thing a lot of people have trouble with. To some climate-change skeptics, for example, the fact that a few scientists in the 1970s were worried (quite reasonably, it seemed at the time) about the possibility of a coming ice age is enough to discredit what is now the consensus of the world’s scientists: The planet’s surface temperature has risen by about 1.5 degrees Fahrenheit in the past 130 years, and human actions, including the burning of fossil fuels, are extremely likely to have been the dominant cause since the mid-20th century.
It’s clear that organizations funded in part by the fossil-fuel industry have deliberately tried to undermine the public’s understanding of the scientific consensus by promoting a few skeptics. The news media gives abundant attention to such mavericks, naysayers, professional controversialists and table thumpers. The media would also have you believe that science is full of shocking discoveries made by lone geniuses. Not so. The (boring) truth is that science usually advances incrementally, through the steady accretion of data and insights gathered by many people over many years. So it has with the consensus on climate change. That’s not about to go poof with the next thermometer reading.
But industry PR, however misleading, isn’t enough to explain why so many people reject the scientific consensus on global warming.
The “science communication problem,” as it’s blandly called by the scientists who study it, has yielded abundant new research into how people decide what to believe — and why they so often don’t accept the expert consensus. It’s not that they can’t grasp it, according to Dan Kahan of Yale University. In one study he asked 1,540 Americans, a representative sample, to rate the threat of climate change on a scale of zero to 10. Then he correlated that with the subjects’ science literacy. He found that higher literacy was associated with stronger views — at both ends of the spectrum. Science literacy promoted polarization on climate, not consensus. According to Kahan, that’s because people tend to use scientific knowledge to reinforce their worldviews.
Americans fall into two basic camps, Kahan says. Those with a more “egalitarian” and “communitarian” mind-set are generally suspicious of industry and apt to think it’s up to something dangerous that calls for government regulation; they’re likely to see the risks of climate change. In contrast, people with a “hierarchical” and “individualistic” mind-set respect leaders of industry and don’t like government interfering in their affairs; they’re apt to reject warnings about climate change, because they know what accepting them could lead to — some kind of tax or regulation to limit emissions.
In the United States, climate change has become a litmus test that identifies you as belonging to one or the other of these two antagonistic tribes. When we argue about it, Kahan says, we’re actually arguing about who we are, what our crowd is. We’re thinking: People like us believe this. People like that do not believe this.
Science appeals to our rational brain, but our beliefs are motivated largely by emotion, and the biggest motivation is remaining tight with our peers. “We’re all in high school. We’ve never left high school,” says Marcia McNutt. “People still have a need to fit in, and that need to fit in is so strong that local values and local opinions are always trumping science. And they will continue to trump science, especially when there is no clear downside to ignoring science.”
Meanwhile the Internet makes it easier than ever for science doubters to find their own information and experts. Gone are the days when a small number of powerful institutions — elite universities, encyclopedias and major news organizations — served as gatekeepers of scientific information. The Internet has democratized it, which is a good thing. But along with cable TV, the Web has also made it possible to live in a “filter bubble” that lets in only the information with which you already agree.
How to penetrate the bubble? How to convert science skeptics? Throwing more facts at them doesn’t help. Liz Neeley, who helps train scientists to be better communicators at an organization called Compass, says people need to hear from believers they can trust, who share their fundamental values. She has personal experience with this. Her father is a climate-change skeptic and gets most of his information on the issue from conservative media. In exasperation she finally confronted him: “Do you believe them or me?” She told him she believes the scientists who research climate change and knows many of them personally. “If you think I’m wrong,” she said, “then you’re telling me that you don’t trust me.” Her father’s stance on the issue softened. But it wasn’t the facts that did it.
If you’re a rationalist, there’s something a little dispiriting about all this. In Kahan’s descriptions of how we decide what to believe, what we decide sometimes sounds almost incidental. Those of us in the science-communication business are as tribal as anyone else, he told me. We believe in scientific ideas not because we have truly evaluated all the evidence but because we feel an affinity for the scientific community. When I mentioned to Kahan that I fully accept evolution, he said: “Believing in evolution is just a description about you. It’s not an account of how you reason.”
Maybe — except that evolution is real. Biology is incomprehensible without it. There aren’t really two sides to all these issues. Climate change is happening. Vaccines save lives. Being right does matter — and the science tribe has a long track record of getting things right in the end. Modern society is built on things it got right.
Doubting science also has consequences, as seen in recent weeks with the measles outbreak that began in California. The people who believe that vaccines cause autism — often well educated and affluent, by the way — are undermining “herd immunity” to such diseases as whooping cough and measles. The anti-vaccine movement has been going strong since a prestigious British medical journal, the Lancet, published a study in 1998 linking a common vaccine to autism. The journal later retracted the study, which was thoroughly discredited. But the notion of a vaccine-autism connection has been endorsed by celebrities and reinforced through the usual Internet filters. (Anti-vaccine activist and actress Jenny McCarthy famously said on “The Oprah Winfrey Show,” “The University of Google is where I got my degree from.”)
In the climate debate, the consequences of doubt are likely to be global and enduring. Climate-change skeptics in the United States have achieved their fundamental goal of halting legislative action to combat global warming. They haven’t had to win the debate on the merits; they’ve merely had to fog the room enough to keep laws governing greenhouse gas emissions from being enacted.
Some environmental activists want scientists to emerge from their ivory towers and get more involved in the policy battles. Any scientist going that route needs to do so carefully, says Liz Neeley. “That line between science communication and advocacy is very hard to step back from,” she says. In the debate over climate change, the central allegation of the skeptics is that the science saying it’s real and a serious threat is politically tinged, driven by environmental activism and not hard data. That’s not true, and it slanders honest scientists. But the claim becomes more likely to be seen as plausible if scientists go beyond their professional expertise and begin advocating specific policies.
It’s their very detachment, what you might call the cold-bloodedness of science, that makes science the killer app. It’s the way science tells us the truth rather than what we’d like the truth to be. Scientists can be as dogmatic as anyone else — but their dogma is always wilting in the hot glare of new research. In science it’s not a sin to change your mind when the evidence demands it. For some people, the tribe is more important than the truth; for the best scientists, the truth is more important than the tribe.

View Article Here Read More

A ‘bionic leaf’ that turns sunlight into fuel


Excerpt from cnbc.com

By Robert Ferris



The invention could pave the way for numerous innovations—by converting solar power into biofuels, it may help solve the vexing difficulty of storing unused solar energy, which is one of the most common criticisms of solar power as a viable energy source.
The process could also help make plastics and other chemicals and substances useful to industry and research.


The current experiment builds on previous research led by Harvard engineer Daniel Nocera, who in 2011 demonstrated an "artificial leaf" device that uses solar power to generate usable energy. 

Nocera's original invention was a wafer-like electrode suspended in water. When a current runs through the electrode from a power source such as a solar panel, for example, it causes the water to break down into its two components: hydrogen and oxygen. 

Nocera's device garnered a lot of attention for opening up the possibility of using sunlight to create hydrogen fuel—once considered a possible alternative to gasoline. 

But hydrogen has not taken off as a fuel source, even as other alternative energy sources survive and grow amid historically low oil prices. Hydrogen is expensive to transport, and the costs of adopting and distributing hydrogen are high. A gas station owner could more easily switch a pump from gasoline to biofuel, for example.


Now, Nocera and a team of Harvard researchers figured out how to use the bionic leaf to make a burnable biofuel, according to a study published Monday in the journal PNAS. The biologists on the team genetically modified a strain of bacteria that consumes hydrogen and produces isopropanol—the active ingredient in rubbing alcohol. In doing so, they successfully mimicked the natural process of photosynthesis—the way plants use energy from the sun to survive and grow.

This makes two things possible that have always been serious challenges for alternative energy space—solar energy can be converted into a storable form of energy, and the hydrogen can generate a more easily used fuel.


To be sure, the bionic leaf developments are highly unlikely to replace fossil fuels such as oil and natural gas any time soon—especially as the prices of both are currently so low. But it could be a good supplemental source. 

"One idea Dan [Nocera] and I share, which might seem a little wacky, is personalized energy" that doesn't rely on the power grid, biochemist Pamela Silver, who participated in the study, told CNBC in a telephone interview. 


Typically, people's energy needs are met by central energy production facilities—they get their electricity from the power grid, which is fed by coal- or gas-burning power plants, or solar farms, for example. Silver said locally produced energy could be feasible in developing countries that lack stable energy infrastructure, or could even appeal to people who choose to live off the grid.

"Instead of having to buy and store fuel, you can have your bucket of bacteria in your backyard," Silver said. 

Besides, the experiment was an attempt at proof-of-concept—the scientists wanted to demonstrate what could be done, Silver said. Now that they have mastered this process, further possibilities can be explored.  

"No insult to chemists, but biology is the best chemist there is, so we don't even know what we can make," said Silver. "We can make drugs, materials—we are just at the tip of the iceberg." 

The team hopes to develop many different kinds of bacteria that can produce all sorts of substances. That would mean, potentially at least, setting up the bionic leaf device and then plugging in whatever kind of bacteria might be needed at the moment.

For now, they want to increase the efficiency of the device, which is already much more efficient at photosynthesizing than plants are. Then they will focus on developing other kinds of bacteria to plug into the device.

"The uber goal, which is probably 20 years out," Silver said, "is converting the commodity industry away from petroleum."

View Article Here Read More

Will new ruling finally free Lolita after 40 years in captivity at Miami Seaquarium?



Excerpt from seattletimes.com

A decision to list the captive orca Lolita for federal protection is expected to set the stage for a lawsuit from advocates seeking the whale’s release.

Seattle Times staff reporter



A Puget Sound orca held for decades at Miami’s Seaquarium will gain the protection of the federal Endangered Species Act, a move expected to set the stage for a lawsuit from advocates seeking the whale’s release.

The National Oceanic and Atmospheric Administration (NOAA) announced Wednesday the decision to list Lolita as part of the southern resident killer whales of Puget Sound, which already are considered endangered under the federal act. 

Whale activists, who petitioned for this status, have long campaigned for Lolita’s return to Puget Sound. They hope the listing will provide a stronger legal case to release Lolita than did a previous lawsuit that centered on alleged violations of the federal Animal Welfare Act.

“This gives leverage under a much stronger law,” said Howard Garrett of the Whidbey Island based Orca Network, which hopes a San Juan Island cove will one day serve as the site for Lolita to re-enter the wild.

NOAA Fisheries officials on Wednesday described their decision in narrow terms, which set no broader precedents. It does not address whether Lolita should be released from the Seaquarium.
“This is a listing decision,” said Will Stelle, the NOAA Fisheries regional administrator for the West Coast. “It is not a decision to free Lolita.” 

Aquarium officials have repeatedly said they have no intention of releasing the orca. 

“Lolita has been part of the Miami Seaquarium family for 44 years,” said Andrew Hertz, Seaquarium general manager, in a statement. 

“Lolita is healthy and thriving in her home where she shares habitat with Pacific white-sided dolphins. There is no scientific evidence that ... Lolita could survive in a sea pen or the open waters of the Pacific Northwest, and we are not willing to treat her life as an experiment.”

Orcas, also known as killer whales, are found in many of the world’s oceans. The southern resident population, which spends several months each year in Puget Sound, is the only group listed in the U.S. under the Endangered Species. 

The three pods in the population were reduced by captures by marine parks between 1965 and 1975, NOAA says. Among them was a roundup in Penn Cove where seven whales were captured, including Lolita. 

The southern resident pods now number fewer than 80. Possible causes for the decline are reduced prey, pollutants that could cause reproductive problems and oil spills, according to NOAA Fisheries.
Under the Endangered Species Act, it is illegal to cause a “take” of a protected orca, which includes harming or harassing them.
Wednesday, NOAA officials said holding an animal captive, in and of itself, does not constitute a take. 

Orca activists are expected to argue in their lawsuit that Lolita's cramped conditions result in a prohibited take.

There is “rising public scorn for the whole idea of performing orcas,” said Garrett, who hopes Seaquarium will decide to release Lolita without a court order. 

But NOAA officials still have concerns about releasing captive whales, and any plan to move or release Lolita would require “rigorous scientific review,” the agency said in a statement.
The concerns include the possibility of disease transmission, the ability of a newly released orca to find food and behavior patterns from captivity that could impact wild whales.

NOAA said previous attempts to release captive orcas and dolphins have often been unsuccessful and some have ended in death.

Garrett said the plan for Lolita calls for her to be taken to a netted area of the cove, which could be enlarged later. She would be accompanied by familiar trainers who could “trust and reassure her every bit of the way,” he said. 

The controversy over releasing captive whales has been heightened by the experience of Keiko, a captive orca that starred in the 1993 movie “Free Willy,” about a boy who pushed for the release of a whale.

In 1998, Keiko was brought back to his native waters off Iceland to reintroduce him to life in the wild. That effort ended in 2003 when he died in a Norwegian fjord. 

Garrett, who visited Keiko in Iceland in 1999, said he was impressed by the reintroduction effort, and that there was plenty of evidence that Keiko was able to catch fish on his own.

“The naysayers predicted that as soon as he got into the (Icelandic) waters he would die, and wild orcas would kill him,” Garrett said. “He proved that 180-degrees wrong. He loved it.”

Mark Simmons, who for two years served as director of animal husbandry for the Keiko-release effort, has a different view. He says Keiko never was able to forage for fish on his own, and that he continued to seek out human contact at every opportunity. 

Simmons wrote a book called “Killing Keiko,” that accuses the release effort of leading to a long slow death for the orca, which he says lacked food and then succumbed to an infection.

“It’s not really the fact that Keiko died, but how he died,” Garrett said Wednesday.

View Article Here Read More

Study Suggests Baby Chicks Can Count! ~ Video





Excerpt from nbcnews.com
By Tia Ghose, LiveScience



It's not just humans who can count: Newly published research suggests chicks seem to have a number sense, too. 

Scientists found that chicks seem to count upward, moving from left to right. They put smaller numbers on the left, and larger numbers on the right — the same mental representation of the number line that humans use. 

"Our results suggest a rethinking of the relationship between numerical abilities and verbal language, providing further evidence that language and culture are not necessary for the development of a mathematical cognition," said study lead author Rosa Rugani, a psychologist at the University of Padova in Italy.

The left-to-right way of thinking about ascending numbers seems to be embedded in people's mental representations of numbers, but it's not clear exactly why. Is it an artifact of some long-lost accident of history, or is it a fundamental aspect of the way the brain processes numbers? 

To help answer those questions, Rugani and her colleagues trained 3-day-old chicks to travel around a screen panel with five dots on it to get to a food treat behind it. This made the five-dot panel an anchor number that the chicks could use for comparison with other numbers. 

After the chicks learned that the five-dot panel meant food, the researchers removed that panel and then placed the chicks in front of two panels, one to the left and the other to the right, that each had two dots. The chicks tended to go to the left panel, suggesting that they mentally represent numbers smaller than five as being to the left of five. 

When the researchers put the chicks in front of two panels that each had eight dots, the chicks walked to the panel on the right. This suggests the chicks mentally represent numbers larger than five as being to the right of five, the researchers said. 

In a second experiment, the researchers repeated the whole process, but started with a panel that had 20 dots instead of five. They then added two other panels that had either eight or 32 dots. Sure enough, the baby chicks tended to go to the left when the screens had just eight dots, and to the right when they had 32 dots, according to the findings published in this week's issue of the journal Science. 

"I would not at all be surprised that the number spatial mapping is also found in other animals, and in newborn infants," Rugani said.



Click to zoom

View Article Here Read More

Scientists Slow Down The Speed Of Light in Lab


Photon race rendering
Two photons, or particles of light approach a finish line used to determine if light can travel at different speeds through the air. Illustration courtesy University of Glasgow

Excerpt from popsci.com


Light passes through air at about 299,000,000 meters per second, an accepted constant that hasn’t been challenged—until now. By manipulating a single particle of light as it passed through free space, researchers have found a way to slow down the speed of light through air.

Scientists have known for a while how fast light passes through different mediums, such as water or glass, and how to slow that speed down. But researchers at the University of Glasgow and Heriot-Watt University decided to take this concept further and see if the speed of light could be changed as it passes through gases.
To make that happen, the team decided to look at individual light particles, or photons. “Measuring with single photons is the cleanest experiment you can get,” Jacquiline Romero, one of the study’s lead authors and a physics professor at the University of Glasgow, tells Popular Science. The group wanted to explicitly establish that different photons have different velocities depending on their placement within a light beam's structure. Depending on where a photon is in a light beam, it has either a slower or faster relative speed. It's similar to a group of runners: Even as the group stays together, the one at the front has to constantly be moving faster than the ones at the side or in the back. Daniel Giovannini, another study lead author from the University of Glasgow, says that researchers have known this for a while, but the team wanted to know just how slow the photons in the 'back of the pack' are moving.

The experiment set out to measure the arrival times of single photons, Romero says. To do that, the researchers passed one photon through a filter, which changed the photon's structure. They then compared the velocity of this photon to an unstructured photon. The researchers were able to decrease the velocity of the structured photon through air by 0.001 percent, which seems quite small, but the amount was not accidental. “We had to try it out and convince ourselves that it can be done and that it’s real,” Giovannini says. He and Romero say they anticipate the results will be divisive, between people who think the conclusion is obvious and those who think it’s a groundbreaking experiment.

The study was published January 23 in Science Express.

View Article Here Read More

Spacecraft found on Mars – and it’s ours




Computer image of the Beagle 2


Excerpt from skyandtelescope.com
By Kelly Beatty  


On December 25, 2003, a British-built lander dropped to the Martian surface and disappeared without a trace. Now we know what happened to it.  It's hard to overstate how valuable the main camera aboard the Mars Reconnaissance Orbiter has been. The craft's High-Resolution Imaging Science Experiment, or HiRISE, uses a 20-inch (0.5-m) f/24 telescope to record details on the Martian surface as small as 0.3 m (about 10 inches). 

Beagle 2 seen from orbit by HiRISE
An overhead view of Beagle 2's landing site on Isidis Planitia shows a bright reflection from the long-lost spacecraft. Apparently it landed safely on December 25, 2003, and had begun to operate when it failed. NASA's Mars Reconnaissance Orbiter recorded this image on December 15, 2014. NASA / JPL / Univ. of Arizona / Univ. of Leicester - See more at: http://www.skyandtelescope.com/astronomy-news/beagle-2-lander-found-on-mars-01192015/#sthash.5KSZ8V6W.dpuf


Primarily it's a powerful tool for studying Martian geology at the smallest scales, and NASA scientists sometimes use it to track the progress (and even the arrivals) of their rovers. Beagle 2 on Mars  The clamshell-like Beagle 2 lander weighed just 30 kg, but it was well equipped to study Martian rocks and dust — and even to search for life. Beagle 2 consortium  But the HiRISE team has also been on a years-long quest to find the remains of Beagle 2, a small lander that had hitchhiked to the Red Planet with the European Space Agency's Mars Express orbiter. It descended to the Martian surface on Christmas Day in 2003 and was never heard from again. Space aficionados have debated its fate ever since. Did parachute failure lead to a crash landing? Did strong surface winds flip the saucer-shaped craft upside down? Did the Martians take it hostage?  Now, thanks to HiRISE, we know more of the story.  
An overhead view of Beagle 2's landing site on Isidis Planitia shows a bright reflection from the long-lost spacecraft. Apparently it landed safely on December 25, 2003, and had begun to operate when it failed. NASA's Mars Reconnaissance Orbiter recorded this image on December 15, 2014. NASA / JPL / Univ. of Arizona / Univ. of Leicester 


Images taken in February 2013 and June 2014 of the landing area in Isidis Planitia showed promising blips near the edge of each frame. A follow-up color view, acquired on December 15th and released three days ago, show a bright spot consistent with Beagle 2. The fully-opened lander would have been less than 2 m (6½ feet) across, so the craft is only barely resolved. Apparently the spacecraft made it to the surface intact, opened its clamshell cover, and had partially deployed its four petal-shaped solar-cell panels before something went awry. Beagle 2 seen from orbit by HiRISE  

One encouraging clue is that the bright reflection changes position slightly from image to image, consistent with sunlight reflecting off different lander panels. Two other unusual spots a few hundred meters away appears to be the lander's parachute and part of the cover that served as a shield during the 5½-km-per-second atmospheric descent...


On December 25, 2003, a British-built lander dropped to the Martian surface and disappeared without a trace. Now we know what happened to it.
It's hard to overstate how valuable the main camera aboard the Mars Reconnaissance Orbiter has been. The craft's High-Resolution Imaging Science Experiment, or HiRISE, uses a 20-inch (0.5-m) f/24 telescope to record details on the Martian surface as small as 0.3 m (about 10 inches). Primarily it's a powerful tool for studying Martian geology at the smallest scales, and NASA scientists sometimes use it to track the progress (and even the arrivals) of their rovers.
Beagle 2 on Mars
The clamshell-like Beagle 2 lander weighed just 30 kg, but it was well equipped to study Martian rocks and dust — and even to search for life.
Beagle 2 consortium
But the HiRISE team has also been on a years-long quest to find the remains of Beagle 2, a small lander that had hitchhiked to the Red Planet with the European Space Agency's Mars Express orbiter. It descended to the Martian surface on Christmas Day in 2003 and was never heard from again. Space aficionados have debated its fate ever since. Did parachute failure lead to a crash landing? Did strong surface winds flip the saucer-shaped craft upside down? Did the Martians take it hostage?
Now, thanks to HiRISE, we know more of the story. Images taken in February 2013 and June 2014 of the landing area in Isidis Planitia showed promising blips near the edge of each frame. A follow-up color view, acquired on December 15th and released three days ago, show a bright spot consistent with Beagle 2. The fully-opened lander would have been less than 2 m (6½ feet) across, so the craft is only barely resolved. Apparently the spacecraft made it to the surface intact, opened its clamshell cover, and had partially deployed its four petal-shaped solar-cell panels before something went awry.
Beagle 2 seen from orbit by HiRISE
An overhead view of Beagle 2's landing site on Isidis Planitia shows a bright reflection from the long-lost spacecraft. Apparently it landed safely on December 25, 2003, and had begun to operate when it failed. NASA's Mars Reconnaissance Orbiter recorded this image on December 15, 2014.
NASA / JPL / Univ. of Arizona / Univ. of Leicester
One encouraging clue is that the bright reflection changes position slightly from image to image, consistent with sunlight reflecting off different lander panels. Two other unusual spots a few hundred meters away appears to be the lander's parachute and part of the cover that served as a shield during the 5½-km-per-second atmospheric descent.
The initial images didn't just show up. They'd been requested and searched by Michael Croon of Trier, Germany, who'd served on the Mars Express operations team. Croon had asked for specific camera targeting through a program called HiWish, through which anyone can submit suggestions for HiRISE images. Read more about this fascinating sleuthing story.
"Not knowing what happened to Beagle 2 remained a nagging worry," comments Rudolf Schmidt in an ESA press release about the find. "Understanding now that Beagle 2 made it all the way down to the surface is excellent news." Schmidt served as the Mars Express project manager at the time.
Built by a consortium of organizations, Beagle 2 was the United Kingdom's first interplanetary spacecraft. The 32-kg (73-pound) lander carried six instruments to study geochemical characteristics of the Martian surface and to test for the presence of life using assays of carbon isotopes. It was named for HMS Beagle, the ship that carried a crew of 73 (including Charles Darwin) on an epic voyage of discovery in 1831–36.
- See more at: http://www.skyandtelescope.com/astronomy-news/beagle-2-lander-found-on-mars-01192015/#sthash.5KSZ8V6W.dpuf

View Article Here Read More

A Physicist’s Explanation of Why the Soul May Exist







By Tara Maclsaac
Excerpt from
theepochtimes.com
 Henry Stapp is a theoretical physicist at the University of California's Lawrence Berkeley Laboratory, specializing in the mathematical and logical foundations of quantum mechanics. - See more at: http://www.nourfoundation.com/speakers/henry-p-stapp-phd.html#sthash.ZJS7Zrm3.dpuf
Dr. Henry Stapp is a theoretical physicist at the University of California's Lawrence Berkeley Laboratory, specializing in the mathematical and logical foundations of quantum mechanics. - See more at: http://www.nourfoundation.com/speakers/henry-p-stapp-phd.html#sthash.ZJS7Zrm3.dpuf



Henry P. Stapp is a theoretical physicist at the University of California–Berkeley who worked with some of the founding fathers of quantum mechanics. He does not seek to prove that the soul exists, but he does say that the existence of the soul fits within the laws of physics.

He does not seek to prove that the soul exists, but he does say that the existence of the soul fits within the laws of physics.

It is not true to say belief in the soul is unscientific, according to Stapp. Here the word “soul” refers to a personality independent of the brain or the rest of the human body that can survive beyond death.  In his paper, “Compatibility of Contemporary Physical Theory With Personality Survival,” he wrote: “Strong doubts about personality survival based solely on the belief that postmortem survival is incompatible with the laws of physics are unfounded.”
He works with the Copenhagen interpretation of quantum mechanics—more or less the interpretation used by some of the founders of quantum mechanics, Niels Bohr and Werner Heisenberg. Even Bohr and Heisenberg had some disagreements on how quantum mechanics works, and understandings of the theory since that time have also been diverse. Stapp’s paper on the Copenhagen interpretation has been influential. It was written in the 1970s and Heisenberg wrote an appendix for it. 

Stapp noted of his own concepts: “There has been no hint in my previous descriptions (or conception) of this orthodox quantum mechanics of any notion of personality survival.”

Why Quantum Theory Could Hint at Life After Death

Stapp explains that the founders of quantum theory required scientists to essentially cut the world into two parts. Above the cut, classical mathematics could describe the physical processes empirically experienced. Below the cut, quantum mathematics describes a realm “which does not entail complete physical determinism.”

Of this realm below the cut, Stapp wrote: “One generally finds that the evolved state of the system below the cut cannot be matched to any conceivable classical description of the properties visible to observers.”

So how do scientists observe the invisible? They choose particular properties of the quantum system and set up apparatus to view their effects on the physical processes “above the cut.”

The key is the experimenter’s choice. When working with the quantum system, the observer’s choice has been shown to physically impact what manifests and can be observed above the cut. 

Stapp cited Bohr’s analogy for this interaction between a scientist and his experiment results: “[It's like] a blind man with a cane: when the cane is held loosely, the boundary between the person and the external world is the divide between hand and cane; but when held tightly the cane becomes part of the probing self: the person feels that he himself extends to the tip of the cane.”

The physical and mental are connected in a dynamic way. In terms of the relationship between mind and brain, it seems the observer can hold in place a chosen brain activity that would otherwise be fleeting. This is a choice similar to the choice a scientist makes when deciding which properties of the quantum system to study. 

The quantum explanation of how the mind and brain can be separate or different, yet connected by the laws of physics “is a welcome revelation,” wrote Stapp. “It solves a problem that has plagued both science and philosophy for centuries—the imagined science-mandated need either to equate mind with brain, or to make the brain dynamically independent of the mind.”

View Article Here Read More

The Mission to land robot on comet to take final step







Excerpt from  theglobeandmail.com
By Ivan Semeniuk

Half a billion kilometres from Earth and 10 years into its remarkable journey, a small robot is about to plunge into space history.

Pending a final green light from mission controllers on Tuesday night, the robot – nicknamed Philae (fee-lay) – will detach from its mother ship and try to hook itself onto one of the most challenging and mysterious objects in the solar system.



It’s a high-risk manoeuvre with plenty of unknowns. But if it works, then the probe will be able to show us what no one has ever experienced: what it’s like to stand on the surface of a comet.

“Comets are new territory,” said Ralf Gellert, a professor of physics at the University of Guelph. “There could be some big surprises.”

Prof. Gellert should know. Fifteen years ago, he helped build one of the instruments on the dishwasher-size lander that will reveal the comet’s composition. No such direct measurement has been made before. Even designing how the instrument should work was fraught with challenges since there was so little known about what kind of surface the lander might find itself on.

“Is it an ice ball with rock and trace metals, or a rock ball with ice on it … or ice below the surface? We didn’t know,” he said.
And scientists still don’t.

When the European Space Agency launched the Rosetta mission in 2004, the mission’s target – Comet Churyumov-Gerasimenko – was little more than a fuzzy blip in astronomers’ telescopes. But Rosetta just arrived in August and it’s been in orbit around the comet since then.

What was assumed to be a single, homogeneous lump of ice and rock has turned out to be a bizarre-looking object in two parts, arranged a bit like the head and body of a rubber duck. By October, scientists had zeroed in on the head portion, which is four kilometres across at its widest point, and settled on a landing site.

Remote sensing data from Rosetta suggest that the comet is quite porous, with a surface that is as black as coal and somewhat warmer than expected. In other words, Philae will probably not be landing on skating-rink-hard ice. Yet, whether the surface will be crusty like a roadside snowbank, fluffy like cigarette ash, or something else entirely is anyone’s guess.

And while scientists and engineers say they’ve done everything they can think of to maximize the lander’s chance of success, they acknowledge it’s entirely possible that Philae will encounter something it can’t handle and smash to bits or sink into oblivion.


Yet the landing is more than a daring jaunt to see what has never been seen before. Comets are also among the most primitive bodies in the solar system. Each one is an amalgam of ice and rock that has been around since Earth and its sister planets formed billions of years ago. In a sense, comets are the leftovers of that process – primordial fossils from the birth of the solar system.

The instrument Prof. Gellert worked on, known as the alpha particle X-ray spectrometer (APXS), will help illuminate this early period by making precise measurements of the comet’s elemental ingredients.

It is carried on a robot arm that will place a radioactive source near the comet’s surface. The particles and X-rays the comet material gives off as a result of this exposure will provide detailed information about what chemical elements the comet contains. This will be augmented by another experiment designed to drill and extract a comet sample for analysis inside the lander.

Prof. Gellert, who has also been closely involved in NASA’s Mars rover missions, said Rosetta’s long timeline and the many unknowns related to the comet makes this week’s landing a trickier proposition than landing on Mars – but also a tremendously exciting one.

“I think it’s a matter of hope for the best and see what happens.”

View Article Here Read More

The World is Not Enough: A New Theory of Parallel Universes is Proposed



Excerpt from universetoday.com

by Tim Reyes



Do we exist in a space and time shared by many worlds? And are all these infinite worlds interacting? A new theory of everything is making the case.

Imagine if you were told that the world is simple and exactly as it seems, but that there is an infinite number of worlds just like ours.

They share the same space and time, and interact with each other.
These worlds behave as Newton first envisioned, except that the slightest interactions of the infinite number create nuances and deviations from the Newtonian mechanics. What could be deterministic is swayed by many worlds to become the unpredictable.

This is the new theory about parallel universes explained by Australian and American theorists in a paper published in the journal Physics Review X. Called  the “Many Interacting Worlds” theory (MIW), the paper explains that rather than standing apart, an infinite number of universes share the same space and time as ours.

They show that their theory can explain quantum mechanical effects while leaving open the choice of theory to explain the universe at large scales. This is a fascinating new variant of Multiverse Theory that, in a sense, creates not just a doppelganger of everyone but an infinite number of them all overlaying each other in the same space and time.


Rather than island universes as proposed by other theories, Many Interacting Worlds (MIW) proposes many all lying within one space and time. (Photo Credit: Public Domain)
Rather than island universes as proposed by other multiverse theories, Many Interacting Worlds (MIW) proposes many all lying within one space and time.

Cosmology is a study in which practitioners must transcend their five senses. Einstein referred to thought experiments, and Dr. Stephen Hawking — surviving and persevering despite having ALS — has spent decades wondering about the Universe and developing new theories, all within his mind.

The “Many Interacting Worlds” theory, presented by Michael Hall and Howard Wiseman from Griffith University in Australia, and Dirk-André Deckert from the University of California, Davis, differs from previous multiverse theories in that the worlds — as they refer to universes — coincide with each other, and are not just parallel. 

The theorists explain that while the interactions are subtle, the interaction of an infinite number of worlds can explain quantum phenomena such as barrier tunneling in solid state electronics, can be used to calculate quantum ground states, and, as they state, “at least qualitatively” reproduce the results of the double-slit experiment.

Schrödinger, in explaining his wave function and the interaction of two particles (EPR paradox) coined the term “entanglement”. In effect, the MIW theory is an entanglement of an infinite number of worlds but not in terms of a wave function. The theorists state that they were compelled to develop MIW theory to eliminate the need for a wave function to explain the Universe. It is quite likely that Einstein would have seen MIW as very appealing considering his unwillingness to accept the principles laid down by the Copenhagen interpretation of Quantum Theory.

While MIW theory can reproduce some of the most distinctive quantum phenomena, the theorists emphasize that MIW is in an early phase of development. They state that the theory is not yet as mature as long-standing unification theories. In their paper, they use Newtonian physics to keep their proofs simple. Presenting this new “many worlds” theory indicates they had achieved a level of confidence in its integrity such that other theorists can use it as a starter kit – peer review but also expand upon it to explain more worldly phenomena.



Two of the perpetrators of the century long problem of unifying General Relativity Theory and Quantum Physics, A. Einstein, E. Schroedinger.
Two of the perpetrators of the century-long problem of unifying General Relativity Theory and Quantum Physics – Albert Einstein, Erwin Schroedinger.

The theorists continue by expounding that MIW could lead to new predictions. If correct, then new predictions would challenge experimentalists and observers to recreate or search for the effects.
Such was the case for Einstein’s Theory of General Relativity. For example, the bending of the path of light by gravity and astronomer Eddington’s observing starlight bending around Sun during a total Solar Eclipse. Such new predictions and confirmation would begin to stand MIW theory apart from the many other theories of everything.

Multiverse theories have gained notoriety in recent years through the books and media presentations of Dr. Michio Kaku of the City College of New York and Dr. Brian Greene of Columbia University, New York City. Dr. Green presented a series of episodes delving into the nature of the Universe on PBS called “The Fabric of the Universe” and “The Elegant Universe”. The presentations were based on his books such as “The Hidden Reality: Parallel Universes and the Deep Laws of the Cosmos.”

Hugh Everett’s reinterpretation of Dr. Richard Feynman’s cosmological theory, that the world is a weighted sum of alternative histories, states that when particles interact, reality bifurcates into a set of parallel streams, each being a different possible outcome. In contrast to Feynmann’s theory and Everett’s interpretation, the parallel worlds of MIW do not bifurcate but simply exist in the same space and time.  MIW’s parallel worlds are not a consequence of “quantum behavior” but are rather the drivers of it.


Professor Howard Wiseman, Director of Griffith University's Centre for Quantum Dynamics and coauthor of the paper on the "Many Interacting World" theory. (Photo Credit: Griffith University)
Professor Howard Wiseman, Director of Griffith University’s Centre for Quantum Dynamics and coauthor of the paper on the “Many Interacting World” theory. (Photo Credit: Griffith University)

Hall states in the paper that simple Newtonian Physics can explain how all these worlds evolve. This, they explain, can be used effectively as a first approximation in testing and expanding on their theory, MIW. Certainly, Einstein’s Special and General Theories of Relativity completes the Newtonian equations and are not dismissed by MIW. However, the paper begins with the simpler model using Newtonian physics and even explains that some fundamental behavior of quantum mechanics unfolds from a universe comprised of just two interacting worlds.

So what is next for the Many Interacting Worlds theory? Time will tell. Theorists and experimentalists shall begin to evaluate its assertions and its solutions to explain known behavior in our Universe. With new predictions, the new challenger to Unified Field Theory (the theory of everything) will be harder to ignore or file away with the wide array of theories of the last 100 years. Einstein’s theories began to reveal that our world exudes behavior that defies our sensibility but he could not accept the assertions of Quantum Theory. Einstein’s retort to Bohr was “God does not throw dice.” The MIW theory of Hall, Deckert, and Wiseman might be what Einstein was seeking until the end of his life. In titling this review of their theory as “The World is not Enough,” I would also add that their many interacting worlds is like a martini shaken but not stirred.
References: Quantum Phenomena Modeled by Interactions between Many Classical Worlds

View Article Here Read More

Homeless Stars? Well, Galaxy-less Stars Anyway ~ Greg Giles


Lonesome Stars
Time-lapse photograph of the CIBER rocket launch, taken from NASA’s Wallops Flight Facility in Virginia

In Friday’s issue of the journal Science, conclusions from the Cosmic Infrared Background Experiment or CIBER, suggest that as many as half of all stars in our universe may lie outside the home of galaxies. Not visible through Earth-bound telescopes due to their faint glow, these lone stars may be the points that connect galaxies together in a far spanning web of light.   

These 'homeless' stars are believed by astronomers to have been evicted by their galaxies by mergers and collisions.

NASA program scientist Michael Garcia said this dim glow between galaxies is as bright as all the known galaxies combined, and is redefining previous understandings of galactic structure. Instead of being defined by sharpened borders, galaxies may span further outward, thinning like a morning mist over a darkened pond.  
Greg Giles



Read more here: http://www.bellinghamherald.com/2014/11/06/3958751/half-of-all-stars-may-lie-outside.html?sp=/99/101/235/#storylink=cpy

View Article Here Read More

First legal pot, now Colorado launches new voting experiment




Excerpt from nypost.com

As Colorado goes Election Night, so goes the nation — maybe.
The Centennial State is clearly a barometer of President Obama’s falling popularity. 

The man who began his meteoric rise as the Democratic presidential nominee in Denver’s stadium in 2008 has lost much of his luster with Colorado voters and appears to be bringing down other Democrats with him. 

Polls show Republican Cory Gardner ahead by seven points in his race to unseat incumbent Democratic Sen. Mark Udall, and GOP gubernatorial candidate Bob Beauprez is neck and neck with sitting Gov. John HIckenlooper. 

But before Republicans pop the champagne corks, it’s worth considering the big wild card in this election.

Like the rest of Colorado’s roughly 3 million registered voters, I received my ballot in the mail about two weeks ago. This year will be the first that all Colorado voters received mail ballots, even without requesting them. 

The potential for thousands more voters to cast ballots in what is usually a low-turnout midterm election could easily confound pollsters and politicos. 

Conventional wisdom is that higher turnout favors Democrats — and the odds of higher turnout helping Dems in Colorado seem somewhat greater, given the demographics of the state.
Some 14 percent of eligible voters in Colorado are Hispanic. Obama improved his share of support among Colorado Hispanic voters from 61 percent in 2008 to 75 percent in 2012. 

If mail ballots boost Hispanic voter participation by a few percentage points this year, it will likely redound to Democrats’ benefit. In a race as tight as the Colorado governor’s race, Hispanic voters could well determine the outcome.

But demographics don’t give the full picture. Since 2008, Democrats have benefited from a much stronger ground game that put operatives in the field to turn out their likely voters. 

The effort wasn’t enough to stop populist Tea Party voters from boosting GOP fortunes in the 2010
congressional races, but Colorado was the exception. Democrat Michael Bennet won an open Senate race with just 30,000 more votes than his Republican opponent, Ken Buck. 


The question in 2014 is whether mail balloting helps or erases the Democrats’ edge.

A New York Times analysis of Colorado mail ballots that had already been tallied 10 days out from the election seemed to give Republicans an advantage. Registered Republicans had mailed in ballots in higher numbers than Democrats, 42.8 percent to 32.3 percent. 

But those trends may not continue. It could be that more Republicans simply cast their ballots early, which is where the Democratic ground game will come in handy. 

Early voting makes it easier for “volunteers” — many of them paid political and union operatives — to go door to door to urge those who haven’t voted to do so.


Who is to stop “volunteers” from showing up with dozens of mail ballots collected from elderly voters or others who may have been pressured by union reps or family members to cast their votes?
Colorado will have regulations in place to limit the number of ballots a single individual can drop off at collection centers after 2015, but this year the possibility of ballot stuffing is real.

State election officials claim that the signature on the ballot envelope is their way to detect phony ballots. But the system hardly seems foolproof, requiring signatures to be scanned and matched against a database that may prove more cumbersome than anticipated.

Nov. 4 will be a test for Colorado — and for the nation — on this new experiment in democracy.

View Article Here Read More

NASA captures high-resolution images of comet Sliding Spring


 Diagrams show how comet will approach Mars.


The Mars Reconnaissance Orbiter captures images of Comet C/2013 A1, also known as Sliding Spring after the observatory which discovered it, as it flies past Mars on October 19th. The comet originated in the Oort Cloud, which is located in the distant reaches of our solar system.

These images were taken by the Orbiter’s High Resolution Imaging Science Experiment (HiRISE) camera while the comet flew approximately 86,000 miles from Mars at a speed of 35,700 miles per hour (57,400 km/h) relative to the planet.
Greg Giles



View Article Here Read More
Older posts Newer posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑