Tag: excess (page 1 of 2)

Celebrating Genocide – The Real Story of Thanksgiving

Irwin Ozborne, ContributorThanksgiving: Celebrating all that we have, and the genocide it took to get it.Thanksgiving is one of the most paradoxical times of the year. We gather together with friends and family in celebration of all that we are thankful for and express our gratitude, at the same time we are encouraged to eat in excess. But the irony really starts the next day on Black Friday. On Thursday we appreciate all the simple things in life, such as having a meal, a roof over [...]

View Article Here Read More

Overprescription of Antipsychotic Drugs Causing Public Health Crisis

Julie Fidler, Natural SocietySometimes with life-threatening side effects…Antipsychotic drugs are being prescribed to an ever-increasing number of adolescents and young adults, and many of them are being prescribed for off-label purposes. But these over-prescriptions are putting youngsters at risk, though we’re slow as a society to change our med-heavy ways.These powerful medications are being prescribed to young people with attention-deficit and hyperactivity [...]

View Article Here Read More

Antidepressants May be Worsening Depression, Not Treating It

Julie Fidler, Natural SocietyCould it all be based on a myth?For years we’ve been told that depression is caused by low serotonin levels in the brain.Now, a leading professor of psychiatry is warning that belief is little more than a dangerous miscommunication, saying the marketing of selective serotonin reuptake inhibitor (SSRI) drugs is “based on a myth.”SSRI use began to skyrocket in the early 1990’s. The drugs were seen as a safer alternative to [...]

View Article Here Read More

Is an Abundance of Arsenic Found in Rice Increasing Risk of Cancer?

Brett Wilbanks, Staff WriterArsenic is a common element found in nature. It occurs naturally in a variety of sources, from soil and water, to foods that we eat on a regular basis. There are several forms of arsenic, and some, particularly certain inorganic forms, are more harmful than others.According to the International Agency for Research on Cancer, two compounds found in inorganic arsenic are known carcinogenic substances and are associated with a number of devastating health eff [...]

View Article Here Read More

Nibiru? Solar system may have Planet X & Planet Y

 




Scientists have postulated the existence of possibly two undiscovered planets beyond the orbit of Neptune to explain discrepancies in the orbits of extreme trans-Neptunian objects (ETNO). The objects have orbits that take them beyond the orbit of the planet Neptune.

Theory predicts that they be randomly distributed and that their orbits must have a semi-major axis with a value around 150 AU; an orbital inclination of nearly zero degrees; and an angle of perihelion, the point in the object’s orbit at which it is closest to the Sun, of zero to 180 degrees.

However, a dozen ETNO do not fit these orbital criteria. These objects have semi-major axis values of 150 to 525 AU, orbital inclinations of around 20 degrees, and angles of perihelion far from 180 degrees.

According to a statement, a new study by astrophysicists at the Complutense University of Madrid (UCM) and University of Cambridge have calculated that these orbital discrepancies could be explained by the existence of at least two additional planets beyond the orbits of Neptune and dwarf planet Pluto. Their study suggests that the gravitational pulls of those two planets must be disturbing the orbits of some smaller ETNO.

However, there are two difficulties with the hypothesis. One is that current models of the formation of our solar system do not allow for additional planets beyond Neptune. Secondly, the team’s sample size is very small, only 13 objects. However, additional results are in the pipeline, which will expand the sample.

“This excess of objects with unexpected orbital parameters makes us believe that some invisible forces are altering the distribution of the orbital elements of the ETNO and we consider that the most probable explanation is that other unknown planets exist beyond Neptune and Pluto,” said Carlos de la Fuente Marcos of UCM and lead author on the study.

The new findings have been published in two papers published in the journal Monthly Notices of the Royal Astronomical Society Letters.

View Article Here Read More

Pair of Dwarf Planets May Lurk Beyond Pluto in Our Solar System

At least two unknown dwarf planets may be lurking beyond Pluto, orbiting around the Sun in our own solar system just waiting to be discovered, according to a new study. (Photo : NASA/JPL-Caltech) Excerpt from natureworldnews.comAt least...

View Article Here Read More

How can there be ice on Scorching Mercury? NASA Report

NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washingtonnasa.govMESSENGER Finds New Evidence for Water Ice at Mercury's Poles Mercury's North Polar Region Acquired By The Arecibo Observatory A Mosaic of MESSEN...

View Article Here Read More

Think You Could Live on Mars? Think Again



Excerpt from
time.com

A new analysis of Mars One's plans to colonize the Red Planet finds that the explorers would begin dying within 68 days of touching down


Hear that? That’s the sound of 200,000 reservations being reconsidered. Two hundred thousand is the announced number of intrepid folks who signed up last year for the chance to be among the first Earthlings to colonize Mars, with flights beginning as early as 2024. The catch: the trips will be one way, as in no return ticket, as in farewell friends, family, charbroiled steaks and vodka martinis, to say nothing of such everyday luxuries as modern hospitals and, you know, breathable air.
But the settlers in Jamestown weren’t exactly volunteering for a weekend in Aspen either, and in both cases, the compensations—being the first people on a distant shore—seemed attractive enough. Now, however, the Mars plan seems to have run into a teensy snag. According to a new analysis by a team of grad students at MIT, the new arrivals would begin dying within just 68 days of touching down.


An artist concept of NASA's Mars Atmosphere and Volatile EvolutioN (MAVEN) mission. Launched in November 2013, the mission will explore the Red Planet’s upper atmosphere, ionosphere and interactions with the sun and solar wind.
The United Launch Alliance Atlas V rocket with NASA’s Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft launches from the Cape Canaveral Air Force Station Space Launch Complex 41, Monday, Nov. 18, 2013, Cape Canaveral, Florida. NASA’s Mars-bound spacecraft, the Mars Atmosphere and Volatile EvolutioN, or MAVEN, is the first spacecraft devoted to exploring and understanding the Martian upper atmosphere. Photo Credit: (NASA/Bill Ingalls)
NASA's MAVEN spacecraft, inside a payload fairing, is hoisted to the top of a United Launch Alliance Atlas V rocket at the Vertical Integration Facility at Cape Canaveral Air Force Station's Space Launch Complex 41 on Nov. 8, 2013.
Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, engineers and technicians perform a spin test of the Mars Atmosphere and Volatile Evolution, or MAVEN, spacecraft. The operation is designed to verify that MAVEN is properly balanced as it spins during the initial mission activities.
Lockheed Martin/NASA

The organizers of the burn-your-boats expedition is a group called Mars One, headed by Bas Lansdorp, a Dutch entrepreneur and mechanical engineer. As Lansdorp sees things, habitat modules and other hardware would be sent to the Red Planet in advance of any astronauts, who would arrive in four-person crews at two-year intervals—when Mars and Earth make their closest approach, which holds the outbound journey to a brief (relatively speaking) eight months. The crew-selection process would be part of (yes) a sponsored reality show, which would ensure a steady flow of cash—and since the settlers would grow their own food onsite, there would be little to carry along with them. All that would keep the overall cost of the project to a shoestring (relative again) $6 billion.

So what could go wrong? That’s what the four MIT students set out to find out, and the short answer is: a lot.

The biggest problem, the students discovered, concerns that business of breathable air. One of the things that’s always made Earth such a niftily habitable place to live is that what animals exhale, plants inhale, and vice versa. Since the Martian astronauts and their crops would be living and respiring in the same enclosed habitats, a perfect closed loop should result in which we provide them all the carbon dioxide they need and they return the favor with oxygen.

Only it doesn’t, the MIT students found. The problem begins with the lettuce and the wheat, both of which are considered essential crops. As lettuce matures, peaking about 30 days after planting, it pushes the 02 level past what’s known as .3 molar fractions, which, whatever it means, doesn’t sound terribly dangerous — except it’s also the point at which the threat of fire rises to unacceptable levels. That risk begins to tail off as the crop is harvested and eaten, but it explodes upward again, far past the .3 level, at 68 days when the far gassier wheat matures.

A simple answer would be simply to vent a little of the excess O2 out, which actually could work, except the venting apparatus is not able to distinguish one gas from another. That means that nitrogen—which would, as on Earth, make up the majority of the astronauts’ atmosphere—would be lost too. That, in turn, would lower the internal pressure to unsurvivable levels—and that’s what gets your 68-day doomsday clock ticking.

There is some question too about whether the hardware that Mars One is counting on would even be ready for prime time. The mission planners make much of the fact that a lot of what they’re planning to use on Mars has already been proven aboard the International Space Station (ISS), which is true enough. But that hardware is built to operate in microgravity—effectively zero g—while Mars’s gravity is nearly 40% of Earth’s. So a mechanical component that would weigh 10 lbs. on Earth can be designed with little concern about certain kinds of wear since it would weigh 0 lbs. in orbit. But on Mars it would be 4 lbs., and that can make all the difference.

“The introduction of a partial gravity environment,” the grad students write, “will inevitably lead to different [environmental] technologies.”

For that and other reasons, technical breakdowns are a certainty. The need for replacement parts is factored into Mars One’s plans, but probably not in the way that they should be. According to the MIT team, over the course of 130 months, spare parts alone would gobble up 62% of the payload space on resupply missions, making it harder to get such essentials as seeds, clothes and medicine—to say nothing of other crew members—launched on schedule.

Then too, there is the question of habitat crowding. It’s easy to keep people alive if you feed them, say, a single calorie-dense food product every day. But energy bars forever means quickly losing your marbles, which is why Mars One plans for a variety of crops—just not a big enough variety. “Given that the crop selection will significantly influence the wellbeing of the crew for the entirety of their lives after reaching Mars,” the authors write, “we opt for crop variety over minimizing growth area.”

Then there is the question of cost—there’s not a space program in history whose initial price tag wasn’t badly lowballed—to say nothing of maintaining that biennial launch schedule, to say nothing of the cabin fever that could soon enough set the settlers at one another’s throats. Jamestown may not have been a picnic, but when things got to be too much you could always go for a walk by the creek.

No creeks here, nor much of anything else either. Human beings may indeed colonize Mars one day, and it’s a very worthy goal. But as with any other kind of travel, the best part of going is often coming home.

View Article Here Read More

Space station detector reports more hints of dark matter—or not



New reports of further evidence for dark matter have been greatly exaggerated. Yesterday, researchers working with the Alpha Magnetic Spectrometer (AMS), a $2 billion cosmic ray detector attached to the International Space Station, reported their latest data on a supposed excess of high-energy positrons from space. They contended—at least in a press release—that the new results could offer new hints that they’ve detected particles of dark matter, the mysterious stuff whose gravity binds the galaxies. But several cosmic ray physicists say that the AMS data are still perfectly consistent with much more mundane explanations of the excess. And they doubt AMS alone will resolve the issue.
The leader of the AMS team, Nobel laureate Samuel Ting of the Massachusetts Institute of Technology in Cambridge, takes care to say that the new results do not prove that AMS has detected dark matter. But he also says the data lend more support to that interpretation than to some others. "The key statement is that we have not found a contradiction with the dark matter explanation," he says.
The controversy centers on AMS's measurement of a key ratio, the number of antimatter positrons to the sum of positrons and electrons. In April 2013, AMS confirmed early reports that as the energy of the particles increased above about 8 gigaelectron Volts (GeV), that ratio, or "positron fraction," increased, even as the individual fluxes of electrons and positrons were falling. That increase in the relative abundance of positrons could signal the presence of dark matter particles. According to many theories, if those particles collide, they would annihilate each other to produce electron-positron pairs. That would alter the balance of electrons and positrons among cosmic rays, as the usual source such as the cloudlike remnants of supernova explosions produce far more electrons than positrons.
However, that interpretation was hardly certain. Even before AMS released its measurement of the ratio, astrophysicists had argued that the excess positrons could potentially emanate from an undetected nearby pulsar. In November 2013, Eli Waxman, a theoretical astrophysicist at the Weizmann Institute of Science in Rehovot, Israel, and colleagues went even further. They argued that the excess positrons could come simply from the interactions of "primary" cosmic rays from supernova remnants with the interstellar medium. If so, then the positrons were just "secondary" rays and nothing to write home about.
However, AMS team researchers see two new features that are consistent with the dark matter interpretation, they reported online yesterday in Physical Review Letters. First, the AMS team now sees that after rising with energy, the positron fraction seems to level off and may begin to fall at an energy of 275 GeV, as would be expected if the excess were produced by colliding dark matter particles, as the original particles' mass would put an upper limit on the energy of the positron they spawned. AMS researchers say the leveling off would be consistent with a dark matter particle with a mass of 1 teraelectron volt (TeV). (Thanks to Albert Einstein’s famous equivalence of mass and energy, the two can be measured in the same units.)
Second, the AMS team measured the spectra of electrons and positrons individually. They found that the spectra have different shapes as energy increases. "It's really surprising that the electrons and positrons are so different," Ting says. And, he argues, the difference suggests that the positrons cannot be secondary cosmic rays produced by primary cosmic ray electrons, as such production should lead to similar spectra.
But some cosmic ray physicists aren't convinced. For example, in AMS's graph of the electron fraction, the error bars at the highest energies are large because the high-energy particles are so rare. And those uncertainties make it unclear whether the positron fraction really starts to drop, says Stéphane Coutu, a cosmic ray physicist at Pennsylvania State University, University Park. And even if the positron fraction does fall at energies higher than AMS reported, that wouldn't prove the positrons come from dark matter annihilations, Coutu says. Such a "cutoff" could easily arise in positrons from a pulsar, he says, if the spatial region in which the pulsar accelerates particles is of limited size. All told, the new results are "probably consistent with anything," Coutu says.
Similarly, Waxman questions Ting's claim that the new data suggest the positrons aren't simply secondary cosmic rays. If that were the case, then the electrons and positrons would be coming from different places and there would be no reason to expect their spectra to be similar, Waxman says. Moreover, he notes, AMS's measurement of the positron fraction seems to level out just at the limit that he and colleagues predicted would be the maximum achievable through secondary cosmic rays. So, in fact, the new data support the interpretation that the positrons are simply secondary cosmic rays, he says. "To me this is a very strong indication that we are seeing cosmic ray interactions.”
Will the argument ever end? AMS is scheduled to take data for 10 more years, which should enable scientists to whittle down the uncertainties and extend their reach toward higher energies, Ting says. "I think we should be able to reach 1 TeV with good statistics," he says, and that should be enough to eventually settle the dispute. But Gregory Tarlé, an astrophysicist at the University of Michigan, Ann Arbor, says, "I don't think that's a legitimate claim." Higher energy cosmic rays arrive at such a low rate that even quadrupling the data set would leave large statistical uncertainties, he says. So, Tarlé suspects, years from now the AMS results will likely look about as ambiguous they do now.

View Article Here Read More

Thank You Thursday: Our Divine Purpose

a message from Hillis Pugh

Thursday, 14 October, 2010 

Be thankful this day for divine purpose.

As we go through life we carry out multiple purposes and experience various lessons for each purpose. Through life, each experience ...

View Article Here Read More

Started without you guys, hope you don’t mind…

With a blistering hot day, and no other 3D activity planned until the Sun cools down a bit, I figured I'd just get ahead on my oil spill conversion plan mentioned earlier... Flat on my back, on the bed, it isn't hard to imagine myself floating i...

View Article Here Read More

Spiritual Vanity: What It Is, What It Does.


A Saint-Germain Channel
By Alexandra Mahlimay & Dan Bennack
April 4, 2010
Cluj-Napoca, Romania
www.joyandclarity.com

The following question answered by Saint-Germain comes from our monthly channeling broadcast.

Viewer (paraphrased): I feel that true freedom comes when I can choose anything that I might want to create or experience in life. When I can do whatever I want. But doesn't too much freedom lead to difficulties, too? What about vanity, for one? What are your thoughts about freedom, choice, and vanity?

Saint-Germain: An interesting question. You are asking about freedom of choice here, and here is my short reply, "With freedom comes choice, and in choice you will find your freedom." Yes, there is something very wonderful about freedom of choice. But there is also something very seductive about it, especially if you are unprepared for the experience of being able to do whatever you want. And you have rightly named one of these difficulties. It is called, vanity.

What Is Spiritual Vanity?

Let's talk about a particular kind of vanity now. Let's talk about spiritual vanity. Have you ever met anyone who is spiritually vain? I'm willing to bet that you know one or two of them.

A person is spiritually vain when they take excessive pride in their spiritual accomplishments, and then use this to impress or manipulate others around them. It has “tarnished the halo” of many human angels who would lead others on the Earth today.

Spiritual vanity has consequences, too. Just consider how difficult it is for the spiritually vain person to disentangle himself or herself from this folly. It is a monumental task. It is a stumbling block for many who are on the spiritual path, as they journey back toward remembering their Divinity.

The Folly of Spiritual Vanity

Vanity is a trap, indeed, and here's the reason why:

People on a spiritual path often find themselves moving into higher states of awareness, as they progress along the way. The problem of spiritual vanity arises, however, whenever there is a fascination or fixation on these experiences. It is tempting for some people to believe that just because they had this marvelous experience, that they are somehow better or more enlightened than others. This, of course, is absurd.

What is really happening here is that their egos, which are not yet fully reintegrated into the experience of Divine Remembrance, are playing tricks on them.

Let me give you a silly example to illustrate this point.

Let's pretend that the ego is your local school teacher, and that you are a naive student who is willing to believe just about anything that you are told. Your teacher encourages you to write the following incomplete sentence on the blackboard: “My spiritual experience is...,” and then complete it with the following statement: “...better than your experience, any day of the week, so why not let me tell you about it?

Then your teacher sends you home to repeat this ridiculous statement to your family, friends, and neighbors, until they are either convinced that you know exactly what you are talking about and should lead them to the Holy Land, or that you are certifiably insane. And so, the false prophet is born.

Know this, my friend: The ego will take hold of anything that is yours, and twist it to its own purposes. It loves to make sure that you, and those around you, stay in ignorance of your Divinity.

Why does the ego believe that it deserves to be recognized by, or to be better than everyone else around it? Because it is secretly uncertain of its place and importance in the world. This makes the ego particularly vulnerable to the experience of inflated pride. And the spiritual variety of this is particularly troublesome.

The ego can never take legitimate pride in anything that is really important about you, – such as the Truth of your Divinity, because the ego was born out of your ignorance of this fact.

And This Brings Us Back to Vanity.

Spiritual vanity is nothing more than an ego-sanctioned “recognition” of your Divinity. But it is a false recognition. It's just another way to keep you from truly remembering your Divinity by telling you, and those around you, that you've already done it, when you really haven't. The ego encourages you to accept this fiction, by telling you that if you can just persuade enough people to believe that it is so, then it must certainly be true. And this is the trap of spiritual vanity. It is as much a problem for those who would lead others on a spiritual path, as it is for those who would allow themselves to be lead.

So, to make things perfectly clear, I will repeat myself: “With freedom comes choice, and in choice you will find your freedom.”

Know this, dear friend, that when you are truly free, you will choose your experiences wisely, just as your Soul does, and that spiritual vanity will not enter into the picture at all.

Instead, your decisions about what to do with your life, your relationships, and anything else of importance to you, – will be in harmony with your Soul's Choices about how best to embody its Divinity as the human you on Earth.

And in this harmonious alignment between what is human about you, and what is Divine, you are going to realize the true meaning of freedom. The true meaning of freedom for you as a human being, is liberating yourself from forgetfulness about Who You Really Are... liberating yourself from ego-driven acts of self-sabotage that keep you in the dark about your Divinity.

Know that as you re-integrate the ego's distorted perceptions about who you are, into a conscious appreciation of your Divinity, that you will find freedom and purpose in everything that you do.

And, more importantly, you will understand that your growing spiritual awareness has nothing to do with being better than others, or more highly-evolved. Instead, it places you on equal footing with all humans, and asks you to practice humility daily.

This kind of humility asks you to lead and teach by example, and not by showiness or showmanship; demonstrating to others that living a human life, and acting with Divine Awareness, is possible for them, too.

Remember that humility doesn't ask you to deny the grandeur of your Divinity, or to live timidly. Your Divinity IS grand; and so are you, when you feel inspired by it. Humility simply asks you to live your life without false pride. Without ego.

A Need for Discernment

When you can free yourself from the ego's vanity, then you will no longer feel that you are spiritually superior to others, or more enlightened; or that you need to force your higher perspective on them, for their own good. Nor will you be seduced by the competing messages of those who try to tell, or sell you this kind of packaged vanity. There is much need for discernment about this today.

Instead you will be aware of everyone's need to find their way back to remembering their Divinity, and you will be eager to help them in respectful and appropriate ways, whenever they call upon you.

Thank you, my friend, for asking this question on behalf of all those who are present now, and who may be reading this later.

If you enjoyed this channel, please consider sharing it with a friend.
If you received this from a friend, we invite you to join our mailing list.

2010 © Alexandra Mahlimay and Dan Bennack. All rights reserved.
www.joyandclarity.com

View Article Here Read More

Andromeda, feels like home to me…..

Andromeda Galaxy

The Andromeda Galaxy, also known as Messier 31, M31, or NGC 224; often referred to as the Great Andromeda Nebula in older texts, is a spiral galaxy approximately 2,500,000 light-years away in the constellation Andromeda.

It is the nearest spiral galaxy to our own, the Milky Way. As it is visible as a faint smudge on a moonless night, it is one of the farthest objects visible to the naked eye, and can be seen even from urban areas with binoculars. It is named after the princess Andromeda in Greek mythology.

Andromeda is the largest galaxy of the Local Group, which consists of the Andromeda Galaxy, the Milky Way Galaxy, the Triangulum Galaxy, and about 30 other smaller galaxies. Although the largest, Andromeda may not be the most massive, as recent findings suggest that the Milky Way contains more dark matter and may be the most massive in the grouping.

The 2006 observations by the Spitzer Space Telescope revealed that M31 contains one trillion (1012) stars, several times more than the number of stars in our own galaxy, which is estimated to be c. 200-400 billion.

While the 2006 estimates put the mass of the Milky Way to be ~80% of the mass of Andromeda, which is estimated to be 7.1 X 1011 solar masses, a 2009 study concluded that Andromeda and the Milky Way are about equal in mass.

At an apparent magnitude of 3.4, the Andromeda Galaxy is notable for being one of the brightest Messier objects, making it easily visible to the naked eye even when viewed from areas with moderate light pollution. Although it appears more than six times as wide as the full moon when photographed through a larger telescope, only the brighter central region is visible with the naked eye.

Observation History

The earliest recorded observation of the Andromeda Galaxy was in 964 CE by the Persian astronomer, Abd al-Rahman al-Sufi (Azophi), who described it as a "small cloud" in his Book of Fixed Stars. Other star charts of that period have it labeled as the Little Cloud.

The first description of the object based on telescopic observation was given by Simon Marius in 1612.

Charles Messier catalogued it as object M31 in 1764 and incorrectly credited Marius as the discoverer, unaware of Al Sufi's earlier work.

In 1785, the astronomer William Herschel noted a faint reddish hue in the core region of the M31. He believed it to be the nearest of all the "great nebulae" and, based on the color and magnitude of the nebula, he incorrectly guessed that it was no more than 2,000 times the distance of Sirius.

William Huggins in 1864 observed the spectrum of M31 and noted that it differed from a gaseous nebula. The spectra of M31 displayed a continuum of frequencies, superimposed with dark absorption lines that help identify the chemical composition of an object. The Andromeda nebula was very similar to the spectra of individual stars, and from this it was deduced that M31 had a stellar nature.

In 1885, a supernova (known as "S Andromedae") was seen in M31, the first and so far only one observed in that galaxy. At the time M31 was considered to be a nearby object, so the cause was thought to be a much less luminous and unrelated event called a nova, and was named accordingly "Nova 1885".

The first photographs of M31 were taken in 1887 by Isaac Roberts from his private observatory in Sussex, England. The long-duration exposure allowed the spiral structure of the galaxy to be seen for the first time. However, at the time this object was commonly believed to be a nebula within our galaxy, and Roberts mistakenly believed that M31 and similar spiral nebulae were actually solar systems being formed, with the satellites nascent planets.

The radial velocity of this object with respect to our solar system was measured in 1912 by Vesto Slipher at the Lowell Observatory, using spectroscopy. The result was the largest velocity recorded at that time, at 300 kilometres per second (190 mi/s), moving in the direction of the Sun.

Island Universe

In 1917, Heber Curtis observed a nova within M31. Searching the photographic record, 11 more novae were discovered. Curtis noticed that these novae were, on average, 10 magnitudes fainter than those that occurred within our Galaxy. As a result he was able to come up with a distance estimate of 500,000 light-years (3.2X1010 AU). He became a proponent of the so-called "island universes" hypothesis, which held that spiral nebulae were actually independent galaxies.

In 1920 the Great Debate between Harlow Shapley and Heber Curtis took place, concerning the nature of the Milky Way, spiral nebulae, and the dimensions of the universe. To support his claim that Great Andromeda Nebula (M31) was an external galaxy, Curtis also noted the appearance of dark lanes resembling the dust clouds in our own Galaxy, as well as the significant Doppler shift.

In 1922 Ernst Opik presented a very elegant and simple astrophysical method to estimate the distance of M31, his result (450 kpc (1,500 kly)) put Andromeda Nebula far outside our Galaxy.

Edwin Hubble settled the debate in 1925 when he identified extragalactic Cepheid variable stars for the first time on astronomical photos of M31. These were made using the 2.5 metres (98 in) Hooker telescope, and they enabled the distance of Great Andromeda Nebula to be determined. His measurement demonstrated conclusively that this feature was not a cluster of stars and gas within our Galaxy, but an entirely separate galaxy located a significant distance from our own.

Andromeda plays an important role in galactic studies, since it is the nearest spiral galaxy (although not the nearest galaxy).

In 1943, Walter Baade was the first person to resolve stars in the central region of the Andromeda Galaxy. Based on his observations of this galaxy, he was able to discern two distinct populations of stars based on their metallicity, naming the young, high velocity stars in the disk Type I and the older, red stars in the bulge Type II. This nomenclature was subsequently adopted for stars within the Milky Way, and elsewhere. (The existence of two distinct populations had been noted earlier by Jan Oort.) Dr. Baade also discovered that there were two types of Cepheid variables, which resulted in a doubling of the distance estimate to M31, as well as the remainder of the Universe.

Radio emission from the Andromeda Galaxy was first detected by Grote Reber in 1940. The first radio maps of the galaxy were made in the 1950s by John Baldwin and collaborators at the Cambridge Radio Astronomy Group. The core of the Andromeda Galaxy is called 2C 56 in the 2C radio astronomy catalogue.

In 2009, the first planet may have been discovered in the Andromeda Galaxy. This candidate was detected using a technique called microlensing, which is caused by the deflection of light by a massive object.

Structure

Based on its appearance in visible light, the Andromeda galaxy is classified as an SA(s)b galaxy in the de Vaucouleurs-Sandage extended classification system of spiral galaxies. However, data from the 2MASS survey showed that the bulge of M31 has a box-like appearance, which implies that the galaxy is actually a barred galaxy with the bar viewed almost directly along its long axis.

In 2005, astronomers used the Keck telescopes to show that the tenuous sprinkle of stars extending outward from the galaxy is actually part of the main disk itself. This means that the spiral disk of stars in Andromeda is three times larger in diameter than previously estimated. This constitutes evidence that there is a vast, extended stellar disk that makes the galaxy more than 220,000 light-years (67,000 pc) in diameter. Previously, estimates of Andromeda's size ranged from 70,000 to 120,000 light-years (21,000 to 37,000 pc) across.

The galaxy is inclined an estimated 77° relative to the Earth (where an angle of 90° would be viewed directly from the side). Analysis of the cross-sectional shape of the galaxy appears to demonstrate a pronounced, S-shaped warp, rather than just a flat disk. A possible cause of such a warp could be gravitational interaction with the satellite galaxies near M31. The galaxy M33 could be responsible for some warp in M31's arms, though more precise distances and radial velocities are required.

Spectroscopic studies have provided detailed measurements of the rotational velocity of M31 at various radii from the core. In the vicinity of the core, the rotational velocity climbs to a peak of 225 kilometres per second (140 mi/s) at a radius of 1,300 light-years (82,000,000 AU) light-years, then descends to a minimum at 7,000 light-years (440,000,000 AU) where the rotation velocity may be as low as 50 kilometres per second (31 mi/s).

Thereafter the velocity steadily climbs again out to a radius of 33,000 light-years (2.1x109 AU), where it reaches a peak of 250 kilometres per second (160 mi/s). The velocities slowly decline beyond that distance, dropping to around 200 kilometres per second (120 mi/s) at 80,000 light-years (5.1x109 AU). These velocity measurements imply a concentrated mass of about 6 x 109 M in the nucleus. The total mass of the galaxy increases linearly out to 45,000 light-years (2.8 x109 AU), then more slowly beyond that radius.

The spiral arms of Andromeda are outlined by a series of H II regions that Baade described as resembling "beads on a string". They appear to be tightly wound, although they are more widely spaced than in our galaxy.

Rectified images of the galaxy show a fairly normal spiral galaxy with the arms wound up in a clockwise direction. There are two continuous trailing arms that are separated from each other by a minimum of about 13,000 light-years (8.2E+8 AU). These can be followed outward from a distance of roughly 1,600 light-years (100,000,000 AU) from the core. The most likely cause of the spiral pattern is thought to be interaction with M32. This can be seen by the displacement of the neutral hydrogen clouds from the stars.

In 1998, images from the European Space Agency's Infrared Space Observatory demonstrated that the overall form of the Andromeda galaxy may be transitioning into a ring galaxy. The gas and dust within Andromeda is generally formed into several overlapping rings, with a particularly prominent ring formed at a radius of 32,000 light-years (2.0x109 AU) from the core. This ring is hidden from visible light images of the galaxy because it is composed primarily of cold dust.

Close examination of the inner region of Andromeda showed a smaller dust ring that is believed to have been caused by the interaction with M32 more than 200 million years ago. Simulations show that the smaller galaxy passed through the disk of Andromeda along the latter's polar axis. This collision stripped more than half the mass from the smaller M32 and created the ring structures in Andromeda.

Studies of the extended halo of M31 show that it is roughly comparable to that of the Milky Way, with stars in the halo being generally "metal-poor", and increasingly so with greater distance. This evidence indicates that the two galaxies have followed similar evolutionary paths. They are likely to have accreted and assimilated about 1-200 low-mass galaxies during the past 12 billion years. The stars in the extended halos of M31 and the Milky Way may extend nearly one third the distance separating the two galaxies.

Nucleus

M31 is known to harbor a dense and compact star cluster at its very center. In a large telescope it creates a visual impression of a star embedded in the more diffuse surrounding bulge. The luminosity of the nucleus is in excess of the most luminous globular clusters.

In 1991 Tod R. Lauer used WFPC, then on board the Hubble Space Telescope, to image Andromeda's inner nucleus. The nucleus consists of two concentrations separated by 1.5 parsecs (4.9 ly). The brighter concentration, designated as P1, is offset from the center of the galaxy. The dimmer concentration, P2, falls at the true center of the galaxy and contains a 3-5x107 M black hole.

Scott Tremaine has proposed that the observed double nucleus could be explained if P1 is the projection of a disk of stars in an eccentric orbit around the central black hole. The eccentricity is such that stars linger at the orbital apocenter, creating a concentration of stars. P2 also contains a compact disk of hot, spectral class A stars. The A stars are not evident in redder filters, but in blue and ultraviolet light they dominate the nucleus, causing P2 to appear more prominent than P1.

While at the initial time of its discovery it was hypothesized that the brighter portion of the double nucleus was the remnant of a small galaxy "cannibalized" by Andromeda, this is no longer considered to be a viable explanation. The primary reason is that such a nucleus would have an exceedingly short lifetime due to tidal disruption by the central black hole. While this could be partially resolved if P1 had its own black hole to stabilize it, the distribution of stars in P1 does not suggest that there is a black hole at its center.

Artist's concept of Andromeda galaxy core showing a view across a

mysterious disk of young, blue stars encircling a supermassive black hole.

Discrete Sources

Multiple X-ray sources have been detected in the Andromeda Galaxy, using observations from the ESA's XMM-Newton orbiting observatory. Robin Barnard et al. hypothesized that these are candidate black holes or neutron stars, which are heating incoming gas to millions of kelvins and emitting X-rays. The spectrum of the neutron stars is the same as the hypothesized black holes, but can be distinguished by their masses.

There are approximately 460 globular clusters associated with the Andromeda galaxy. The most massive of these clusters, identified as Mayall II, nicknamed Globular One, has a greater luminosity than any other known globular cluster in the local group of galaxies.

It contains several million stars, and is about twice as luminous as Omega Centauri, the brightest known globular cluster in the Milky Way. Globular One (or G1) has several stellar populations and a structure too massive for an ordinary globular. As a result, some consider G1 to be the remnant core of a dwarf galaxy that was consumed by M31 in the distant past. The globular with the greatest apparent brightness is G76 which is located in the south-west arm's eastern half.

In 2005, astronomers discovered a completely new type of star cluster in M31. The new-found clusters contain hundreds of thousands of stars, a similar number of stars that can be found in globular clusters. What distinguishes them from the globular clusters is that they are much larger ­ several hundred light-years across ­ and hundreds of times less dense. The distances between the stars are, therefore, much greater within the newly discovered extended clusters.

Future Collision of the Milky Way with Andromeda

The Andromeda Galaxy is approaching the Sun at about 100 to 140 kilometres per second (62 to 87 mi/s),[56] so it is one of the few blue shifted galaxies. The Andromeda Galaxy and the Milky Way are thus expected to collide in perhaps 2.5 billion years, although the details are uncertain since Andromeda's tangential velocity with respect to the Milky Way is only known to within about a factor of two.

A likely outcome of the collision is that the galaxies will merge to form a giant elliptical galaxy. Such events are frequent among the galaxies in galaxy groups. The fate of the Earth and the Solar System in the event of a collision are presently unknown. If the galaxies do not merge, there is a small chance that the Solar System could be ejected from the Milky Way or join Andromeda.

Andromeda's Satellite Galaxies  Wikipedia
Like the Milky Way, Andromeda Galaxy has satellite galaxies, consisting of 14 known dwarf galaxies.

View Article Here Read More
Older posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑