Tag: engineer (page 3 of 7)

Our Solar System: Evidence of Creation

This presentation goes through each planet in our Solar System (and a few of their moons), and shows how each one discredits evolutionary theories in a different way. Includes about 100 beautiful photos taken from various space probes and the Hubbl...

View Article Here Read More

Is a trip to the moon in the making?





Excerpt from bostonglobe.com

Decades after that first small step, space thinkers are finally getting serious about our nearest neighbor By Kevin Hartnett

This week, the European Space Agency made headlines with the first successful landing of a spacecraft on a comet, 317 million miles from Earth. It was an upbeat moment after two American crashes: the unmanned private rocket that exploded on its way to resupply the International Space Station, and the Virgin Galactic spaceplane that crashed in the Mojave Desert, killing a pilot and raising questions about whether individual businesses are up to the task of operating in space.  During this same period, there was one other piece of space news, one far less widely reported in the United States: On Nov. 1, China successfully returned a moon probe to Earth. That mission follows China’s landing of the Yutu moon rover late last year, and its announcement that it will conduct a sample-return mission to the moon in 2017.  With NASA and the Europeans focused on robot exploration of distant targets, a moon landing might not seem like a big deal: We’ve been there, and other countries are just catching up. But in recent years, interest in the moon has begun to percolate again, both in the United States and abroad—and it’s catalyzing a surprisingly diverse set of plans for how our nearby satellite will contribute to our space future.  China, India, and Japan have all completed lunar missions in the last decade, and have more in mind. Both China and Japan want to build unmanned bases in the early part of the next decade as a prelude to returning a human to the moon. In the United States, meanwhile, entrepreneurs are hatching plans for lunar commerce; one company even promises to ferry freight for paying customers to the moon as early as next year. Scientists are hatching more far-out ideas to mine hydrogen from the poles and build colonies deep in sky-lit lunar caves.  This rush of activity has been spurred in part by the Google Lunar X Prize, a $20 million award, expiring in 2015, for the first private team to land a working rover on the moon and prove it by sending back video. It is also driven by a certain understanding: If we really want to launch expeditions deeper into space, our first goal should be to travel safely to the moon—and maybe even figure out how to live there.
Entrepreneurial visions of opening the moon to commerce can seem fanciful, especially in light of the Virgin Galactic and Orbital Sciences crashes, which remind us how far we are from having a truly functional space economy. They also face an uncertain legal environment—in a sense, space belongs to everyone and to no one—whose boundaries will be tested as soon as missions start to succeed. Still, as these plans take shape, they’re a reminder that leaping blindly is sometimes a necessary step in opening any new frontier.
“All I can say is if lunar commerce is foolish,” said Columbia University astrophysicist Arlin Crotts in an e-mail, “there are a lot of industrious and dedicated fools out there!”

At its height, the Apollo program accounted for more than 4 percent of the federal budget. Today, with a mothballed shuttle and a downscaled space station, it can seem almost imaginary that humans actually walked on the moon and came back—and that we did it in the age of adding machines and rotary phones.

“In five years, we jumped into the middle of the 21st century,” says Roger Handberg, a political scientist who studies space policy at the University of Central Florida, speaking of the Apollo program. “No one thought that 40 years later we’d be in a situation where the International Space Station is the height of our ambition.”

An image of Earth and the moon created from photos by Mariner 10, launched in 1973.
NASA/JPL/Northwestern University
An image of Earth and the moon created from photos by Mariner 10, launched in 1973.
Without a clear goal and a geopolitical rivalry to drive it, the space program had to compete with a lot of other national priorities. The dramatic moon shot became an outlier in the longer, slower story of building scientific achievements.

Now, as those achievements accumulate, the moon is coming back into the picture. For a variety of reasons, it’s pretty much guaranteed to play a central role in any meaningful excursions we take into space. It’s the nearest planetary body to our own—238,900 miles away, which the Apollo voyages covered in three days. It has low gravity, which makes it relatively easy to get onto and off of the lunar surface, and it has no atmosphere, which allows telescopes a clearer view into deep space.
The moon itself also still holds some scientific mysteries. A 2007 report on the future of lunar exploration from the National Academies called the moon a place of “profound scientific value,” pointing out that it’s a unique place to study how planets formed, including ours. The surface of the moon is incredibly stable—no tectonic plates, no active volcanoes, no wind, no rain—which means that the loose rock, or regolith, on the moon’s surface looks the way the surface of the earth might have looked billions of years ago.

NASA still launches regular orbital missions to the moon, but its focus is on more distant points. (In a 2010 speech, President Obama brushed off the moon, saying, “We’ve been there before.”) For emerging space powers, though, the moon is still the trophy destination that it was for the United States and the Soviet Union in the 1960s. In 2008 an Indian probe relayed the best evidence yet that there’s water on the moon, locked in ice deep in craters at the lunar poles. China landed a rover on the surface of the moon in December 2013, though it soon malfunctioned. Despite that setback, China plans a sample-return mission in 2017, which would be the first since a Soviet capsule brought back 6 ounces of lunar soil in 1976.

The moon has also drawn the attention of space-minded entrepreneurs. One of the most obvious opportunities is to deliver scientific instruments for government agencies and universities. This is an attractive, ready clientele in theory, explains Paul Spudis, a scientist at the Lunar and Planetary Institute in Houston, though there’s a hitch: “The basic problem with that as a market,” he says, “is scientists never have money of their own.”

One company aspiring to the delivery role is Astrobotic, a startup of young Carnegie Mellon engineers based in Pittsburgh, which is currently positioning itself to be “FedEx to the moon,” says John Thornton, the company’s CEO. Astrobotic has signed a contract with SpaceX, the commercial space firm founded by Elon Musk, to use a Falcon 9 for an inaugural delivery trip in 2015, just in time to claim the Google Lunar X Prize. Thornton says most of the technology is in place for the mission, and that the biggest remaining hurdle is figuring out how to engineer a soft, automated moon landing.

Astrobotic is charging $1.2 million per kilogram—you can, in fact, place an order on its website—and Thornton says the company has five customers so far. They include the entities you might expect, like NASA, but also less obvious ones, like a company that wants to deliver human ashes for permanent internment and a Japanese soft drink manufacturer that wants to place its signature beverage, Pocari Sweat, on the moon as a publicity stunt. Astrobotic is joined in this small sci-fi economy by Moon Express out of Mountain View, Calif., another company competing for the Google Lunar X Prize.
Plans like these are the low-hanging fruit of the lunar economy, the easiest ideas to imagine and execute. Longer-scale thinkers are envisioning ways that the moon will play a larger role in human affairs—and that, says Crotts, is where “serious resource exploitation” comes in.
If this triggers fears of a mined-out moon, be reassured: “Apollo went there and found nothing we wanted. Had we found anything we really wanted, we would have gone back and there would have been a new gold rush,” says Roger Launius, the former chief historian of NASA and now a curator at the National Air and Space Museum.

There is one possible exception: helium-3, an isotope used in nuclear fusion research. It is rare on Earth but thought to be abundant on the surface of the moon, which could make the moon an important energy source if we ever figure out how to harness fusion energy. More immediately intriguing is the billion tons of water ice the scientific community increasingly believes is stored at the poles. If it’s there, that opens the possibility of sustained lunar settlement—the water could be consumed as a liquid, or split into oxygen for breathing and hydrogen for fuel.

The presence of water could also open a potentially ripe market providing services to the multibillion dollar geosynchronous satellite industry. “We lose billions of dollars a year of geosynchronous satellites because they drift out of orbit,” says Crotts. In a new book, “The New Moon: Water, Exploration, and Future Habitation,” he outlines plans for what he calls a “cislunar tug”: a space tugboat of sorts that would commute between the moon and orbiting satellites, resupplying them with propellant, derived from the hydrogen in water, and nudging them back into the correct orbital position.

In the long term, the truly irreplaceable value of the moon may lie elsewhere, as a staging area for expeditions deeper into space. The most expensive and dangerous part of space travel is lifting cargo out of and back into the Earth’s atmosphere, and some people imagine cutting out those steps by establishing a permanent base on the moon. In this scenario, we’d build lunar colonies deep in natural caves in order to escape the micrometeorites and toxic doses of solar radiation that bombard the moon, all the while preparing for trips to more distant points.
gical hurdles is long, and there’s also a legal one, at least where commerce is concerned. The moon falls under the purview of the Outer Space Treaty, which the United States signed in 1967, and which prohibits countries from claiming any territory on the moon—or anywhere else in space—as their own.
“It is totally unclear whether a private sector entity can extract resources from the moon and gain title or property rights to it,” says Joanne Gabrynowicz, an expert on space law and currently a visiting professor at Beijing Institute of Technology School of Law. She adds that a later document, the 1979 Moon Treaty, which the United States has not signed, anticipates mining on the moon, but leaves open the question of how property rights would be determined.

There are lots of reasons the moon may never realize its potential to mint the world’s first trillionaires, as some space enthusiasts have predicted. But to the most dedicated space entrepreneurs, the economic and legal arguments reflect short-sighted thinking. They point out that when European explorers set sail in the 15th and 16th centuries, they assumed they’d find a fortune in gold waiting for them on the other side of the Atlantic. The real prizes ended up being very different—and slow to materialize.
“When we settled the New World, we didn’t bring a whole lot back to Europe [at first],” Thornton says. “You have to create infrastructure to enable that kind of transfer of goods.” He believes that in the case of the moon, we’ll figure out how to do that eventually.
Roger Handberg is as clear-eyed as anyone about the reasons why the moon may never become more than an object of wonder, but he also understands why we can’t turn away from it completely. That challenge, in the end, may finally be what lures us back.

View Article Here Read More

Former Lockheed Martin engineer said he spoke with aliens — and has pictures to prove it ~ Video


Former Lockheed Martin engineer Boyd Bushman



Boyd Bushman, who passed away in August, said it takes 45 years for aliens from the planet Quintumnia to reach Earth — and they are divided into 'wranglers' and 'rustlers.'
A former Lockheed Martin engineer showed off his pictures of aliens this summer that he claims to have obtained through conversations with extraterrestrial life.

Boyd Bushman, who died in August at the age of 78, claimed some of the aliens were 230 years old and that there are “American citizens who are working on UFOs 24 hours a day.”

He spoke with independent aerospace engineer Mark Q. Patterson shortly before his death, and Patterson posted the interview to YouTube in October.

Bushman reportedly served as a senior research engineer for Lockheed Martin Skunk Works, Texas Instruments and Hughes Aircraft and talked about his experience at Area 51, the U.S. Air Force base in southern Nevada that’s been the subject of alien folklore.
Bushman describes the aliens as being 4 1/2-to-5-feet tall and have long fingers, webbed feet and come from a planet known as Quintumnia. It takes only 45 years for them to travel to Earth, he said.

The former engineer even gave them an assignment: photograph the planets as they make the voyage to Earth — and he claimed to have those photos. He said they travel using UFOs that are 38 feet in diameter while 18 of the aliens now work with facilities in the United States.

“There are two groups of aliens,” he said, adding that they exist in a kind of “cattle ranch” on the planet. “They divide them into two groups. One group are wranglers, and the others are rustlers – the ones who are stealers of cattle. The two groups act differently. The ones that are wranglers are much more friendly, and have a better relationship with us."


Click to zoom

View Article Here Read More

Let There Be Light: Sistine Chapel Gets LED Makeover ~ Video




Excerpt from euronews.com


Visitors to the Vatican’s Sistine Chapel will now be able to see its world-famous frescos in a new light – 7,000 new LED lights to be exact. 

Ultraviolet rays were slowly fading the colours of the more than 500-year-old masterpieces by Renaissance greats like Michaelangelo, Botticelli and Ghirlandaio. 

“This type of LED lighting guarantees a homogeneous lighting, which is very precise and allows us to understand the Sistine Chapel as a whole and each fresco individually, in minute detail,” says the Director of the Vatican Museums, Antonio Paolucci. 

The non-intrusive, energy-saving bulbs have been concealed along the edges of the ledge which runs around the chapel. Positioned to match the frescoes’ pigments, they can be adjusted to different levels. 

“This LED lighting, through complex technology, makes the lights emit a solar spectrum which is as close as possible to natural light. So there aren’t any disproportionate amounts of reds or blues. 
Usually LED lights are perceived as cold because they’re too blue,” says Vittoria Cimino, Director of the Conservator’s Office of the Vatican Museums.

“The light quality was especially designed for this chapel, we had at least 280 different pigments, testing and calculating a new colour rendering index, especially for this chapel,” says Osram light engineer Martin Reuter. 




Click to zoom

View Article Here Read More

Think You Could Live on Mars? Think Again



Excerpt from
time.com

A new analysis of Mars One's plans to colonize the Red Planet finds that the explorers would begin dying within 68 days of touching down


Hear that? That’s the sound of 200,000 reservations being reconsidered. Two hundred thousand is the announced number of intrepid folks who signed up last year for the chance to be among the first Earthlings to colonize Mars, with flights beginning as early as 2024. The catch: the trips will be one way, as in no return ticket, as in farewell friends, family, charbroiled steaks and vodka martinis, to say nothing of such everyday luxuries as modern hospitals and, you know, breathable air.
But the settlers in Jamestown weren’t exactly volunteering for a weekend in Aspen either, and in both cases, the compensations—being the first people on a distant shore—seemed attractive enough. Now, however, the Mars plan seems to have run into a teensy snag. According to a new analysis by a team of grad students at MIT, the new arrivals would begin dying within just 68 days of touching down.


An artist concept of NASA's Mars Atmosphere and Volatile EvolutioN (MAVEN) mission. Launched in November 2013, the mission will explore the Red Planet’s upper atmosphere, ionosphere and interactions with the sun and solar wind.
The United Launch Alliance Atlas V rocket with NASA’s Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft launches from the Cape Canaveral Air Force Station Space Launch Complex 41, Monday, Nov. 18, 2013, Cape Canaveral, Florida. NASA’s Mars-bound spacecraft, the Mars Atmosphere and Volatile EvolutioN, or MAVEN, is the first spacecraft devoted to exploring and understanding the Martian upper atmosphere. Photo Credit: (NASA/Bill Ingalls)
NASA's MAVEN spacecraft, inside a payload fairing, is hoisted to the top of a United Launch Alliance Atlas V rocket at the Vertical Integration Facility at Cape Canaveral Air Force Station's Space Launch Complex 41 on Nov. 8, 2013.
Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, engineers and technicians perform a spin test of the Mars Atmosphere and Volatile Evolution, or MAVEN, spacecraft. The operation is designed to verify that MAVEN is properly balanced as it spins during the initial mission activities.
Lockheed Martin/NASA

The organizers of the burn-your-boats expedition is a group called Mars One, headed by Bas Lansdorp, a Dutch entrepreneur and mechanical engineer. As Lansdorp sees things, habitat modules and other hardware would be sent to the Red Planet in advance of any astronauts, who would arrive in four-person crews at two-year intervals—when Mars and Earth make their closest approach, which holds the outbound journey to a brief (relatively speaking) eight months. The crew-selection process would be part of (yes) a sponsored reality show, which would ensure a steady flow of cash—and since the settlers would grow their own food onsite, there would be little to carry along with them. All that would keep the overall cost of the project to a shoestring (relative again) $6 billion.

So what could go wrong? That’s what the four MIT students set out to find out, and the short answer is: a lot.

The biggest problem, the students discovered, concerns that business of breathable air. One of the things that’s always made Earth such a niftily habitable place to live is that what animals exhale, plants inhale, and vice versa. Since the Martian astronauts and their crops would be living and respiring in the same enclosed habitats, a perfect closed loop should result in which we provide them all the carbon dioxide they need and they return the favor with oxygen.

Only it doesn’t, the MIT students found. The problem begins with the lettuce and the wheat, both of which are considered essential crops. As lettuce matures, peaking about 30 days after planting, it pushes the 02 level past what’s known as .3 molar fractions, which, whatever it means, doesn’t sound terribly dangerous — except it’s also the point at which the threat of fire rises to unacceptable levels. That risk begins to tail off as the crop is harvested and eaten, but it explodes upward again, far past the .3 level, at 68 days when the far gassier wheat matures.

A simple answer would be simply to vent a little of the excess O2 out, which actually could work, except the venting apparatus is not able to distinguish one gas from another. That means that nitrogen—which would, as on Earth, make up the majority of the astronauts’ atmosphere—would be lost too. That, in turn, would lower the internal pressure to unsurvivable levels—and that’s what gets your 68-day doomsday clock ticking.

There is some question too about whether the hardware that Mars One is counting on would even be ready for prime time. The mission planners make much of the fact that a lot of what they’re planning to use on Mars has already been proven aboard the International Space Station (ISS), which is true enough. But that hardware is built to operate in microgravity—effectively zero g—while Mars’s gravity is nearly 40% of Earth’s. So a mechanical component that would weigh 10 lbs. on Earth can be designed with little concern about certain kinds of wear since it would weigh 0 lbs. in orbit. But on Mars it would be 4 lbs., and that can make all the difference.

“The introduction of a partial gravity environment,” the grad students write, “will inevitably lead to different [environmental] technologies.”

For that and other reasons, technical breakdowns are a certainty. The need for replacement parts is factored into Mars One’s plans, but probably not in the way that they should be. According to the MIT team, over the course of 130 months, spare parts alone would gobble up 62% of the payload space on resupply missions, making it harder to get such essentials as seeds, clothes and medicine—to say nothing of other crew members—launched on schedule.

Then too, there is the question of habitat crowding. It’s easy to keep people alive if you feed them, say, a single calorie-dense food product every day. But energy bars forever means quickly losing your marbles, which is why Mars One plans for a variety of crops—just not a big enough variety. “Given that the crop selection will significantly influence the wellbeing of the crew for the entirety of their lives after reaching Mars,” the authors write, “we opt for crop variety over minimizing growth area.”

Then there is the question of cost—there’s not a space program in history whose initial price tag wasn’t badly lowballed—to say nothing of maintaining that biennial launch schedule, to say nothing of the cabin fever that could soon enough set the settlers at one another’s throats. Jamestown may not have been a picnic, but when things got to be too much you could always go for a walk by the creek.

No creeks here, nor much of anything else either. Human beings may indeed colonize Mars one day, and it’s a very worthy goal. But as with any other kind of travel, the best part of going is often coming home.

View Article Here Read More

NASA Brings Scientists & Theologians Together To Prepare World For Extraterrestrial Contact

Arjun Walia, Collective-EvolutionA couple of months ago top U.S. astronomers gathered in front of congress to let them know that extraterrestrial life exists without question. Their main argument was the size of the universe, emphasizing that there are trillions of stars out there, with one in every five most likely harboring an Earth-like planet. It’s also important to keep in mind that planets do not have to be “Earth-like” in order to harbor life. You can read mor [...]

View Article Here Read More

India’s Mars mission: A Picture that Spoke 1,000 words

When the crowded command control room of India's Mars mission exploded into applause after it successfully put a satellite into orbit around the Red Planet, photographer Manjunath Kiran of the AFP news agency clicked this remarkable image of scienti...

View Article Here Read More

First Russian woman lifts off to International Space Station

Elena Serova of Russia, a member of the International Space Station crew, gestures as she boards the Soyuz TMA-14M spacecraft at t...

View Article Here Read More

Illuminating the Seven Tri-Unities

{mainvote}

Channeler:  Julie Miller

Melchizedek’s Weekly Message ~ March 18-25, 2012 Channeled by: Julie Miller March 18, 2012   Dear children it is a great pleasure to be speaking through our vessel once again. ...

View Article Here Read More

Overunity Details of J.I.M.S. Motor Reluctantly Revealed

{mainvote}

BB Motor Corporation has reluctantly answered some questions about an exotic motor they have built that is claimed to be able to run without fuel and produce no pollution. A breakthrough energy technology may be about to emerge from t...

View Article Here Read More

Defkalion Announces 5kW Hyperion LENR Product Specs

{mainvote}

Today, Defkalion, the Greek break-way from Andrea Rossi, announced the pre-industrial prototype specs for their Hyperion, which is described as a 5 kW heat-producing, chemically-assisted, low-energy nuclear reactor. They are negotiati...

View Article Here Read More

UFOTV Presents…: Ancient Aliens In Peru and Bolivia – Full Feature

{mainvote}

Join Researcher David Hatcher Childress and British Engineer Christopher Dunn as they journey to Cuzco in the Andes Mountains to examine evidence for the possible use of advanced rock-machining techniques. Going to ancient cities and ...

View Article Here Read More

You Are the Universe – Not a Child of the Universe

{mainvote}

8 November 2011

Welcome to Brenda's Blog

Channeled by Brenda Hoffman for www.LifeTapestryCreations.com

Special Event: Brenda will be the featured guest on Mike Quinsey’s “Connecting the Light” radio s...

View Article Here Read More
Older posts Newer posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑