Tag: entering (page 1 of 6)

Progress Report

 Our meditations have managed to somewhat stabilize the positive path towards the Event. A few days before exact Eris-Pluto heliocentric square meditation on August 31st, cloudships and rare multiple rainbows appeared in Taiwan:   The So...

View Article Here Read More

Progress Report

 Our meditations have managed to somewhat stabilize the positive path towards the Event. A few days before exact Eris-Pluto heliocentric square meditation on August 31st, cloudships and rare multiple rainbows appeared in Taiwan:   The So...

View Article Here Read More

A New Cobra Interview And a Short Message to the Surface Population

A Cobra interview has been created by We Love Mass Meditation to bring more clarity in the current planetary situation and to help spread the word about our coming Ascension Timeline meditation.You can listen to the interview on Youtube:https://www.yo...

View Article Here Read More

Blue Dawn

Age of Aquarius meditation was very successful and we have reached the critical mass, albeit barely. Around 150,000 people were actively participating:https://www.youtube.com/watch?v=33Yb3_60gwE&feature=youtu.beThis was just enough to push us over ...

View Article Here Read More

Akashic Record Readings for Practical Living

Akashic Record Readings for Practical Living offer you the most intrinsically pure resource for practical and spiritual guidance that a person can access today. When I read your Akashic Records, I transcribe exactly what they are revealing to you in the moment.  This process leaves nothing up to interpretation.  You will receive clear, concise and […]

The post Akashic Record Readings for Practical Living appeared first on .

View Article Here Read More

5 Signs the California Drought Could Get Worse

Anastasia Pantsios, EcoWatchCalifornia is entering its fourth year of drought, with high temperatures, water shortages and increased wildfires. The state has taken some steps to address the impacts of that, including addressing greenhouse gas emissions and rationing its diminishing water supply. But there are signs that the impacts of drought on the state could get even worse.1. A new study shows that if greenhouse gas emissions continue to ris [...]

View Article Here Read More

Physicists: Black holes don’t erase information




Excerpt from earthsky.org
Since 1975, when Hawking showed that black holes evaporate from our universe, physicists have tried to explain what happens to a black hole’s information.

What happens to the information that goes into a black hole? Is it irretrievably lost? Does it gradually or suddenly leak out? Is it stored somehow? Physicists have puzzled for decades over what they call the information loss paradox in black holes. A new study by physicists at University at Buffalo – published in March, 2015 in the journal in Physical Review Letters – shows that information going into a black hole is not lost at all.

Instead, these researchers say, it’s possible for an observer standing outside of a black hole to recover information about what lies within.

Dejan Stojkovic, associate professor of physics at the University at Buffalo, did the research with his student Anshul Saini as co-author. Stojkovic said in a statement:
According to our work, information isn’t lost once it enters a black hole. It doesn’t just disappear.
What sort of information are we talking about? In principle, any information drawn into a black hole has an unknown future, according to modern physics. That information could include, for example, the characteristics of the object that formed the black hole to begin with, and characteristics of all matter and energy drawn inside.

Stojkovic says his research “marks a significant step” toward solving the information loss paradox, a problem that has plagued physics for almost 40 years, since Stephen Hawking first proposed that black holes could radiate energy and evaporate over time, disappearing from the universe and taking their information with them. 

Disappearing information is a problem for physicists because it’s a violation of quantum mechanics, which states that information must be conserved.
According to modern physics, any information about an astronaut entering a black hole - for example, height, weight, hair color - may be lost.  Likewise, information about he object that formed the hole, or any matter and energy entering the hole, may be lost.  This notion violates quantum mechanics, which is why it's known as the 'black hole information paradox.


According to modern physics, any information related to an astronaut entering a black hole – for example, height, weight, hair color – may be lost. This notion is known as the ‘information loss paradox’ of black holes because it violates quantum mechanics. Artist’s concept via Nature.

Stojkovic says that physicists – even those who believed information was not lost in black holes – have struggled to show mathematically how the information is preserved. He says his new paper presents explicit calculations demonstrating how it can be preserved. His statement from University at Buffalo explained:
In the 1970s, [Stephen] Hawking proposed that black holes were capable of radiating particles, and that the energy lost through this process would cause the black holes to shrink and eventually disappear. Hawking further concluded that the particles emitted by a black hole would provide no clues about what lay inside, meaning that any information held within a black hole would be completely lost once the entity evaporated.

Though Hawking later said he was wrong and that information could escape from black holes, the subject of whether and how it’s possible to recover information from a black hole has remained a topic of debate.

Stojkovic and Saini’s new paper helps to clarify the story.
Instead of looking only at the particles a black hole emits, the study also takes into account the subtle interactions between the particles. By doing so, the research finds that it is possible for an observer standing outside of a black hole to recover information about what lies within.
Interactions between particles can range from gravitational attraction to the exchange of mediators like photons between particles. Such “correlations” have long been known to exist, but many scientists discounted them as unimportant in the past.
Stojkovic added:
These correlations were often ignored in related calculations since they were thought to be small and not capable of making a significant difference.
Our explicit calculations show that though the correlations start off very small, they grow in time and become large enough to change the outcome.
Artist's impression of a black hole, via Icarus
Artist’s impression of a black hole, via Icarus

Bottom line: Since 1975, when Stephen Hawking and Jacob Bekenstein showed that black holes should slowly radiate away energy and ultimately disappear from the universe, physicists have tried to explain what happens to information inside a black hole. Dejan Stojkovic and Anshul Saini, both of University at Buffalo, just published a new study that contains specific calculations showing that information within a black hole is not lost.

View Article Here Read More

Black Holes, the Large Hadron Collider, & Finding Parallel Universes

Excerpt from huffingtonpost.comI am a huge science enthusiast and an unabashed science fiction fan. There are tons of really cool stories out there that fire the imagination and even inspire young people to go into science. (I know they did me.) ...

View Article Here Read More

NASA’s Plan to Give the Moon a Moon


arm-capture_0




Excerpt from wired.com

It sounds almost like a late ’90s sci-fi flick: NASA sends a spacecraft to an asteroid, plucks a boulder off its surface with a robotic claw, and brings it back in orbit around the moon. Then, brave astronaut heroes go and study the space rock up close—and bring samples back to Earth.
Except it’s not a movie: That’s the real-life idea for the Asteroid Redirect Mission, which NASA announced today. Other than simply being an awesome space version of the claw arcade game (you know you really wanted that stuffed Pikachu), the mission will let NASA test technology and practice techniques needed for going to Mars.
The mission, which will cost up to $1.25 billion, is slated to launch in December 2020. It will take about two years to reach the asteroid (the most likely candidate is a quarter-mile-wide rock called 2008 EV5). The spacecraft will spend up to 400 days there, looking for a good boulder. After picking one—maybe around 13 feet in diameter—it will bring the rock over to the moon. In 2025, astronauts will fly NASA’s still-to-be-built Orion to dock with the asteroid-carrying spacecraft and study the rock up close.
Although the mission would certainly give scientists an up-close opportunity to look at an asteroid, its main purpose is as a testing ground for a Mars mission. The spacecraft will test a solar electronic propulsion system, which uses the power from solar panels to pump out charged particles to provide thrust. It’s slower than conventional rockets, but a lot more efficient. You can’t lug a lot of rocket fuel to Mars.
Overall, the mission gives NASA a chance at practicing precise navigation and maneuvering techniques that they’ll need to master for a Mars mission. Such a trip will also require a lot more cargo, so grabbing and maneuvering a big space rock is good practice. Entering lunar orbit and docking with another spacecraft would also be helpful, as the orbit might be a place for a deep-space habitat, a rendezvous point for astronauts to pick up cargo or stop on their way to Mars.
And—you knew this part was coming, Armageddon fans—the mission might teach NASA something about preventing an asteroid from striking Earth. After grabbing the boulder, the spacecraft will orbit the asteroid. With the added heft from the rock, the spacecraft’s extra gravity would nudge the asteroid, creating a slight change in trajectory that NASA could measure from Earth. “We’re not talking about a large deflection here,” says Robert Lightfoot, an associate administrator at NASA. But the idea is that a similar technique could push a threatening asteroid off a collision course with Earth.
NASA chose this mission concept over one that would’ve bagged an entire asteroid. In that plan, the spacecraft would’ve captured the space rock by enclosing it in a giant, flexible container. The claw concept won out because its rendezvous and soft-landing on the asteroid will allow NASA to test and practice more capabilities in preparation for a Mars mission, Lightfoot says. The claw would’ve also given more chances at grabbing a space rock, whereas it was all or nothing with the bag idea. “It’s a one-shot deal,” he says. “It is what it is when we get there.” But the claw concept offers some choices. “I’ve got three to five opportunities to pull one of the boulders off,” he says. Not bad odds. Better than winning that Pikachu

View Article Here Read More

Ballistic Capture Can Send Spacecraft to Mars at Cheaper Cost

Ballistic capture could be used to reach Mars at a lower cost than current techniques. How does it work, and what are the drawbacks?Excerpt from techtimes.comBallistic capture is a navigational technique utilized by spacecraft, and has been successfu...

View Article Here Read More

Top 10 Ridiculously Common Science Myths






listverse.com
There is nothing better than a bit of mythbusting (which accounts for the popularity of the television program of the same name), so here we are again, presenting you with a new list of terribly common misconceptions and myths – this time about science.

10
Evolutionary Improvements
Evolution Std.Jpg
The Myth: Evolution causes something to go from “lower” to “higher”
While it is a fact that natural selection weeds out unhealthy genes from the gene pool, there are many cases where an imperfect organism has survived. Some examples of this are fungi, sharks, crayfish, and mosses – these have all remained essentially the same over a great period of time. These organisms are all sufficiently adapted to their environment to survive without improvement.
Other taxa have changed a lot, but not necessarily for the better. Some creatures have had their environments changed and their adaptations may not be as well suited to their new situation. Fitness is linked to their environment, not to progress.

9
Humans Pop In Space
Ed-White.Jpg
The Myth: When exposed to the vacuum of space, the human body pops
This myth is the result of science fiction movies which use it to add excitement or drama to the plot. In fact, a human can survive for 15 – 30 seconds in outer space as long as they breathe out before the exposure (this prevents the lungs from bursting and sending air into the bloodstream). After 15 or so seconds, the lack of oxygen causes unconsciousness which eventually leads to death by asphyxiation.
8
Brightest Star
800Px-Sirius A And B Artwork.Jpg
The Myth: Polaris is the brightest star in the northern hemisphere night sky
Sirius is actually brighter with a magnitude of ?1.47 compared to Polaris’ 1.97 (the lower the number the brighter the star). The importance of Polaris is that its position in the sky marks North – and for that reason it is also called the “North Star”. Polaris is the brightest star in the constellation Ursa Minor and, interestingly, is only the current North Star as pole stars change over time because stars exhibit a slow continuous drift with respect to the Earth’s axis.
7
Five Second Rule
5Seconds1.Jpg
The Myth: Food that drops on the floor is safe to eat if you pick it up within five seconds
This is utter bunkum which should be obvious to most readers. If there are germs on the floor and the food lands on them, they will immediately stick to the food. Having said that, eating germs and dirt is not always a bad thing as it helps us to develop a robust immune system. I prefer to have a “how-tasty-is-it” rule: if it is something really tasty, it can sit there for ten minutes for all I care – I will still eat it.
6
Dark side of the Moon
179077120 (1)
The Myth: There is a dark side of the moon
Actually – every part of the moon is illuminated at sometime by the sun. This misconception has come about because there is a side of the moon which is never visible to the earth. This is due to tidal locking; this is due to the fact that Earth’s gravitational pull on the moon is so immense that it can only show one face to us. Wikipedia puts it rather smartly thus: “Tidal locking occurs when the gravitational gradient makes one side of an astronomical body always face another; for example, one side of the Earth’s Moon always faces the Earth. A tidally locked body takes just as long to rotate around its own axis as it does to revolve around its partner. This synchronous rotation causes one hemisphere constantly to face the partner body.”


5
Brain Cells
Brain Cell.Jpg
The Myth: Brain cells can’t regenerate – if you kill a brain cell, it is never replaced
The reason for this myth being so common is that it was believed and taught by the science community for a very long time. But in 1998, scientists at the Sweden and the Salk Institute in La Jolla, California discovered that brain cells in mature humans can regenerate. It had previously been long believed that complex brains would be severely disrupted by new cell growth, but the study found that the memory and learning center of the brain can create new cells – giving hope for an eventual cure for illnesses like Alzheimer’s.
4
Pennies from Heaven
Empirestatebuilding.Jpg
The Myth: A penny dropped from a very high building can kill a pedestrian below
This myth is so common it has even become a bit of a cliche in movies. The idea is that if you drop a penny from the top of a tall building (such as the Empire State Building) – it will pick up enough speed to kill a person if it lands on them on the ground. But the fact is, the aerodynamics of a penny are not sufficient to make it dangerous. What would happen in reality is that the person who gets hit would feel a sting – but they would certainly survive the impact.
3
Friction Heat
20050825-Meteor-Artist-Impression-110436.Jpg
The Myth: Meteors are heated by friction when entering the atmosphere
When a meteoroid enters the atmosphere of the earth (becoming a meteor), it is actually the speed compressing the air in front of the object that causes it to heat up. It is the pressure on the air that generates a heat intense enough to make the rock so hot that is glows brilliantly for our viewing pleasure (if we are lucky enough to be looking in the sky at the right time). We should also dispel the myth about meteors being hot when they hit the earth – becoming meteorites. Meteorites are almost always cold when they hit – and in fact they are often found covered in frost. This is because they are so cold from their journey through space that the entry heat is not sufficient to do more than burn off the outer layers.
2
Lightning
Lightning.Jpg
The Myth: Lightning never strikes the same place twice
Next time you see lightning strike and you consider running to the spot to protect yourself from the next bolt, remember this item! Lightning does strike the same place twice – in fact it is very common. Lightning obviously favors certain areas such as high trees or buildings. In a large field, the tallest object is likely to be struck multiple times until the lightning moves sufficiently far away to find a new target. The Empire State Building gets struck around 25 times a year.
1
Gravity in Space
Astronaut Banjo.Jpg
The Myth: There is no gravity in space
In fact, there is gravity in space – a lot of it. The reason that astronauts appear to be weightless because they are orbiting the earth. They are falling towards the earth but moving sufficiently sideways to miss it. So they are basically always falling but never landing. Gravity exists in virtually all areas of space. When a shuttle reaches orbit height (around 250 miles above the earth), gravity is reduced by only 10%.
Inspired by an excellent LiveScience Article. This article is licensed under the GFDL because it contains quotations from Wikipedia.

View Article Here Read More

Quantum Mechanics Breakthrough Enables Photon Interaction ~ May lead to computer ‘light’ chips ~ Greg Giles

Artist's conception of a computer chip made of light In quantum mechanics, photons cannot interact with each other in free space. Light waves have only freely passed through each other without changing their state or path, until now. Vienna Univ...

View Article Here Read More

Erie Paris Catacombs Open at Night Ahead of Halloween

rewrwer345252.jpg
Skulls and bones are stacked at the Catacombs in Paris, France. The subterranean tunnels, stretching over a mile, cradle the bones of some 6 million Parisians from centuries past and once gave refuge to smugglers. (AP Photo)


foxnews.com

As if visiting the Paris Catacombs in the daytime wasn't creepy enough — you can now visit the underground maze of skeletons after nightfall, too. That is if you dare defy the warning at the entrance: "Stop, this is the empire of Death."
The subterranean tunnels, stretching 2 kilometers (1.2 miles), cradle the bones of some 6 million Parisians from centuries past and once gave refuge to smugglers.
Twenty meters (66 feet) beneath the French capital's medieval streets, labyrinthine walls of bones and skulls bring visitors into the city of the dead, in a spooky atmosphere that attracts history enthusiasts as well as visitors looking for a chilling place to celebrate Halloween.
The site used to close at 5 p.m., but is now staying open until 8 p.m. The change is mainly aimed at allowing more people to visit and reducing long lines, but it also adds to the thrill: entering and leaving the catacombs after dark feels different from doing it in daylight.
Human remains started to be transferred to the former underground quarries of Paris in 1786, when the main cemetery of Paris —the Cemetery of Innocents — was closed for public health reasons. From 1809 on, the catacombs were rearranged into organized galleries, with piled bones forming walls and pillars, and even some artistic shapes made of femurs and skulls.
Sacred and profane maxims and poems are posted around the galleries, such as: "Think in the morning that perhaps you won't survive until evening, and in the evening that perhaps you won't survive until morning."
Valerie Guillaume, director of the Catacombs, stressed the philosophical nature of the unusual tourist site.
"The place was not conceived to be a horror place, but as a reflection on the meaning of life and death," she said.
Sylvie Robin, the Catacombs' curator, described the extensive smuggling that went on in the tunnels in the past and contributed to its scary reputation.
"That's the origin of all the legends," she said, because the smugglers used to scare the Parisians with lights and noises, so that no one would come and see what they were doing.
———
Open from 10 a.m. to 8 p.m. (last admission at 7 p.m.), closed on Mondays and public holidays. General admission: 10 euros (about $12.70). Tour of 2 kilometers (1.2 miles) takes around 45 minutes, with 130 steps to go down and 83 steps back up to street level. Not accessible to people with reduced mobility.

View Article Here Read More
Older posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑