Tag: emerge (page 1 of 5)

Mike Quinsey ~ Channeling his Higher Self ~ 23 March 2018

http://www.treeofthegoldenlight.com/
http://www.galacticchannelings.com/english/mike23-03-18.html

Mike Quinsey ~ Channeling his Higher Self ~ 23 March 2018

For some time now much has been happening behind the scenes, and if anything

View Article Here Read More

An Encounter with Our Helpers

By Mercedes Kirkel   This past week I went on a hike with my good friend, Susan. We chose a trail by the San Francisco Bay that Susan used to frequent but hadn’t been on in a number of years. The weather was beautiful, the wildflowers bursting forth, birds gracing our path, and all seemed […]

View Article Here Read More

Cintamani Update

  Since I have released intel about the Cintamani stone, many pieces of this sacred stone have found their way into the hands of dedicated Lightworkers and Lightwarriors and will serve as transmitters of energies of compression breakthrough at the...

View Article Here Read More

How the Government Suppresses Free Energy Technologies

Buck Rogers, Staff WriterHave you ever wondered what the world would be like if better and cleaner energy sources were widely available and affordable to all of earth’s people? If so, you’re not alone, as the quest for a better energy existence has been the focus of many ingenious inventors, scientists, experimenters and even corporate and government scientists for generations.We know it’s possible, but for some reason, though, society just can’t seem to get b [...]

View Article Here Read More

Overprescription of Antipsychotic Drugs Causing Public Health Crisis

Julie Fidler, Natural SocietySometimes with life-threatening side effects…Antipsychotic drugs are being prescribed to an ever-increasing number of adolescents and young adults, and many of them are being prescribed for off-label purposes. But these over-prescriptions are putting youngsters at risk, though we’re slow as a society to change our med-heavy ways.These powerful medications are being prescribed to young people with attention-deficit and hyperactivity [...]

View Article Here Read More

Antidepressants May be Worsening Depression, Not Treating It

Julie Fidler, Natural SocietyCould it all be based on a myth?For years we’ve been told that depression is caused by low serotonin levels in the brain.Now, a leading professor of psychiatry is warning that belief is little more than a dangerous miscommunication, saying the marketing of selective serotonin reuptake inhibitor (SSRI) drugs is “based on a myth.”SSRI use began to skyrocket in the early 1990’s. The drugs were seen as a safer alternative to [...]

View Article Here Read More

6 Ways to Overcome a Soul-Crushing Life Challenge




Excerpt from huffingtonpost.com

It was never in your life plan, certainly never predicted in your high school yearbook.
And yet, here you are. You've gone through a soul-sucking life experience and are suffering from the collateral consequences. Uncertainty, fear and disbelief rule the day. You keep waiting to wake up and find out this was all a bad dream.
The problem is that wishing, wanting and waiting don't help. Whether you're still in the midst of the storm or idling in the aftermath, the truth is that you have to reach down and make the decision that although you may have had no control over what happened to you, you do have control over how you respond and move forward. These six tips will help start you on that journey:
1. Don't Compare Your Blooper Reel to Other's Highlight Reel
At times it may seem like the grass is greener on the other side of the fence. Social media exacerbates this perception because people tend to show only their green patch of lawn and not their backyard full of weeds!

Wouldn't it be refreshing to see someone's perfect vacation pictures captioned: "Don't know how we're really going to pay for this; We're up to our ears in debt! The kids got carsick and puked in the rental car, and Jack and I haven't had sex for weeks! Wish you were here!"
The grass isn't always greener. Everyone has something in life they wish they could undo, redo or erase. They just don't post it on Facebook.
2. Realize That Sometimes You Have No Control Over What Happens to You
Like the saying goes, life is what happens to you when you are making other plans. I truly believe that things happen for you rather than to you to nudge you into growth. When something unexpected happens, ask yourself "What's the lesson here?"

3. Surrender to Your Situation
Surrendering doesn't mean giving in; it simply means you stop fighting the fact that the situation happened. Accept the fact that it occurred, that it sucks, and that yes, it probably was unfair and undeserved.

When you continually try to fight against a situation, it's like trying to swim against a rip current. You can fight it and end up exhausted and pulled out to sea, or you can accept that it is done, swim parallel to it and overcome it. You cannot change what has already occurred but you can change how you respond to it. This is the tipping point to taking your power back.
4. Understand That Your Coping Mechanisms May Be Holding You Hostage
It is natural to feel disbelief, anger and sadness, and to want to blame others for what you are going through. These coping mechanisms are designed to help you deal with the situation at hand. They are also a defense mechanism, a way to push back on the reality of the situation.

The problem is, when you get stuck defending, denying, and blaming, you form an endless loop of negative thoughts that won't stop spinning in your head. The part of your brain that is controlling the loop is your ego. When you learn to harness your ego, you can transform the way you think and move past these self-destructive thoughts.
5. Harness Your Ego
Your ego is part of your consciousness, and it competes with your higher self, or spirit, for control of your thoughts. Your ego is fear-based and your higher self is love-based. The two cannot coexist because the higher self simply does not recognize fear. Think of the ego as the darkness and the higher self as the light switch; once the light goes on darkness cannot exist.

The ego thrives on fear and separation in order to control your thoughts. It causes you to think you need to be better because you're not good enough or are lacking in some way. The egoic brain creates this fear of inferiority and you react by putting others down as a way to raise your sense of self-worth up.
You can recognize your ego at work when you are critical or judgmental of others, when you take on the role of victim, or when you blame others rather than looking inward. When you feel self-important, when you feel the need to be right, and when anger, jealousy, and self-importance take center stage, that's your ego, and it isn't helping you. It creates a false sense of self.
Once you are aware that your ego is talking, you have begun the process of winning the mind chatter war in your head. Your awareness helps you realize that you no longer have to react to the fear it is creating. Your thoughts are not you but are of the ego. Remember that your ego and your higher self cannot co-exist; When you recognize the ego it has to take a back seat to your higher self. You then can move above these thoughts and shift your perspective from negative thoughts to ones that serve you positively.
6. Create Calm and Gratitude
The ego loves for you to focus on your past, on what you lost. What if you shift the way you look at your situation and focus on what you gained as a result?

What did you learn as a result of the trial? Are you more compassionate, less judgmental? Is your house calmer or cleaner? Did you start taking better care of yourself emotionally or physically? Are you finally putting yourself first?
Focusing on what you are grateful for instead of what you lost is a mindset that creates a calmer, happier you. And that is something to be grateful for!
Tired of feeling like you'll never be happy again? Mary Holloway empowers women to reach down and find their inner warrior. Mary is a sought after speaker, resilience coach, and most importantly, a survivor of soul crushing life experiences. She is the founder of Resilience Café and the creator of the Boom Bounce Wow Resilience Method. Mary believes that every woman has an incredible warrior within her that can help her take back her life and emerge better, stronger, happier, and surprisingly thankful for the experience. She knows that women can choose not to be defined by their situation but rather by how they respond to it.
Follow Mary at ResilienceCafe.com...

View Article Here Read More

UV light reveals hidden colors in ancient shells



UV light revealed the way ancient shells looked millions of years ago.


Excerpt from perfscience.com


Using ultra-violet (UV) light, scientists have revealed astonishing colors of about 30 ancient seashells. According to PLOS, the seashells, which are estimated to be between 6.6 and 4.8 million years old, were looking white in regular white light. The true colors of the shells appeared in UV light.




According to the researchers, “The biology of modern Conidae (cone snails)-which includes the hyperdiverse genus Conus-has been intensively studied, but the fossil record of the clade remains poorly understood, particularly within an evolutionary framework”.

In the presence of UV light, the organic matter remaining in the shells fluoresces. With this, the shells appeared similar to what they looked when living creatures used to live in them. It is yet unclear which particular compounds in the shells are releasing the light when exposed to UV rays. With the help of the technique, the researchers were able to document the coloration patterns of 28 different cone shell species found in the Dominican Republic. Out of these 28 shells, 13 were found to be the species, which were not known earlier. And this could help know about the relationship between modern species.

San Jose State University geologist Jonathan Hendricks exposed over 350 fossil specimens to ultraviolet light. 

The coloration patterns of the ancient species were compared with existing animals and doing this, researchers found many displayed similarities. According to this finding, some modern species emerge from lineages. These lineages began in the Caribbean millions of years ago.

The newly distinguished species, Conus carlottae, was also among the newly distinguished species and it has a polka-dotted shell, which is not found in modern cone snails today. Researchers are now using UV light to emit color from porcelain white seashell fossils.

View Article Here Read More

Scientists: Enceladus may have warm water ocean with ingredients for life


Enceladus ocean
This artist's impression of the interior of Saturn's moon Enceladus shows that interactions between hot water and rock occur at the floor of the subsurface ocean -- the type of environment that might be friendly to life, scientists say. (NASA/JPL-Caltech)



Excerpt from latimes.com

Scientists say they’ve discovered evidence of a watery ocean with warm spots hiding beneath the surface of Saturn’s icy moon Enceladus. The findings, described in the journal Nature, are the first signs of hydrothermal activity on another world outside of Earth – and raise the chances that Enceladus has the potential to host microbial life.

Scientists have wondered about what lies within Enceladus at least since NASA’s Cassini spacecraft caught the moon spewing salty water vapor out from cracks in its frozen surface. Last year, a study of its gravitational field hinted at a 10-kilometer-thick regional ocean around the south pole lying under an ice crust some 30 to 40 kilometers deep.

Another hint also emerged about a decade ago, when Cassini discovered tiny dust particles escaping Saturn’s system that were nanometer-sized and rich in silicon.

“It’s a peculiar thing to find particles enriched with silicon,” said lead author Hsiang-Wen Hsu, a planetary scientist at the University of Colorado, Boulder. In Saturn’s moons and among its rings, water ice dominates, so these odd particles clearly stood out.

The scientists traced these particles’ origin to Saturn’s E-ring, which lies between the orbits of the moons Mimas and Titan and whose icy particles are known to come from Enceladus. So Hsu and colleagues studied the grains to understand what was going on inside the gas giant’s frigid satellite.   
Rather than coming in a range of sizes, these particles were all uniformly tiny – just a few nanometers across. Studying the spectra of these grains, the scientists found that they were made of silicon dioxide, or silica. That’s not common in space, but it’s easily found on Earth because it’s a product of water interacting with rock. 

Knowing how silica interacts in given conditions such as temperature, salinity and alkalinity, the scientists could work backward to determine what kind of environment creates these unusual particles.

A scientist could do the same thing with a cup of warm coffee, Hsu said.

“You put in the sugar and as the coffee gets cold, if you know the relation of the solubility of sugar as a function of temperature, you will know how hot your coffee was,” Hsu said. “And applying this to Enceladus’s ocean, we can derive a minimum [temperature] required to form these particles.”

The scientists then ran experiments in the lab to determine how such silica particles came to be. With the particles’ particular makeup and size distribution, they could only have formed under very specific circumstances, the study authors found, determining that the silica particles must have formed in water that had less than 4% salinity and that was slightly alkaline (with a pH of about 8.5 to 10.5) and at temperatures of at least 90 degrees Celsius (roughly 190 degrees Fahrenheit).

The heat was likely being generated in part by tidal forces as Saturn’s gravity kneads its icy moon. (The tidal forces are also probably what open the cracks in its surface that vent the water vapor into space.)
Somewhere inside the icy body, there was hydrothermal activity – salty warm water interacting with rocks. It’s the kind of environment that, on Earth, is very friendly to life.  

“It’s kind of obvious, the connection between hydrothermal interactions and finding life,” Hsu said. “These hydrothermal activities will provide the basic activities to sustain life: the water, the energy source and of course the nutrients that water can leach from the rocks.”

Enceladus, Hsu said, is now likely the “second-top object for astrobiology interest” – the first being Jupiter’s icy moon and fellow water-world, Europa.
This activity is in all likelihood going on right now, Hsu said – over time, these tiny grains should glom together into larger and larger particles, and because they haven’t yet, they must have been recently expelled from Enceladus, within the last few months or few years at most.

Gabriel Tobie of the University of Nantes in France, who was not involved in the research, compared the conditions that created these silica particles to a hydrothermal field in the Atlantic Ocean known as Lost City.

“Because it is relatively cold, Lost City has been posited as a potential analogue of hydrothermal systems in active icy moons. The current findings confirm this,” Tobie wrote in a commentary on the paper. “What is more, alkaline hydrothermal vents might have been the birthplace of the first living organisms on the early Earth, and so the discovery of similar environments on Enceladus opens fresh perspectives on the search for life elsewhere in the Solar System.”

However, Hsu pointed out, it’s not enough to have the right conditions for life – they have to have been around for long enough that life would have a fighting chance to emerge.

“The other factor that is also very important is the time.… For Enceladus, we don’t know how long this activity has been or how stable it is,” Hsu said. “And so that’s a big uncertainty here.”

One way to get at this question? Send another mission to Enceladus, Tobie said.

“Cassini will fly through the moon’s plume again later this year,” he wrote, “but only future missions that can undertake improved in situ investigations, and possibly even return samples to Earth, will be able to confirm Enceladus’ astrobiological potential and fully reveal the secrets of its hot springs. ”

View Article Here Read More

Mars Had an Ocean, Scientists Say, Pointing to a Treasure Trove of New Data





Excerpt from nytimes.com

After six years of planetary observations, scientists at NASA say they have found convincing new evidence that ancient Mars had an ocean.

It was probably the size of the Arctic Ocean, larger than previously estimated, the researchers reported on Thursday. The body of water spread across the low-lying plain of the planet’s northern hemisphere for millions of years, they said.

If confirmed, the findings would add significantly to scientists’ understanding of the planet’s history and lend new weight to the view that ancient Mars had everything needed for life to emerge.
“The existence of a northern ocean has been debated for decades, but this is the first time we have such a strong collection of data from around the globe,” said Michael Mumma, principal investigator at NASA’s Goddard Center for Astrobiology and an author of the report, published in the journal Science. “Our results tell us there had to be a northern ocean.”
But other experts said the question was hardly resolved. The ocean remains “a hypothesis,” said Ashwin Vasavada, project scientist of the Curiosity rover mission at the Jet Propulsion Laboratory in Pasadena, Calif.

Dr. Mumma and Geronimo Villanueva, a planetary scientist at NASA, measured two slightly different forms of water in Mars’ atmosphere. One is the familiar H2O, which consists of two hydrogen atoms and one oxygen atom.

The other is a slightly “heavier” version of water, HDO, in which the nucleus of one hydrogen atom contains a neutron. The atom is called deuterium.

The two forms exist in predictable ratios on Earth, and both have been found in meteorites from Mars. A high level of heavier water today would indicate that there was once a lot more of the “lighter” water, somehow lost as the planet changed.

The scientists found eight times as much deuterium in the Martian atmosphere than is found in water on Earth. Dr. Villanueva said the findings “provide a solid estimate of how much water Mars once had by determining how much water was lost to space.”

He said the measurements pointed to an ancient Mars that had enough water to cover the planet to a depth of at least 137 meters, or about 450 feet. Except for assessments based on the size of the northern basin, this is the highest estimate of the amount of water on early Mars that scientists have ever made.

The water on Mars mostly would have pooled in the northern hemisphere, which lies one to three kilometers — 0.6 to 1.8 miles — below the bedrock surface of the south, the scientists said.
At one time, the researchers estimated, a northern ocean would have covered about 19 percent of the Martian surface. In comparison, the Atlantic Ocean covers about 17 percent of Earth’s surface.

The new findings come at a time when the possibility of a northern ocean on Mars has gained renewed attention.

The Curiosity rover measured lighter and heavier water molecules in the Gale Crater, and the data also indicated that Mars once had substantial amounts of water, although not as much as Dr. Mumma and Dr. Villanueva suggest.

“The more water was present — and especially if it was a large body of water that lasted for a longer period of time — the better the chances are for life to emerge and to be sustained,” said Paul Mahaffy, chief of the atmospheric experiments laboratory at the Goddard Space Flight Center.

Just last month, the science team running the Curiosity rover held its first formal discussion about the possibility of such an ocean and what it would have meant for the rest of Mars.

Scientists generally agree that lakes must have existed for millions of years in Gale Crater and elsewhere. But it is not clear how they were sustained and replenished.

“For open lakes to remain relatively stable for millions of years — it’s hard to figure how to do that without an ocean,” Dr. Vasavada said. “Unless there was a large body of water supplying humidity to the planet, the water in an open lake would quickly evaporate and be carried to the polar caps or frozen out.”

Yet climate modelers have had difficulty understanding how Mars could have been warm enough in its early days to keep water from freezing. Greenhouse gases could have made the planet much warmer at some point, but byproducts of those gases have yet to be found on the surface.

James Head, a professor of geological sciences at Brown University, said in an email that the new paper had “profound implications for the total volume of water” on ancient Mars.

But, he added, “climate models have great difficulty in reconstructing an early Mars with temperatures high enough to permit surface melting and liquid water.”

Also missing are clear signs of the topographic and geological features associated with large bodies of water on Earth, such as sea cliffs and shorelines.

Based on low-resolution images sent back by the Viking landers, the geologist Timothy Parker and his colleagues at the NASA Jet Propulsion Lab reported in 1989 the discovery of ancient shorelines. But later high-resolution images undermined their conclusions.

Still, Dr. Parker and his colleagues have kept looking for — and finding, they say — some visible signs of a northern ocean. The new data “certainly encourages me to do more,” he said in an interview.

Other researchers have also been looking for signs of an ancient ocean.

In 2013, Roman DiBiase, then a postdoctoral student at the California Institute of Technology, and Michael Lamb, an assistant professor of geology there, identified what might have been a system of channels on Mars that originated in the southern hemisphere and emptied steeply into the northern basin — perhaps, they said, water flowing through a delta to an ocean.

View Article Here Read More

Why science is so hard to believe?

 
In the recent movie “Interstellar,” set in a futuristic, downtrodden America where NASA has been forced into hiding, school textbooks say the Apollo moon landings were faked.


Excerpt from 


There’s a scene in Stanley Kubrick’s comic masterpiece “Dr. Strangelove” in which Jack D. Ripper, an American general who’s gone rogue and ordered a nuclear attack on the Soviet Union, unspools his paranoid worldview — and the explanation for why he drinks “only distilled water, or rainwater, and only pure grain alcohol” — to Lionel Mandrake, a dizzy-with-anxiety group captain in the Royal Air Force.
Ripper: “Have you ever heard of a thing called fluoridation? Fluoridation of water?”
Mandrake: “Ah, yes, I have heard of that, Jack. Yes, yes.”Ripper: “Well, do you know what it is?”
Mandrake: “No. No, I don’t know what it is, no.”
Ripper: “Do you realize that fluoridation is the most monstrously conceived and dangerous communist plot we have ever had to face?” 

The movie came out in 1964, by which time the health benefits of fluoridation had been thoroughly established and anti-fluoridation conspiracy theories could be the stuff of comedy. Yet half a century later, fluoridation continues to incite fear and paranoia. In 2013, citizens in Portland, Ore., one of only a few major American cities that don’t fluoridate, blocked a plan by local officials to do so. Opponents didn’t like the idea of the government adding “chemicals” to their water. They claimed that fluoride could be harmful to human health.

Actually fluoride is a natural mineral that, in the weak concentrations used in public drinking-water systems, hardens tooth enamel and prevents tooth decay — a cheap and safe way to improve dental health for everyone, rich or poor, conscientious brushers or not. That’s the scientific and medical consensus.
To which some people in Portland, echoing anti-fluoridation activists around the world, reply: We don’t believe you.
We live in an age when all manner of scientific knowledge — from the safety of fluoride and vaccines to the reality of climate change — faces organized and often furious opposition. Empowered by their own sources of information and their own interpretations of research, doubters have declared war on the consensus of experts. There are so many of these controversies these days, you’d think a diabolical agency had put something in the water to make people argumentative.
Science doubt has become a pop-culture meme. In the recent movie “Interstellar,” set in a futuristic, downtrodden America where NASA has been forced into hiding, school textbooks say the Apollo moon landings were faked.


The debate about mandated vaccinations has the political world talking. A spike in measles cases nationwide has President Obama, lawmakers and even potential 2016 candidates weighing in on the vaccine controversy. (Pamela Kirkland/The Washington Post)
In a sense this is not surprising. Our lives are permeated by science and technology as never before. For many of us this new world is wondrous, comfortable and rich in rewards — but also more complicated and sometimes unnerving. We now face risks we can’t easily analyze.
We’re asked to accept, for example, that it’s safe to eat food containing genetically modified organisms (GMOs) because, the experts point out, there’s no evidence that it isn’t and no reason to believe that altering genes precisely in a lab is more dangerous than altering them wholesale through traditional breeding. But to some people, the very idea of transferring genes between species conjures up mad scientists running amok — and so, two centuries after Mary Shelley wrote “Frankenstein,” they talk about Frankenfood.
The world crackles with real and imaginary hazards, and distinguishing the former from the latter isn’t easy. Should we be afraid that the Ebola virus, which is spread only by direct contact with bodily fluids, will mutate into an airborne super-plague? The scientific consensus says that’s extremely unlikely: No virus has ever been observed to completely change its mode of transmission in humans, and there’s zero evidence that the latest strain of Ebola is any different. But Google “airborne Ebola” and you’ll enter a dystopia where this virus has almost supernatural powers, including the power to kill us all.
In this bewildering world we have to decide what to believe and how to act on that. In principle, that’s what science is for. “Science is not a body of facts,” says geophysicist Marcia McNutt, who once headed the U.S. Geological Survey and is now editor of Science, the prestigious journal. “Science is a method for deciding whether what we choose to believe has a basis in the laws of nature or not.”
The scientific method leads us to truths that are less than self-evident, often mind-blowing and sometimes hard to swallow. In the early 17th century, when Galileo claimed that the Earth spins on its axis and orbits the sun, he wasn’t just rejecting church doctrine. He was asking people to believe something that defied common sense — because it sure looks like the sun’s going around the Earth, and you can’t feel the Earth spinning. Galileo was put on trial and forced to recant. Two centuries later, Charles Darwin escaped that fate. But his idea that all life on Earth evolved from a primordial ancestor and that we humans are distant cousins of apes, whales and even deep-sea mollusks is still a big ask for a lot of people.
Even when we intellectually accept these precepts of science, we subconsciously cling to our intuitions — what researchers call our naive beliefs. A study by Andrew Shtulman of Occidental College showed that even students with an advanced science education had a hitch in their mental gait when asked to affirm or deny that humans are descended from sea animals and that the Earth goes around the sun. Both truths are counterintuitive. The students, even those who correctly marked “true,” were slower to answer those questions than questions about whether humans are descended from tree-dwelling creatures (also true but easier to grasp) and whether the moon goes around the Earth (also true but intuitive).
Shtulman’s research indicates that as we become scientifically literate, we repress our naive beliefs but never eliminate them entirely. They nest in our brains, chirping at us as we try to make sense of the world.
Most of us do that by relying on personal experience and anecdotes, on stories rather than statistics. We might get a prostate-specific antigen test, even though it’s no longer generally recommended, because it caught a close friend’s cancer — and we pay less attention to statistical evidence, painstakingly compiled through multiple studies, showing that the test rarely saves lives but triggers many unnecessary surgeries. Or we hear about a cluster of cancer cases in a town with a hazardous-waste dump, and we assume that pollution caused the cancers. Of course, just because two things happened together doesn’t mean one caused the other, and just because events are clustered doesn’t mean they’re not random. Yet we have trouble digesting randomness; our brains crave pattern and meaning.
Even for scientists, the scientific method is a hard discipline. They, too, are vulnerable to confirmation bias — the tendency to look for and see only evidence that confirms what they already believe. But unlike the rest of us, they submit their ideas to formal peer review before publishing them. Once the results are published, if they’re important enough, other scientists will try to reproduce them — and, being congenitally skeptical and competitive, will be very happy to announce that they don’t hold up. Scientific results are always provisional, susceptible to being overturned by some future experiment or observation. Scientists rarely proclaim an absolute truth or an absolute certainty. Uncertainty is inevitable at the frontiers of knowledge.
That provisional quality of science is another thing a lot of people have trouble with. To some climate-change skeptics, for example, the fact that a few scientists in the 1970s were worried (quite reasonably, it seemed at the time) about the possibility of a coming ice age is enough to discredit what is now the consensus of the world’s scientists: The planet’s surface temperature has risen by about 1.5 degrees Fahrenheit in the past 130 years, and human actions, including the burning of fossil fuels, are extremely likely to have been the dominant cause since the mid-20th century.
It’s clear that organizations funded in part by the fossil-fuel industry have deliberately tried to undermine the public’s understanding of the scientific consensus by promoting a few skeptics. The news media gives abundant attention to such mavericks, naysayers, professional controversialists and table thumpers. The media would also have you believe that science is full of shocking discoveries made by lone geniuses. Not so. The (boring) truth is that science usually advances incrementally, through the steady accretion of data and insights gathered by many people over many years. So it has with the consensus on climate change. That’s not about to go poof with the next thermometer reading.
But industry PR, however misleading, isn’t enough to explain why so many people reject the scientific consensus on global warming.
The “science communication problem,” as it’s blandly called by the scientists who study it, has yielded abundant new research into how people decide what to believe — and why they so often don’t accept the expert consensus. It’s not that they can’t grasp it, according to Dan Kahan of Yale University. In one study he asked 1,540 Americans, a representative sample, to rate the threat of climate change on a scale of zero to 10. Then he correlated that with the subjects’ science literacy. He found that higher literacy was associated with stronger views — at both ends of the spectrum. Science literacy promoted polarization on climate, not consensus. According to Kahan, that’s because people tend to use scientific knowledge to reinforce their worldviews.
Americans fall into two basic camps, Kahan says. Those with a more “egalitarian” and “communitarian” mind-set are generally suspicious of industry and apt to think it’s up to something dangerous that calls for government regulation; they’re likely to see the risks of climate change. In contrast, people with a “hierarchical” and “individualistic” mind-set respect leaders of industry and don’t like government interfering in their affairs; they’re apt to reject warnings about climate change, because they know what accepting them could lead to — some kind of tax or regulation to limit emissions.
In the United States, climate change has become a litmus test that identifies you as belonging to one or the other of these two antagonistic tribes. When we argue about it, Kahan says, we’re actually arguing about who we are, what our crowd is. We’re thinking: People like us believe this. People like that do not believe this.
Science appeals to our rational brain, but our beliefs are motivated largely by emotion, and the biggest motivation is remaining tight with our peers. “We’re all in high school. We’ve never left high school,” says Marcia McNutt. “People still have a need to fit in, and that need to fit in is so strong that local values and local opinions are always trumping science. And they will continue to trump science, especially when there is no clear downside to ignoring science.”
Meanwhile the Internet makes it easier than ever for science doubters to find their own information and experts. Gone are the days when a small number of powerful institutions — elite universities, encyclopedias and major news organizations — served as gatekeepers of scientific information. The Internet has democratized it, which is a good thing. But along with cable TV, the Web has also made it possible to live in a “filter bubble” that lets in only the information with which you already agree.
How to penetrate the bubble? How to convert science skeptics? Throwing more facts at them doesn’t help. Liz Neeley, who helps train scientists to be better communicators at an organization called Compass, says people need to hear from believers they can trust, who share their fundamental values. She has personal experience with this. Her father is a climate-change skeptic and gets most of his information on the issue from conservative media. In exasperation she finally confronted him: “Do you believe them or me?” She told him she believes the scientists who research climate change and knows many of them personally. “If you think I’m wrong,” she said, “then you’re telling me that you don’t trust me.” Her father’s stance on the issue softened. But it wasn’t the facts that did it.
If you’re a rationalist, there’s something a little dispiriting about all this. In Kahan’s descriptions of how we decide what to believe, what we decide sometimes sounds almost incidental. Those of us in the science-communication business are as tribal as anyone else, he told me. We believe in scientific ideas not because we have truly evaluated all the evidence but because we feel an affinity for the scientific community. When I mentioned to Kahan that I fully accept evolution, he said: “Believing in evolution is just a description about you. It’s not an account of how you reason.”
Maybe — except that evolution is real. Biology is incomprehensible without it. There aren’t really two sides to all these issues. Climate change is happening. Vaccines save lives. Being right does matter — and the science tribe has a long track record of getting things right in the end. Modern society is built on things it got right.
Doubting science also has consequences, as seen in recent weeks with the measles outbreak that began in California. The people who believe that vaccines cause autism — often well educated and affluent, by the way — are undermining “herd immunity” to such diseases as whooping cough and measles. The anti-vaccine movement has been going strong since a prestigious British medical journal, the Lancet, published a study in 1998 linking a common vaccine to autism. The journal later retracted the study, which was thoroughly discredited. But the notion of a vaccine-autism connection has been endorsed by celebrities and reinforced through the usual Internet filters. (Anti-vaccine activist and actress Jenny McCarthy famously said on “The Oprah Winfrey Show,” “The University of Google is where I got my degree from.”)
In the climate debate, the consequences of doubt are likely to be global and enduring. Climate-change skeptics in the United States have achieved their fundamental goal of halting legislative action to combat global warming. They haven’t had to win the debate on the merits; they’ve merely had to fog the room enough to keep laws governing greenhouse gas emissions from being enacted.
Some environmental activists want scientists to emerge from their ivory towers and get more involved in the policy battles. Any scientist going that route needs to do so carefully, says Liz Neeley. “That line between science communication and advocacy is very hard to step back from,” she says. In the debate over climate change, the central allegation of the skeptics is that the science saying it’s real and a serious threat is politically tinged, driven by environmental activism and not hard data. That’s not true, and it slanders honest scientists. But the claim becomes more likely to be seen as plausible if scientists go beyond their professional expertise and begin advocating specific policies.
It’s their very detachment, what you might call the cold-bloodedness of science, that makes science the killer app. It’s the way science tells us the truth rather than what we’d like the truth to be. Scientists can be as dogmatic as anyone else — but their dogma is always wilting in the hot glare of new research. In science it’s not a sin to change your mind when the evidence demands it. For some people, the tribe is more important than the truth; for the best scientists, the truth is more important than the tribe.

View Article Here Read More

Striking Similarities Between Brain Cells and Our Universe



The two pictures below illustrate the similarities. The top picture shows the neural network of a brain cell; the bottom picture shows the distribution of dark matter in the universe as simulated by Millennium Simulation.


Excerpt from  themindunleashed.org


The structures of the universe and the human brain are strikingly similar.

In the Eastern spiritual discipline of Daoism, the human body has long been viewed as a small universe, as a microcosm. As billion-dollar investments are made in the United States and Europe to research brain functioning, the correlations between the brain and the universe continue to emerge.

The two pictures below illustrate the similarities. The top picture shows the neural network of a brain cell; the bottom picture shows the distribution of dark matter in the universe as simulated by Millennium Simulation.

The pictures show a structural similarity in terms of connections and distribution of matter in the brain and in the universe. The photo on the left is a microscopic view, the one on the right is a macroscopic view.

The brain is like a microcosm.

A study conducted by Dmitri Krioukov of the University of California and a team of researchers published in Nature last year shows striking similarities between neural networks in the brain and network connections between galaxies.

Krioukov’s team created a computer simulation that broke the known universe down into tiny, subatomic units of space-time, explained Live Science. The simulation added more space-time units as the history of the universe progressed. The developing interactions between matter in galaxies was similar to the interactions that comprise neural networks in the human brain.
Physicist Kevin Bassler of the University of Houston, who was not involved in the study, told Live Science that the study suggests a fundamental law governing these networks.

In May 2011, Seyed Hadi Anjamrooz of the Kerman University of Medical Sciences and other Iranian medical scientists published an article in the International Journal of the Physical Sciences on the similarities between cells and the universe. They explain that a black hole resembles the cell nucleus. A black hole’s event horizon—a sort of point of no return where the gravitational pull will suck objects into the black hole—also resembles the nuclear membrane.

The event horizon is double-layered, as is the nuclear membrane. Much like the event horizon, which prevents anything that enters from leaving, the nuclear membrane separates cell fluids, preventing mixing, and regulates the exchange of matter between the inside and outside of the nucleus. Black holes and living cells also both emit pockets of electromagnetic radiation, among other similarities.

The researchers wrote: “Nearly all that exists in the macrouniverse is mirrored in a biological cell as a microuniverse. Simply put, the universe can be pictured as a cell.”

View Article Here Read More

Rosetta spacecraft raises new questions about comet’s origin

Excerpt from news.asiaone.com CAPE CANAVERAL, US - Scientists using Europe's comet-orbiting Rosetta spacecraft have discovered that the complicated ancient body is coated with surprisingly simple organic molecules and surrounded by a changing clou...

View Article Here Read More
Older posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑