Tag: edge (page 2 of 13)

Warp in spacetime lets astronomers watch the same star explode four times



Excerpt from csmonitor.com

Thanks to a phenomenon known as gravitational lensing, the Hubble Space Telescope has captured four images of the same supernova explosion.

For the first time, a cosmic magnifying glass has allowed scientists to see the same star explosion four times, possibly offering a revealing glimpse into these explosive stellar deaths and the nature of the accelerating universe.

Astronomers using the Hubble Space Telescope have captured four images of a supernova explosion in deep space thanks to a galaxy located between Earth and the massive star explosion. You can see how Hubble saw the supernova in this NASA video. The galaxy cluster warped the fabric of space and time around it — like a bowling ball placed on a bed sheet — allowing scientists to see the supernova in four images.

"It was predicted 50 years ago that a supernova could be gravitationally lensed like this, but it's taken a long time for someone to find an example," lead study author Patrick Kelly, an astronomer at the University of California, Berkeley told Space.com. "It's fun to have been able to find the first one." 

The supernova, which was discovered on Nov. 11, 2014, is located about 9.3 billion light-years away from Earth, near the edge of the observable universe. The researchers have named the distant supernova SN Refsdal in honor of the late Norwegian astrophysicist Sjur Refsdal, a pioneer of gravitational lensing studies. Due to gravitational lensing, "the supernova appears 20 times brighter than its normal brightness," study co-author Jens Hjorth, head of the Dark Cosmology Centre at the Niels Bohr Institute at the University of Copenhagen, said in a statement.
The lensing galaxy, which is about 5 billion light-years from Earth, is part of a large cluster of galaxies known MACS J1149.6+2223. In 2009, astronomers discovered that this cluster was the source of the largest known image of a spiral galaxy ever seen through a gravitational lens.

The four images of the supernova each appeared separately over the course of a few weeks. This is because light can take various paths around and through a gravitational lens, arriving at Earth at different times.

Using gravity as a lens

Gravity is created when matter warps the fabric of reality. The greater the mass of an object, the more space-time curves around that object and the stronger its gravitational pull, the discovery enshrined in Einstein's theory of general relativity, which celebrates its centennial this year.

As a result, gravity can also bend light like a lens, meaning objects see n behind powerful gravitational fields, such as those of massive galaxies, are magnified. Gravitational lensing was first discovered in 1979, and today gravitational lenses can help astronomers see features otherwise too distant and faint to detect with even the largest telescopes.

"These gravitational lenses are like a natural magnifying glass. It's like having a much bigger telescope," Kelly said in a statement. "We can get magnifications of up to 100 times by looking through these galaxy clusters."

When light is far from a gravitationally lensing mass, or if the gravitationally lensing mass is not especially large, only "weak lensing" occurs, barely distorting the light. However, when the light comes from almost exactly behind the gravitationally lensing mass, "strong lensing" can happen. 

When a strongly lensed object occupies a large patch of space — for instance, if it's a galaxy — it can get smeared into an "Einstein ring" surrounding a gravitationally lensing mass. However, strong lensing of small, pointlike items — for instance, super-bright objects known as quasars — often produces multiple images surrounding the gravitationally lensing mass, resulting in a so-called "Einstein cross."

The observations of SN Refsdal mark the first time astronomers on Earth have witnessed strong lensing of a  supernova, with four images of an exploding star arrayed as an Einstein cross.

An expanding universe

These new findings could help scientists measure the accelerating rate at which the universe is expanding, researchers say.

A computer model of the lensing cluster suggests the scientists missed chances to see the lensed supernova 50 and 10 years ago. However, the model also suggests more images of the explosion will repeat again within the next 10 years.

The timing of when all these images of the supernova arrive depends on the gravitational pull of the matter generating the gravitational lens. So, by measuring those times, the researchers hope to map how visible normal matter and invisible dark matter is distributed in the lensing galaxy.

Dark matter is currently one of the greatest mysteries in science, a poorly understood substance thought to make up five-sixths of all matter in the universe. A better understanding of how dark matter is behaving in this gravitationally lensing cluster might help shed light on the material's nature, Kelly said.

Analyzing when the images arrive could also help scientists pinpoint the rate at which the universe is expanding. Although there are already several ways to measure the cosmic expansion rate, "there has been a lot of heated debate between different methods, so it'd be interesting to see how this new technique might affect the area," Kelly said. "It's always nice to have completely independent measurements of the same quantity."

The scientists detailed their findings in the March 6 issue of the journal Science.

View Article Here Read More

8 possible explanations for those bright spots on dwarf planet Ceres

Ceres  Excerpt from cnet.com It's a real-life mystery cliffhanger. We've come up with a list of possible reasons a large crater on the biggest object in the asteroid belt looks lit up like a Christmas tree.  We could be approachin...

View Article Here Read More

Earth’s Moon May Not Be Critical to Life Afterall




Excerpt from space.com

The moon has long been viewed as a crucial component in creating an environment suitable for the evolution of complex life on Earth, but a number of scientific results in recent years have shown that perhaps our planet doesn't need the moon as much as we have thought.

In 1993, French astronomer Jacques Laskar ran a series of calculations indicating that the gravity of the moon is vital to stabilizing the tilt of our planet. Earth's obliquity, as this tilt is technically known as, has huge repercussions for climate. Laskar argued that should Earth's obliquity wander over hundreds of thousands of years, it would cause environmental chaos by creating a climate too variable for complex life to develop in relative peace.
So his argument goes, we should feel remarkably lucky to have such a large moon on our doorstep, as no other terrestrial planet in our solar system has such a moon. Mars' two satellites, Phobos and Deimos, are tiny, captured asteroids that have little known effect on the Red Planet. Consequently, Mars' tilt wobbles chaotically over timescales of millions of years, with evidence for swings in its rotational axis at least as large as 45 degrees. 


The stroke of good fortune that led to Earth possessing an unlikely moon, specifically the collision 4.5 billion years ago between Earth and a Mars-sized proto-planet that produced the debris from which our Moon formed, has become one of the central tenets of the 'Rare Earth' hypothesis. Famously promoted by Peter Ward and Don Brownlee, it argues that planets where everything is just right for complex life are exceedingly rare.

New findings, however, are tearing up the old rule book. In 2011, a trio of scientists — Jack Lissauer of NASA Ames Research Center, Jason Barnes of the University of Idaho and John Chambers of the Carnegie Institution for Science — published results from new simulations describing what Earth's obliquity would be like without the moon. What they found was surprising.

"We were looking into how obliquity might vary for all sorts of planetary systems," says Lissauer. "To test our code we began with integrations following the obliquity of Mars and found similar results to other people. But when we did the obliquity of Earth we found the variations were much smaller than expected — nowhere near as extreme as previous calculations suggested they would be."
Lissauer's team found that without the moon, Earth's rotational axis would only wobble by 10 degrees more than its present day angle of 23.5 degrees. The reason for such vastly different results to those attained by Jacques Laskar is pure computing power. Today's computers are much faster and capable of more accurate modeling with far more data than computers of the 1990s.

Lissauer and his colleagues also found that if Earth were spinning fast, with one day lasting less than 10 hours, or rotating retrograde (i.e. backwards so that the sun rose in the West and set in the East), then Earth stabilized itself thanks to the gravitational resonances with other planets, most notably giant Jupiter. There would be no need for a large moon. 

Earth's rotation has not always been as leisurely as the current 24 hour spin-rate. Following the impact that formed the moon, Earth was spinning once every four or five hours, but it has since gradually slowed by the moon's presence. As for the length of Earth's day prior to the moon-forming impact, nobody really knows, but some models of the impact developed by Robin Canup of the Southwest Research Institute, in Boulder, Colorado, suggest that Earth could have been rotating fast, or even retrograde, prior to the collision.

Tilted Orbits
Planets with inclined orbits could find that their increased obliquity is beneficial to their long-term climate – as long as they do not have a large moon.


"Collisions in the epoch during which Earth was formed determined its initial rotation," says Lissauer. "For rocky planets, some of the models say most of them will be prograde, but others say comparable numbers of planets will be prograde and retrograde. Certainly, retrograde worlds are not expected to be rare."

The upshot of Lissauer's findings is that the presence of a moon is not the be all and end all as once thought, and a terrestrial planet can exist without a large moon and still retain its habitability. Indeed, it is possible to imagine some circumstances where having a large moon would actually be pretty bad for life.

Rory Barnes, of the University of Washington, has also tackled the problem of obliquity, but from a different perspective. Planets on the edge of habitable zones exist in a precarious position, far enough away from their star that, without a thick, insulating atmosphere, they freeze over, just like Mars. Barnes and his colleagues including John Armstrong of Weber State University, realized that torques from other nearby worlds could cause a planet's inclination to the ecliptic plane to vary. This in turn would result in a change of obliquity; the greater the inclination, the greater the obliquity to the Sun. Barnes and Armstrong saw that this could be a good thing for planets on the edges of habitable zones, allowing heat to be distributed evenly over geological timescales and preventing "Snowball Earth" scenarios. They called these worlds "tilt-a-worlds," but the presence of a large moon would counteract this beneficial obliquity change.

"I think one of the most important points from our tilt-a-world paper is that at the outer edge of the habitable zone, having a large moon is bad, there's no other way to look at it," says Barnes. "If you have a large moon that stabilizes the obliquity then you have a tendency to completely freeze over."

Barnes is impressed with the work of Lissauer's team.
"I think it is a well done study," he says. "It suggests that Earth does not need the moon to have a relatively stable climate. I don't think there would be any dire consequences to not having a moon."

Mars' Changing Tilt
The effects of changing obliquity on Mars’ climate. Mars’ current 25-degree tilt is seen at top left. At top right is a Mars that has a high obliquity, leading to ice gather at its equator while the poles point sunwards. At bottom is Mars with low obliquity, which sees its polar caps grow in size.


Of course, the moon does have a hand in other factors important to life besides planetary obliquity. Tidal pools may have been the point of origin of life on Earth. Although the moon produces the largest tides, the sun also influences tides, so the lack of a large moon is not necessarily a stumbling block. Some animals have also evolved a life cycle based on the cycle of the moon, but that's more happenstance than an essential component for life.

"Those are just minor things," says Lissauer.

Without the absolute need for a moon, astrobiologists seeking life and habitable worlds elsewhere face new opportunities. Maybe Earth, with its giant moon, is actually the oddball amongst habitable planets. Rory Barnes certainly doesn't think we need it.
"It will be a step forward to see the myth that a habitable planet needs a large moon dispelled," he says, to which Lissauer agrees.
Earth without its moon might therefore remain habitable, but we should still cherish its friendly presence. After all, would Beethoven have written the Moonlight Sonata without it?

View Article Here Read More

Birth of the Nibiru Legend? Astronomers Say Alien Star System Buzzed Our Sun

Scholz's star - shown in this artist's impression - is currently 20 light-years away. But it once came much closerExcerpt from bbc.comAn alien star passed through our Solar System just 70,000 years ago, astronomers have discovered.  No othe...

View Article Here Read More

Mysterious Galaxy X Found Finally? Dark Matter Hunters Would Like To Believe So

Excerpt from techtimes.comAstronomers have long suspected strange ripples in hydrogen gas in the disk of our Milky Way galaxy are caused by the gravity of an unseen dwarf galaxy dominated by dark matter -- and now they think they've found this "Gal...

View Article Here Read More

Jupiter Wins the Starring Role in February’s Planet Parade

Excerpt from nbc.com Planets are on parade in February's night sky. Giant Jupiter will dazzle all nig...

View Article Here Read More

How Obama wants to spend Americans’ money next year: an agency-by-agency look


PHOTO: President Barack Obama's new $4 trillion budget plan is distributed by the Senate Budget Committee as it arrives on Capitol Hill in Washington, early Monday, Feb. 02, 2015. The fiscal blueprint for the budget year that begins Oct. 1, seeks to raise taxes on wealthier Americans and corporations and use the extra income to lift the fortunes of families who have felt squeezed during tough economic times. Republicans, who now hold the power in Congress, are accusing the president of seeking to revert to tax-and-spend policies that will harm the economy while failing to do anything about soaring spending on government benefit programs. (AP Photo/J. Scott Applewhite)
President Barack Obama's new $4 trillion budget plan is distributed by the Senate Budget Committee as it arrives on Capitol Hill in Washington, early Monday, Feb. 02, 2015. The fiscal blueprint for the budget year that begins Oct. 1, seeks to raise taxes on wealthier Americans and corporations and use the extra income to lift the fortunes of families who have felt squeezed during tough economic times. Republicans, who now hold the power in Congress, are accusing the president of seeking to revert to tax-and-spend policies that will harm the economy while failing to do anything about soaring spending on government benefit programs. (AP Photo/J. Scott Applewhite)


Excerpt from therepublic.com 

WASHINGTON — Sure, $4 trillion sounds like a lot. But it goes fast when your budget stretches from aging highways to medical care to space travel and more.

Here's an agency-by-agency look at how President Barack Obama would spend Americans' money in the 2016 budget year beginning Oct. 1:


HEALTH AND HUMAN SERVICES
Up or down? Up 4.3 percent
What's new? Medicare could negotiate prices for cutting-edge drugs.
Highlights:
— The president's proposed health care budget asks Congress to authorize Medicare to negotiate what it pays for high-cost prescription drugs and for biologics, including advanced medications for diseases such as rheumatoid arthritis. Currently, private insurers bargain on behalf of Medicare beneficiaries. Drug makers have beaten back prior proposals to give Medicare direct pricing power. But the introduction of a $1,000-a-pill hepatitis-C drug last year may have shifted the debate.
— Tobacco taxes would nearly double, to extend health insurance for low-income children. The federal cigarette tax would rise from just under $1.01 per pack to about $1.95 per pack. Taxes on other tobacco products also would go up. That would provide financing to pay for the Children's Health Insurance Program through 2019. The federal-state program serves about 8 million children, and funding technically expires Sept. 30. The tobacco tax hike would take effect in 2016.
— Starting in 2019, the proposal increases Medicare premiums for high-income beneficiaries and adds charges for new enrollees. The charges for new enrollees include a home health copayment, changes to the Part B deductible, and a premium surcharge for seniors who've also purchased a kind of supplemental insurance whose generous benefits are seen as encouraging overuse of Medicare services.
— There's full funding for ongoing implementation of Obama's health care law.
—The plan would end the budget sequester's 2 percent cut in Medicare payments to service providers and repeal another budget formula that otherwise will result in sharply lower payments for doctors. But what one hand gives, the other hand takes away. The budget also calls for Medicare cuts to hospitals, insurers, drug companies and other service providers.
The numbers:
Total spending: $1.1 trillion, including about $1 trillion on benefit programs including Medicare and Medicaid, already required by law.
Spending that needs Congress' annual approval: $80 billion.

NASA
Up or down? Up 2.9 percent
What's new? Not much. Just more money for planned missions.
Highlights:
—The exploration budget — which includes NASA's plans to grab either an asteroid or a chunk of an asteroid and haul it closer to Earth for exploration by astronauts — gets a slight bump in funding. But the details within the overall exploration proposal are key. The Obama plan would put more money into cutting-edge non-rocket space technology; give a 54 percent spending jump to money sent to private firms to develop ships to taxi astronauts to the International Space Station; and cut by nearly 12 percent spending to build the next government big rocket and capsule to carry astronauts. Congress in the past has cut the president's proposed spending on the private firms and technology and boosted the spending on the government big rocket and capsule.
—The president's 0.8 percent proposed increase in NASA science spending is his first proposed jump in that category in four years. It's also the first proposed jump in years in exploring other planets. It includes extra money for a 2020 unmanned Martian rover and continued funding for an eventual robotic mission to Jupiter's moon Europa. But the biggest extra science spending goes to study Earth.
— Obama's budget would cut aeronautics research 12 percent from current spending and slash NASA's educational spending by 25 percent. It also slightly trims the annual spending to build the over-budget multi-billion dollar James Webb Space Telescope, which will eventually replace the Hubble Space Telescope and is scheduled to launch in 2018.
The numbers:
Total spending: $18.5 billion
Spending that needs Congress' annual approval: $18.5 billion

TRANSPORTATION
Up or down? Up 31 percent
What's new? A plan to tackle an estimated $2 trillion in deferred maintenance for the nation's aging infrastructure by boosting highway and transit spending to $478 billion over six years.
Highlights:
— The six-year highway and transit plan would get a one-time $238 billion infusion from the general treasury. Some of the money would be offset by taxing the profits of U.S. companies that haven't been paying taxes on income made overseas. That infusion comes on top of the $35 billion a year that normally comes from gasoline and diesel taxes and other transportation fees.
— The proposal also includes tax incentives to encourage private investment in infrastructure, and an infrastructure investment bank to help finance major transportation projects.
— The new infrastructure investment would be front-loaded. The budget proposes to spend the money over six years and pay for the programs over 10 years.
— The proposal also includes a new Interagency Infrastructure Permitting Improvement Center to coordinate efforts across nearly 20 federal agencies and bureaus to speed up the permitting process. For example, the Coast Guard, Corps of Engineers and Transportation Department are trying to synchronize their reviews of projects such as bridges that cross navigation channels.
The numbers:
Total spending: $94.5 billion, including more than $80 billion already required by law, mostly for highway and transit aid to states and improvement grants to airports.
Spending that needs Congress' annual approval: $14.3 billion.

Associated Press writers Ricardo Alonso-Zaldivar, Seth Borenstein, Joan Lowy and Connie Cass contributed to this report.

View Article Here Read More

Spacecraft found on Mars – and it’s ours




Computer image of the Beagle 2


Excerpt from skyandtelescope.com
By Kelly Beatty  


On December 25, 2003, a British-built lander dropped to the Martian surface and disappeared without a trace. Now we know what happened to it.  It's hard to overstate how valuable the main camera aboard the Mars Reconnaissance Orbiter has been. The craft's High-Resolution Imaging Science Experiment, or HiRISE, uses a 20-inch (0.5-m) f/24 telescope to record details on the Martian surface as small as 0.3 m (about 10 inches). 

Beagle 2 seen from orbit by HiRISE
An overhead view of Beagle 2's landing site on Isidis Planitia shows a bright reflection from the long-lost spacecraft. Apparently it landed safely on December 25, 2003, and had begun to operate when it failed. NASA's Mars Reconnaissance Orbiter recorded this image on December 15, 2014. NASA / JPL / Univ. of Arizona / Univ. of Leicester - See more at: http://www.skyandtelescope.com/astronomy-news/beagle-2-lander-found-on-mars-01192015/#sthash.5KSZ8V6W.dpuf


Primarily it's a powerful tool for studying Martian geology at the smallest scales, and NASA scientists sometimes use it to track the progress (and even the arrivals) of their rovers. Beagle 2 on Mars  The clamshell-like Beagle 2 lander weighed just 30 kg, but it was well equipped to study Martian rocks and dust — and even to search for life. Beagle 2 consortium  But the HiRISE team has also been on a years-long quest to find the remains of Beagle 2, a small lander that had hitchhiked to the Red Planet with the European Space Agency's Mars Express orbiter. It descended to the Martian surface on Christmas Day in 2003 and was never heard from again. Space aficionados have debated its fate ever since. Did parachute failure lead to a crash landing? Did strong surface winds flip the saucer-shaped craft upside down? Did the Martians take it hostage?  Now, thanks to HiRISE, we know more of the story.  
An overhead view of Beagle 2's landing site on Isidis Planitia shows a bright reflection from the long-lost spacecraft. Apparently it landed safely on December 25, 2003, and had begun to operate when it failed. NASA's Mars Reconnaissance Orbiter recorded this image on December 15, 2014. NASA / JPL / Univ. of Arizona / Univ. of Leicester 


Images taken in February 2013 and June 2014 of the landing area in Isidis Planitia showed promising blips near the edge of each frame. A follow-up color view, acquired on December 15th and released three days ago, show a bright spot consistent with Beagle 2. The fully-opened lander would have been less than 2 m (6½ feet) across, so the craft is only barely resolved. Apparently the spacecraft made it to the surface intact, opened its clamshell cover, and had partially deployed its four petal-shaped solar-cell panels before something went awry. Beagle 2 seen from orbit by HiRISE  

One encouraging clue is that the bright reflection changes position slightly from image to image, consistent with sunlight reflecting off different lander panels. Two other unusual spots a few hundred meters away appears to be the lander's parachute and part of the cover that served as a shield during the 5½-km-per-second atmospheric descent...


On December 25, 2003, a British-built lander dropped to the Martian surface and disappeared without a trace. Now we know what happened to it.
It's hard to overstate how valuable the main camera aboard the Mars Reconnaissance Orbiter has been. The craft's High-Resolution Imaging Science Experiment, or HiRISE, uses a 20-inch (0.5-m) f/24 telescope to record details on the Martian surface as small as 0.3 m (about 10 inches). Primarily it's a powerful tool for studying Martian geology at the smallest scales, and NASA scientists sometimes use it to track the progress (and even the arrivals) of their rovers.
Beagle 2 on Mars
The clamshell-like Beagle 2 lander weighed just 30 kg, but it was well equipped to study Martian rocks and dust — and even to search for life.
Beagle 2 consortium
But the HiRISE team has also been on a years-long quest to find the remains of Beagle 2, a small lander that had hitchhiked to the Red Planet with the European Space Agency's Mars Express orbiter. It descended to the Martian surface on Christmas Day in 2003 and was never heard from again. Space aficionados have debated its fate ever since. Did parachute failure lead to a crash landing? Did strong surface winds flip the saucer-shaped craft upside down? Did the Martians take it hostage?
Now, thanks to HiRISE, we know more of the story. Images taken in February 2013 and June 2014 of the landing area in Isidis Planitia showed promising blips near the edge of each frame. A follow-up color view, acquired on December 15th and released three days ago, show a bright spot consistent with Beagle 2. The fully-opened lander would have been less than 2 m (6½ feet) across, so the craft is only barely resolved. Apparently the spacecraft made it to the surface intact, opened its clamshell cover, and had partially deployed its four petal-shaped solar-cell panels before something went awry.
Beagle 2 seen from orbit by HiRISE
An overhead view of Beagle 2's landing site on Isidis Planitia shows a bright reflection from the long-lost spacecraft. Apparently it landed safely on December 25, 2003, and had begun to operate when it failed. NASA's Mars Reconnaissance Orbiter recorded this image on December 15, 2014.
NASA / JPL / Univ. of Arizona / Univ. of Leicester
One encouraging clue is that the bright reflection changes position slightly from image to image, consistent with sunlight reflecting off different lander panels. Two other unusual spots a few hundred meters away appears to be the lander's parachute and part of the cover that served as a shield during the 5½-km-per-second atmospheric descent.
The initial images didn't just show up. They'd been requested and searched by Michael Croon of Trier, Germany, who'd served on the Mars Express operations team. Croon had asked for specific camera targeting through a program called HiWish, through which anyone can submit suggestions for HiRISE images. Read more about this fascinating sleuthing story.
"Not knowing what happened to Beagle 2 remained a nagging worry," comments Rudolf Schmidt in an ESA press release about the find. "Understanding now that Beagle 2 made it all the way down to the surface is excellent news." Schmidt served as the Mars Express project manager at the time.
Built by a consortium of organizations, Beagle 2 was the United Kingdom's first interplanetary spacecraft. The 32-kg (73-pound) lander carried six instruments to study geochemical characteristics of the Martian surface and to test for the presence of life using assays of carbon isotopes. It was named for HMS Beagle, the ship that carried a crew of 73 (including Charles Darwin) on an epic voyage of discovery in 1831–36.
- See more at: http://www.skyandtelescope.com/astronomy-news/beagle-2-lander-found-on-mars-01192015/#sthash.5KSZ8V6W.dpuf

View Article Here Read More

A Thin Sheet of Reality: The Universe as a Hologram ~ Video



What we touch. What we smell. What we feel. They're all part of our reality. But what if life as we know it reflects only one side of the full story? Some of the world's leading physicists think that this may be the case. They believe that our reality is a projection—sort of like a hologram—of laws and processes that exist on a thin surface surrounding us at the edge of the universe. Although the notion seems outlandish, it's a long-standing theory that initially emerged years ago from scientists studying black holes; recently, a breakthrough in string theory propelled the idea into the mainstream of physics. What took place was an intriguing discussion on the cutting-edge results that may just change the way we view reality.

Click to zoom

View Article Here Read More

NASA Spacecraft Begins 1st Ever Approach To Pluto





Excerpt from 
sanfrancisco.cbslocal.com

SAN FRANCISCO (CBS SF) – Man is about to reach closer to Pluto than ever before as the NASA New Horizons spacecraft begins the first of several approach phases toward the dwarf planet at the edge of our solar system.

When the mission was in the planning phases, Pluto was still considered a planet, but in 2006 it was reclassified as a dwarf planet. That same year, the New Horizons spacecraft blasted off as the fastest ever, shooting out off on a 4.6 billion mile journey to the distant sphere.


The piano-size New Horizons craft was in a hibernation phase as it traveled the first 3 billion miles toward Pluto. It woke up last month and is now getting ready for the first photo shoot.

“NASA first mission to distant Pluto will also be humankind’s first close up view of this cold, unexplored world in our solar system,” said Jim Green, director of NASA’s Planetary Science Division at the agency’s Headquarters in Washington.

Beginning January 25th, the probe will begin snapping photos of Pluto, which is the 10th largest celestial body orbiting our sun.
The later stages of approach will require steering the craft closer to Pluto by using photo information to steer around five known moons and other potential perils.

View Article Here Read More

The (Not So) Curious Case of Galaxy IC 335

This odd-looking galaxy has recently become famous in the media, not for what it has but for what is missing!Excerpt from huffingtonpost.comA recent Hubble image of this galaxy shows it to be a star-filled galaxy with a flat shape not unlike our own M...

View Article Here Read More

The Future of Technology in 2015?




Excerpt from
cnet.com


The year gone by brought us more robots, worries about artificial intelligence, and difficult lessons on space travel. The big question: where's it all taking us?

Every year, we capture a little bit more of the future -- and yet the future insists on staying ever out of reach.
Consider space travel. Humans have been traveling beyond the atmosphere for more than 50 years now -- but aside from a few overnights on the moon four decades ago, we have yet to venture beyond low Earth orbit.
Or robots. They help build our cars and clean our kitchen floors, but no one would mistake a Kuka or a Roomba for the replicants in "Blade Runner." Siri, Cortana and Alexa, meanwhile, are bringing some personality to the gadgets in our pockets and our houses. Still, that's a long way from HAL or that lad David from the movie "A.I. Artificial Intelligence."
Self-driving cars? Still in low gear, and carrying some bureaucratic baggage that prevents them from ditching certain technology of yesteryear, like steering wheels.
And even when these sci-fi things arrive, will we embrace them? A Pew study earlier this year found that Americans are decidedly undecided. Among the poll respondents, 48 percent said they would like to take a ride in a driverless car, but 50 percent would not. And only 3 percent said they would like to own one.
"Despite their general optimism about the long-term impact of technological change," Aaron Smith of the Pew Research Center wrote in the report, "Americans express significant reservations about some of these potentially short-term developments" such as US airspace being opened to personal drones, robot caregivers for the elderly or wearable or implantable computing devices that would feed them information.
Let's take a look at how much of the future we grasped in 2014 and what we could gain in 2015.

Space travel: 'Space flight is hard'

In 2014, earthlings scored an unprecedented achievement in space exploration when the European Space Agency landed a spacecraft on a speeding comet, with the potential to learn more about the origins of life. No, Bruce Willis wasn't aboard. Nobody was. But when the 220-pound Philae lander, carried to its destination by the Rosetta orbiter, touched down on comet 67P/Churyumov-Gerasimenko on November 12, some 300 million miles from Earth, the celebration was well-earned.
A shadow quickly fell on the jubilation, however. Philae could not stick its first landing, bouncing into a darker corner of the comet where its solar panels would not receive enough sunlight to charge the lander's batteries. After two days and just a handful of initial readings sent home, it shut down. For good? Backers have allowed for a ray of hope as the comet passes closer to the sun in 2015. "I think within the team there is no doubt that [Philae] will wake up," lead lander scientist Jean-Pierre Bibring said in December. "And the question is OK, in what shape? My suspicion is we'll be in good shape."
The trip for NASA's New Horizons spacecraft has been much longer: 3 billion miles, all the way to Pluto and the edge of the solar system. Almost nine years after it left Earth, New Horizons in early December came out of hibernation to begin its mission: to explore "a new class of planets we've never seen, in a place we've never been before," said project scientist Hal Weaver. In January, it will begin taking photos and readings of Pluto, and by mid-July, when it swoops closest to Pluto, it will have sent back detailed information about the dwarf planet and its moon, en route to even deeper space.


Also in December, NASA made a first test spaceflight of its Orion capsule on a quick morning jaunt out and back, to just over 3,600 miles above Earth (or approximately 15 times higher than the International Space Station). The distance was trivial compared to those those traveled by Rosetta and New Horizons, and crewed missions won't begin till 2021, but the ambitions are great -- in the 2030s, Orion is expected to carry humans to Mars.
In late March 2015, two humans will head to the ISS to take up residence for a full year, in what would be a record sleepover in orbit. "If a mission to Mars is going to take a three-year round trip," said NASA astronaut Scott Kelly, who will be joined in the effort by Russia's Mikhail Kornienko, "we need to know better how our body and our physiology performs over durations longer than what we've previously on the space station investigated, which is six months."
There were more sobering moments, too, in 2014. In October, Virgin Galactic's sleek, experimental SpaceShipTwo, designed to carry deep-pocketed tourists into space, crashed in the Mojave Desert during a test flight, killing one test pilot and injuring the other. Virgin founder Richard Branson had hoped his vessel would make its first commercial flight by the end of this year or in early 2015, and what comes next remains to be seen. Branson, though, expressed optimism: "Space flight is hard -- but worth it," he said in a blog post shortly after the crash, and in a press conference, he vowed "We'll learn from this, and move forward together." Virgin Galactic could begin testing its next spaceship as soon as early 2015.
The crash of SpaceShipTwo came just a few days after the explosion of an Orbital Sciences rocket lofting an unmanned spacecraft with supplies bound for the International Space Station. And in July, Elon Musk's SpaceX had suffered the loss of one of its Falcon 9 rockets during a test flight. Musk intoned, via Twitter, that "rockets are tricky..."
Still, it was on the whole a good year for SpaceX. In May, it unveiled its first manned spacecraft, the Dragon V2, intended for trips to and from the space station, and in September, it won a $2.6 billion contract from NASA to become one of the first private companies (the other being Boeing) to ferry astronauts to the ISS, beginning as early as 2017. Oh, and SpaceX also has plans to launch microsatellites to establish low-cost Internet service around the globe, saying in November to expect an announcement about that in two to three months -- that is, early in 2015.
One more thing to watch for next year: another launch of the super-secret X-37B space place to do whatever it does during its marathon trips into orbit. The third spaceflight of an X-37B -- a robotic vehicle that, at 29 feet in length, looks like a miniature space shuttle -- ended in October after an astonishing 22 months circling the Earth, conducting "on-orbit experiments."

Self-driving cars: Asleep at what wheel?

Spacecraft aren't the only vehicles capable of autonomous travel -- increasingly, cars are, too. Automakers are toiling toward self-driving cars, and Elon Musk -- whose name comes up again and again when we talk about the near horizon for sci-fi tech -- says we're less than a decade away from capturing that aspect of the future. In October, speaking in his guise as founder of Tesla Motors, Musk said: "Like maybe five or six years from now I think we'll be able to achieve true autonomous driving where you could literally get in the car, go to sleep and wake up at your destination." (He also allowed that we should tack on a few years after that before government regulators give that technology their blessing.)
Prototype, unbound: Google's ride of the future, as it looks today Google
That comment came as Musk unveiled a new autopilot feature -- characterizing it as a sort of super cruise control, rather than actual autonomy -- for Tesla's existing line of electric cars. Every Model S manufactured since late September includes new sensor hardware to enable those autopilot capabilities (such as adaptive cruise control, lane-keeping assistance and automated parking), to be followed by an over-the-air software update to enable those features.
Google has long been working on its own robo-cars, and until this year, that meant taking existing models -- a Prius here, a Lexus there -- and buckling on extraneous gear. Then in May, the tech titan took the wraps off a completely new prototype that it had built from scratch. (In December, it showed off the first fully functional prototype.) It looked rather like a cartoon car, but the real news was that there was no steering wheel, gas pedal or brake pedal -- no need for human controls when software and sensors are there to do the work.
Or not so fast. In August, California's Department of Motor Vehicles declared that Google's test vehicles will need those manual controls after all -- for safety's sake. The company agreed to comply with the state's rules, which went into effect in September, when it began testing the cars on private roads in October.
Regardless of who's making your future robo-car, the vehicle is going to have to be not just smart, but actually thoughtful. It's not enough for the car to know how far it is from nearby cars or what the road conditions are. The machine may well have to make no-win decisions, just as human drivers sometimes do in instantaneous, life-and-death emergencies. "The car is calculating a lot of consequences of its actions," Chris Gerdes, an associate professor of mechanical engineering, said at the Web Summit conference in Dublin, Ireland, in November. "Should it hit the person without a helmet? The larger car or the smaller car?"

Robots: Legging it out

So when do the robots finally become our overlords? Probably not in 2015, but there's sure to be more hand-wringing about both the machines and the artificial intelligence that could -- someday -- make them a match for homo sapiens. At the moment, the threat seems more mundane: when do we lose our jobs to a robot?
The inquisitive folks at Pew took that very topic to nearly 1,900 experts, including Vint Cerf, vice president at Google; Web guru Tim Bray; Justin Reich of Harvard University's Berkman Center for Internet & Society; and Jonathan Grudin, principal researcher at Microsoft. According to the resulting report, published in August, the group was almost evenly split -- 48 percent thought it likely that, by 2025, robots and digital agents will have displaced significant numbers of blue- and white-collar workers, perhaps even to the point of breakdowns in the social order, while 52 percent "have faith that human ingenuity will create new jobs, industries, and ways to make a living, just as it has been doing since the dawn of the Industrial Revolution."


Still, for all of the startling skills that robots have acquired so far, they're often not all there yet. Here's some of what we saw from the robot world in 2014:
Teamwork: Researchers at the École Polytechnique Fédérale De Lausanne in May showed off their "Roombots," cog-like robotic balls that can join forces to, say, help a table move across a room or change its height.
A sense of balance: We don't know if Boston Dynamics' humanoid Atlas is ready to trim bonsai trees, but it has learned this much from "The Karate Kid" (the original from the 1980s) -- it can stand on cinder blocks and hold its balance in a crane stance while moving its arms up and down.
Catlike jumps: MIT's cheetah-bot gets higher marks for locomotion. Fed a new algorithm, it can run across a lawn and bound like a cat. And quietly, too. "Our robot can be silent and as efficient as animals. The only things you hear are the feet hitting the ground," MIT's Sangbae Kim, a professor of mechanical engineering, told MIT News. "This is kind of a new paradigm where we're controlling force in a highly dynamic situation. Any legged robot should be able to do this in the future."
Sign language: Toshiba's humanoid Aiko Chihira communicated in Japanese sign language at the CEATEC show in October. Her rudimentary skills, limited for the moment to simple messages such as signed greetings, are expected to blossom by 2020 into areas such as speech synthesis and speech recognition.
Dance skills: Robotic pole dancers? Tobit Software brought a pair, controllable by an Android smartphone, to the Cebit trade show in Germany in March. More lifelike was the animatronic sculpture at a gallery in New York that same month -- but what was up with that witch mask?
Emotional ambition: Eventually, we'll all have humanoid companions -- at least, that's always been one school of thought on our robotic future. One early candidate for that honor could be Pepper, from Softbank and Aldebaran Robotics, which say the 4-foot-tall Pepper is the first robot to read emotions. This emo-bot is expected to go on sale in Japan in February.

Ray guns: Ship shape

Damn the photon torpedoes, and full speed ahead. That could be the motto for the US Navy, which in 2014 deployed a prototype laser weapon -- just one -- aboard a vessel in the Persian Gulf. Through some three months of testing, the device "locked on and destroyed the targets we designated with near-instantaneous lethality," Rear Adm. Matthew L. Klunder, chief of naval research, said in a statement. Those targets were rather modest -- small objects mounted aboard a speeding small boat, a diminutive Scan Eagle unmanned aerial vehicle, and so on -- but the point was made: the laser weapon, operated by a controller like those used for video games, held up well, even in adverse conditions.

Artificial intelligence: Danger, Will Robinson?

What happens when robots and other smart machines can not only do, but also think? Will they appreciate us for all our quirky human high and low points, and learn to live with us? Or do they take a hard look at a species that's run its course and either turn us into natural resources, "Matrix"-style, or rain down destruction?
laser-weapon-system-on-uss-ponce.jpg
When the machines take over, will they be packing laser weapons like this one the US Navy just tried out? John F. Williams/US Navy
As we look ahead to the reboot of the "Terminator" film franchise in 2015, we can't help but recall some of the dire thoughts about artificial intelligence from two people high in the tech pantheon, the very busy Musk and the theoretically inclined Stephen Hawking.
Musk himself more than once in 2014 invoked the likes of the "Terminator" movies and the "scary outcomes" that make them such thrilling popcorn fare. Except that he sees a potentially scary reality evolving. In an interview with CNBC in June, he spoke of his investment in AI-minded companies like Vicarious and Deep Mind, saying: "I like to just keep an eye on what's going on with artificial intelligence. I think there is potentially a dangerous outcome."
He has put his anxieties into some particularly colorful phrases. In August, for instance, Musk tweeted that AI is "potentially more dangerous than nukes." And in October, he said this at a symposium at MIT: "With artificial intelligence, we are summoning the demon. ... You know all those stories where there's the guy with the pentagram and the holy water and he's like... yeah, he's sure he can control the demon, [but] it doesn't work out."
Musk has a kindred spirit in Stephen Hawking. The physicist allowed in May that AI could be the "biggest event in human history," and not necessarily in a good way. A month later, he was telling John Oliver, on HBO's "Last Week Tonight," that "artificial intelligence could be a real danger in the not too distant future." How so? "It could design improvements to itself and outsmart us all."
But Google's Eric Schmidt, is having none of that pessimism. At a summit on innovation in December, the executive chairman of the far-thinking tech titan -- which in October teamed up with Oxford University to speed up research on artificial intelligence -- said that while our worries may be natural, "they're also misguided."

View Article Here Read More

Hunting The Edge Of Space ~ The Hubble Space Telescope Strikes Gold in the Andromeda Galaxy

The Andromeda Galaxy 

View Article Here Read More
Older posts Newer posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑