Tag: emergence (page 1 of 3)

The Blue and the Event

Now that the circus of the US elections is over, we can finally focus again on real intel.The emergence of the Goddess DouMu to the surface of the planet a few years ago is the first sign of the return of the Light forces after their 26,000 years long ...

View Article Here Read More

The Science of the Dogon

Excerpt from The Science of The Dogon, by Laird ScrantonThe information presented in the preceding chapters demonstrates a direct relationship between the symbols and themes of the Dogon creation story and known scientific facts relating to the formation of the universe, matter, and biological reproduction. This relationship is a broad and specific one that is couched in clear definitions and supported by priestly interpretations and cosmological drawings. The parallels between Dogon myth [...]

View Article Here Read More

The Class-Domination Theory of Power

by G. William DomhoffNOTE: WhoRulesAmerica.net is largely based on my book,Who Rules America?, first published in 1967 and now in its7th edition. This on-line document is presented as a summary of some of the main ideas in that book.Who has predominant power in the United States? The short answer, from 1776 to the present, is: Those who have the money -- or more specifically, who own income-producing land and businesses -- have the power. George Washington was one of the biggest landowner [...]

View Article Here Read More

History Repeating? Study shows Ancient cities were bigger and denser, just like modern cities




Excerpt from  thenextdigit.com

Recently, a new research has been done, which found that the ancient cities were similar to the current modern-day cities in terms of size as well as the density of those settlements. In the research paper, the researcher explains that modern cities with large amount of populations as well as density, are similar to the characteristics of ancient cities. The research claims that the character of the inhabitants of ancient cities is similar to those of inhabitants of modern cities.

 The study was done by the researchers at Santa Fe Institute and at the University of Colorado Boulder. The main objective of the researchers is to find the functionality of the settlements and they started to find out whether current cities and ancient cities are similar in nature.

Scott Ortman, Researcher at Department of Anthropology, University of Colorado Boulder says,
“Our findings indicate the fundamental processes behind the emergence of scaling in modern cities have structured human settlement organization throughout human history, and that contemporary urban systems are best-conceived as lying on a continuum with the smaller-scale settlement systems known from historical and archaeological research.”
The researcher grouped together and analyzes the structures as well as dimensions of both cities and estimated the way of construction of monuments, housing styles, the amount of people stayed in a region and so on. They found the place or region where the density was high, the productivity was more.

Ortman also said that the results were amazing and unbelievable for them and added that the modern world is radically different from the ancient world with its capitalism, democracy, industrialization and so on. They also noticed that, once the population of a particular area grew, then the productivity of that same place rose high. Even a few patterns that are used in the ancient human societies were same as that we are following in our modern urban system.
“It was amazing and unbelievable,” Ortman said. “We’ve been raised on a steady diet, telling us that, thanks to capitalism, industrialization, and democracy, the modern world is radically different from worlds of the past. What we found here is that the fundamental drivers of robust socioeconomic patterns in modern cities precede all that.”

View Article Here Read More

Ancient rocks show life could have flourished on Earth 3.2 billion years ago


photo of red rocks and blue sky
The oldest samples are sedimentary rocks that formed 3.2 billion years ago in
northwestern Australia. They contain chemical evidence for nitrogen
fixation by microbes.R. Buick / UW



Excerpt from
washington.edu

A spark from a lightning bolt, interstellar dust, or a subsea volcano could have triggered the very first life on Earth.
But what happened next? Life can exist without oxygen, but without plentiful nitrogen to build genes – essential to viruses, bacteria and all other organisms – life on the early Earth would have been scarce.

The ability to use atmospheric nitrogen to support more widespread life was thought to have appeared roughly 2 billion years ago. Now research from the University of Washington looking at some of the planet’s oldest rocks finds evidence that 3.2 billion years ago, life was already pulling nitrogen out of the air and converting it into a form that could support larger communities.

“People always had the idea that the really ancient biosphere was just tenuously clinging on to this inhospitable planet, and it wasn’t until the emergence of nitrogen fixation that suddenly the biosphere become large and robust and diverse,” said co-author Roger Buick, a UW professor of Earth and space sciences. “Our work shows that there was no nitrogen crisis on the early Earth, and therefore it could have supported a fairly large and diverse biosphere.”
The results were published Feb. 16 in Nature.

The authors analyzed 52 samples ranging in age from 2.75 to 3.2 billion years old, collected in South Africa and northwestern Australia. These are some of the oldest and best-preserved rocks on the planet. The rocks were formed from sediment deposited on continental margins, so are free of chemical irregularities that would occur near a subsea volcano. They also formed before the atmosphere gained oxygen, roughly 2.3 to 2.4 billion years ago, and so preserve chemical clues that have disappeared in modern rocks.

Even the oldest samples, 3.2 billion years old – three-quarters of the way back to the birth of the planet – showed chemical evidence that life was pulling nitrogen out of the air. The ratio of heavier to lighter nitrogen atoms fits the pattern of nitrogen-fixing enzymes contained in single-celled organisms, and does not match any chemical reactions that occur in the absence of life.

“Imagining that this really complicated process is so old, and has operated in the same way for 3.2 billion years, I think is fascinating,” said lead author Eva Stüeken, who did the work as part of her UW doctoral research. “It suggests that these really complicated enzymes apparently formed really early, so maybe it’s not so difficult for these enzymes to evolve.”

Genetic analysis of nitrogen-fixing enzymes have placed their origin at between 1.5 and 2.2 billion years ago.

“This is hard evidence that pushes it back a further billion years,” Buick said.

Fixing nitrogen means breaking a tenacious triple bond that holds nitrogen atoms in pairs in the atmosphere and joining a single nitrogen to a molecule that is easier for living things to use. The chemical signature of the rocks suggests that nitrogen was being broken by an enzyme based on molybdenum, the most common of the three types of nitrogen-fixing enzymes that exist now. 

Molybdenum is now abundant because oxygen reacts with rocks to wash it into the ocean, but its source on the ancient Earth – before the atmosphere contained oxygen to weather rocks – is more mysterious.

The authors hypothesize that this may be further evidence that some early life may have existed in single-celled layers on land, exhaling small amounts of oxygen that reacted with the rock to release molybdenum to the water.

“We’ll never find any direct evidence of land scum one cell thick, but this might be giving us indirect evidence that the land was inhabited,” Buick said. “Microbes could have crawled out of the ocean and lived in a slime layer on the rocks on land, even before 3.2 billion years ago.”

Future work will look at what else could have limited the growth of life on the early Earth. Stüeken has begun a UW postdoctoral position funded by NASA to look at trace metals such as zinc, copper and cobalt to see if one of them controlled the growth of ancient life.

Other co-authors are Bradley Guy at the University of Johannesburg in South Africa, who provided some samples from gold mines, and UW graduate student Matthew Koehler. The research was funded by NASA, the UW’s Virtual Planetary Laboratory, the Geological Society of America and the Agouron Institute.

View Article Here Read More

Aliens Even More Likely Now To Be Out There ~ Average star has two potentially Earth-like worlds



Concept art depicting the lights of an ET civilisation on an exoplanet. Credit: David A Aguilar (CfA)

Excerpt from theregister.co.uk



Boffins in Australia have applied a hundreds-of-years-old astronomical rule to data from the Kepler planet-hunting space telescope. They've come to the conclusion that the average star in our galaxy has not one but two Earth-size planets in its "goldilocks" zone where liquid water - and thus, life along Earthly lines - could exist.

“The ingredients for life are plentiful, and we now know that habitable environments are plentiful,” says Professor Charley Lineweaver, a down-under astrophysicist.

Lineweaver and PhD student Tim Bovaird worked this out by reviewing the data on exoplanets discovered by the famed Kepler planet-hunter space scope. Kepler naturally tends to find exoplanets which orbit close to their parent suns, as it detects them by the changes in light they make by passing in front of the star. As a result, most Kepler exoplanets are too hot for liquid water to be present on their surfaces, which makes them comparatively boring.
Good planets in the "goldilocks" zone which is neither too hot nor too cold are much harder to detect with Kepler, which is a shame as these are the planets which might be home to alien life - or alternatively, home one day to transplanted Earth life including human colonists, once we've cracked that pesky interstellar travel problem.

However there exists a thing called the Titius-Bode relation - aka Bode's Law - which can be used, once you know where some inner planets are, to predict where ones further out will be found.

Assuming Bode's Law works for other suns as it does here, and inputting the positions of known inner exoplanets found by Kepler, Lineweaver and Bovaird found that on average a star in our galaxy has two planets in its potentially-habitable zone.

That doesn't mean there are habitable or inhabited planets at every star, of course. Even here in our solar system, apparently lifeless (and not very habitable) Mars is in the habitable zone.

Even so, there are an awful lot of planets in the galaxy, so some at least ought to have life on them, and in some cases this life ought to have achieved a detectable civilisation. Prof Lineweaver admits that the total lack of any sign of this is a bit of a puzzler.

"The universe is not teeming with aliens with human-like intelligence that can build radio telescopes and space ships," admits the prof. "Otherwise we would have seen or heard from them.
“It could be that there is some other bottleneck for the emergence of life that we haven’t worked out yet. Or intelligent civilisations evolve, but then self-destruct.”

Of course, humans - some approximations of which have been around for some hundreds of thousands of years, perhaps - have only had civilisation of any kind in any location for a few thousand of those years. Our civilisation has only risen to levels where it could be detectable across interstellar distances very recently.

There may be many planets out there inhabited by intelligent aliens who either have no civilisation at all, or only primitive civilisation. There may be quite a few who have reached or passed the stage of emitting noticeable amounts of radio or other telltale signs, but those emissions either will not reach us for hundreds of thousands of years - or went past long ago.

It would seem reasonable to suspect that there are multitudes of worlds out there where life exists in plenty but has never become intelligent, as Earth life was for millions of years before early humans began using tools really quite recently.

But the numbers are still such that the apparent absence of star-travelling aliens could make you worry about the viability of technological civilisation if, like Professor Lineweaver, you learn your astrophysics out of textbooks and lectures (and publish your research, as we see here, in hefty boffinry journals like the Monthly Notices of the Royal Astronomical Society).

But if movies, speculofictive novels and TV have taught us anything here on the Reg alien life desk, it is that in fact the galaxy is swarming with star-travelling aliens (and/or humans taken secretly from planet Earth for mysterious purposes in the past, or perhaps humans from somewhere else etc). The reason we don't know about them is that they don't want us to.

View Article Here Read More

New data that fundamental physics constants underlie life-enabling universe

Excerpt from spacedaily.com For nearly half a century, theoretical physicists have made a series of discoveries that certain constants in fundamental physics seem extraordinarily fine-tuned to allow for the emergence of a life-enabling universe.Thi...

View Article Here Read More

Is this the origins of the Anunnaki story? ~ Neanderthals & humans first mated 50,000 years ago, DNA reveals


Early European
Universal human: This reconstruction is of a different modern human from Romania 43,000 years ago. But it gives some clues to what the Siberian man may have looked like. This population was not long out of Africa and genetically midway between Europeans and Asians
Excerpt from bbc.com
The genome sequence from a thigh bone found in Siberia shows the first episode of mixing occurred between 50,000 and 60,000 years ago.

The male hunter is one of the earliest modern humans discovered in Eurasia.

The study in Nature journal also supports the finding that our species emerged from Africa some 60,000 years ago, before spreading around the world.

The analysis raises the possibility that the human line first emerged millions of years earlier than current estimates.

"We seem to have caught evolution red handed”
Prof Svante Paabo Max-Plack Institute
The work of Prof Svante Paabo, from the Max Planck Institute in Leipzig, Germany, is rewriting the story of humanity. Prof Paabo and his colleagues have pioneered methods to extract DNA from ancient human remains and read its genetic code. From this sequence, Prof Paabo has been able to decipher an increasingly detailed story of modern humans as they spread across the globe.

"The amazing thing is that we have a good genome of a 45,000 year old person who was close to the ancestor of all present-day humans outside Africa," Prof Paabo told BBC News. 

Prof Paabo has analysed DNA from part of a leg bone of a man that lived in Western Siberia around 45,000 years ago. This is a key moment at the cross roads of the world, when modern humans were on the cusp of an expansion into Europe and Asia.


Thigh bone

Prof Paabo Svante has unlocked the secrets contained in this femur from one of the earliest humans discovered out of Africa.
The key finding was that the man had large, unshuffled chunks of DNA from a now extinct species of human, Neanderthals who evolved outside of Africa. 

"Our analysis shows that modern humans had already interbred with Neanderthals then and we can determine when that first happened much more precisely than we could before." 

Prof Paabo and his team published research in 2010 which showed that all non-African humans today have Neanderthal DNA. But that genetic material has been broken into much smaller chunks over the generations. 

By extrapolating the size of DNA chunks backwards, Prof Paabo and his colleagues were able to calculate when the first interbreeding with Neanderthals occurred. His study shows that it was between 50,000 and 60,000 years ago.

According to Prof Chris Stringer of the Natural History Museum in London, this early interbreeding might indicate when the ancestors of people living outside of Africa today made their first steps out of the continent in which our species evolved more than 150,000 years ago.

Prof Stringer was among those who believed that the first exit by modern humans from Africa that give rise to people outside of Africa today might have happened earlier, possibly 100,000 years ago. The evidence from Prof Paabo's research is persuading him that it was now much later.


River Irtysh

Crossroads for humanity: the river Irtysh in Western Siberia where the bone was found. 


Prof Paabo also compared the DNA of the man living 45,000 years ago with those living today. He found that the man was genetically midway between Europeans and Asians - indicating he lived close to the time before our species separated into different racial groups.

Prof Paabo was also able to estimate the rate at which human DNA has changed or mutated over the millennia. He found that it was slower than the rate suggested by fossil evidence and similar to what has been observed in families. 

"We have caught evolution red handed!" Prof Paabo said gleefully.
This raises the possibility that the very first species of the human line separated from apes 10 or 11 million years ago - rather than the five or six million years ago that genetic evidence had previously suggested. 

But he stressed in his research paper that much more analysis was needed before re-dating the emergence of the human line.

"We caution that (mutation) rates may have changed over time and may differ between human populations," he said.

View Article Here Read More

Mysteries of the Early Human Ancestors #1 ~ Why did we grow large brains?

Human brains are about three times as large as those of our early australopithecines ancestors that lived 4 million to 2 million years ago, and for years, scientists have wondered how our brains got so big. A new study suggests social competition could be behind the increase in brain size. Credit NIH, NADA

livescience.com

There are many ways to try to explain why human brains today are so big compared to those of early humans, but the major cause may be social competition, new research suggests. 

But with several competing ideas, the issue remains a matter of debate. 

Compared to almost all other animals, human brains are larger as a percentage of body weight. And since the emergence of the first species in our Homo genus (Homo habilis) about 2 million years ago, the human brain has doubled in size. And when compared to earlier ancestors, such as australopithecines that lived 4 million to 2 million years ago, our brains are three times as large. For years, scientists have wondered what could account for this increase.

The three major hypotheses have focused on climate change, the demands of ecology, and social competition. A new statistical analysis of data on 175 fossil skulls supports the latter hypothesis. 

Behind the hypotheses

The climate idea proposes that dealing with unpredictable weather and major climate shifts may have increased the ability of our ancestors to think ahead and prepare for these environmental changes, which in turn led to a larger, more cognitively adept brain.
The ecology hypothesis states that, as our ancestors migrated away from the equator, they encountered environmental changes, such as less food and other resources. "So you have to be a little bit more clever to figure it out," said David Geary, a professor from the University of Missouri. Also, less parasite exposure could have played a role in the makings of a bigger brain. When your body combats parasites, it cranks up its immune system, which uses up calories that could have gone to boost brain development. Since there are fewer parasites farther away from the equator, migrating north or south could have meant that our predecessors had more opportunity to grow a larger brain because their bodies were not fighting off as many pathogens.


Finally, other researchers think that social competition for scarce resources influenced brain size. As populations grow, more people are contesting for the same number of resources, the thinking goes. Those with a higher social status, who are "a little bit smarter than other folks" will have more access to food and other goods, and their offspring will have a higher chance of survival, Geary said.


Those who are not as socially adept will die off, pushing up the average social "fitness" of the group. "It's that type of process, that competition within a species, for status, for control of resources, that cycles over and over again through multiple generations, that is a process that could easily explain a very, very rapid increase in brain size," Geary said.

Weighing the options

To examine which hypothesis is more likely, Geary and graduate student Drew Bailey analyzed data from 175 skull fossils — from humans and our ancestors — that date back to sometime between 10,000 ago and 2 million years ago.


The team looked at multiple factors, including how old the fossils were, where they were found, what the temperature was and how much the temperature varied at the time the Homo species lived, and the level of parasites in the area. They also looked at the population density of the region in order to measure social competition, "assuming that the more fossils you find in a particular area at a particular time, the more likely the population was larger," Geary said.


They then used a statistical analysis to test all of the variables at once to see how well they predicted brain size. "By far the best predictor was population density," Geary said. "And in fact, it seemed that there was very little change in brain size across our sample of fossil skulls until we hit a certain population size. Once that population density was hit, there was a very quick increase in brain size," he said.


Looking at all the variables together allowed the researchers to "separate out which variables are really important and which variables may be correlated for other reasons," added Geary. While the climate variables were still significant, their importance was much lower than that of population density, he said. The results were published in the March 2009 issue of the journal Human Nature.


Questions linger

The social competition hypothesis "sounds good," said Ralph Holloway, an anthropologist at Columbia University, who studies human brain evolution. But, he adds: "How would you ever go about really testing that with hard data?" 

He points out that the sparse cranium data "doesn’t tell you anything about the differences in populations for Homo erectus, or the differences in populations of Neanderthals." For example, the number of Homo erectus crania that have been found in Africa, Asia, Indonesia and parts of Europe is fewer than 25, and represent the population over hundreds of thousands of years, he said. 

"You can't even know the variation within a group let alone be certain of differences between groups," Holloway said. Larger skulls would be considered successful, but "how would you be able to show that these were in competition?" 

However, Holloway is supportive of the research. "I think these are great ideas that really should be pursued a little bit more," he said. 

Alternative hypotheses

Holloway has another hypothesis for how our brains got so big. He thinks that perhaps increased gestation time in the womb or increased dependency time of children on adults could have a played role. The longer gestation or dependency time "would have required more social cooperation and cognitive sophistication on the part of the parents," he said. Males and females would have needed to differentiate their social roles in a complementary way to help nurture the child. The higher level of cognition needed to perform these tasks could have led to an increase in brain size.


Still other hypotheses look at diet as a factor. Some researchers think that diets high in fish and shellfish could have provided our ancestors with the proper nutrients they needed to grow a big brain.
And another idea is that a decreased rate of cell death may have allowed more brain neurons to be synthesized, leading to bigger noggins. 

Ultimately, no theory can be absolutely proven, and the scant fossil record makes it hard to test hypotheses. "If you calculate a generation as, let's say, 20 years, and you know that any group has to have a minimal breeding size, then the number of fossils that we have that demonstrates hominid evolution is something like 0.000001 percent," Holloway said. "So frankly, I mean, all hypotheses look good."

View Article Here Read More

Am I Comfortable Exploring the Unknown Within Me?

{mainvote}

Master Hilarion on Am I Comfortable Exploring the Unknown Within Me? 29 November, 2011

Advisory from channel: Master Hilarion seems to be wanting to speak this in a first person of the reader, so in much of the transmission, as ...

View Article Here Read More

Leaders of a New Humanity: the emergence

lauren gorgo “We are so delighted to be a part of something so magnificent, that which you call ascension, and what we call “homecoming”.  We say home-coming because each of you who is leading the planet to her destiny carries the activated vib...

View Article Here Read More

Horoscope for the Week of September 9, 2011

by Michael OConnor Tip of the Week: This is “Dawning of the Age of Aquarius” and humanity is experiencing a mass awakening. Uranus, the ruler of Aquarius, symbolizes awakening and illumination. The dawning light is revealing many ‘signs of our ti...

View Article Here Read More

Wake up Call: Hatonn July 16, 11

{mainvote}

17 July 2011 

Channeler:  Nancy Tate

Wake up Call: Hatonn July 16, 11

I am here today to share something with you, something that is plaguing many of you on this day. I am Hatonn and I come to visit you once more...

View Article Here Read More
Older posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑