Tag: easy (page 3 of 13)

8 Myths About Emotions That Are Holding Us Back

Excerpt from huffingtonpost.comAs a society, we don't talk much about emotions. Conversations tend to focus more on what we're doing or what we're thinking. In fact, most people find it easier to start sentences with, "I think..." instead of "I feel...

View Article Here Read More

17 Surprising Reasons You’re Stressed Out





Excerpt from huffingtonpost.com
By Amanda MacMillan


You're probably all too aware of the major sources of stress in your life -- money, your terrible commute, the construction workers who start jackhammering at 5 a.m. But stress and anxiety don't have to just come from obvious or even negative sources. "There are plenty of chronic strains and low-grade challenges that don't necessarily overwhelm you in the moment, but almost take more of a toll in the long run," says Scott Schieman, Ph.D., professor of sociology at the University of Toronto. These are some of unexpected reasons why you might feel anxious or agitated. By recognizing them for what they are, says Schieman, you can better prepare to cope.

1. Your Significant Other
Even if you have a blissfully happy relationship with your live-in partner or spouse, you're both bound to do things that get on each other's nerves. "Early in the relationship, it's usually about space and habits -- like whether you squeeze the toothpaste from the middle or the bottom of the tube," says Ken Yeager, Ph.D., associate professor of psychiatry at the Ohio State University Wexner Medical Center. "Later on, you might clash over parenting style or financial issues, and finding a unified front to face these issues together." So what's the key to surviving and thriving in your life together? Finding balance, says Yeager: spending the right amount of time together (not too much and not too little), making compromises, keeping communication open and honest, and remembering to acknowledge what you love about each other on a daily basis.


2. Everyday Annoyances
We're told not to sweat the small stuff, but sometimes it's the little things that have the biggest impact on our mood: the never-ending phone calls with your insurance company, the rude cashier at the grocery store, the 20 minutes you lose looking for a parking space. "We let these things bother us because they trigger unconscious fears," says Yeager -- fears of being seen as irresponsible, of being bullied or embarrassed, or of being late all the time, for example. "Sometimes you need to take a step back and realize that you're doing the best you can given the circumstances." 


3. Other People's Stress
Stress is contagious, according to a 2014 German study: In a series of experiments, most participants who simply observed others completing a stressful task experienced an increase themselves in production of the stress hormone cortisol -- a phenomenon known as empathic stress. You can also experience stress when someone you know is affected by a traumatic event, like a car crash or a chronic illness. "You start to worry, 'Oh my gosh, could that happen to me?'," says Yeager. "We tend not to think about these things until they hit close to home."


4. Social Media social media
It may seem like Facebook is the only way you keep up with the friends you don't see regularly -- which, during particularly busy times, can be just about all of them. The social network also has a downside, according to a 2015 study from the Pew Research Center: It can make you aware of stressful situations in your friends' lives, which in turn can add more stress to your life. The Pew report didn't find that social media users, overall, had higher levels of stress, but previous studies have suggested that frequent social-media use can be associated with negative body image and prolonged breakup pain.


5. Distraction
A distraction can be a good thing then when it takes your mind off of a stressful situation or difficult decision, like when you take a break from work to meet a friend for lunch. But it works the other way, as well: When you're so busy thinking about something else that you can't enjoy what's going on around you, that kind of distraction can be a recipe for stress. Practicing mindfulness gives you brain the refresh it needs, says Richard Lenox, director of the Student Counseling Center at Texas Tech University. Paying full attention to your surroundings when you're walking and driving can help, he adds. "Stress and anxiety tend to melt away when our mind is focused on the present." 


6. Your Childhood
Traumatic events that happened when you were a kid can continue to affect your stress levels and overall health into adulthood. A 2014 University of Wisconsin-Madison study found that these childhood experiences may actually change parts of the brain responsible for processing stress and emotion. The way you were raised can also have a lasting impact on your everyday angst, suggests a 2014 Johns Hopkins University study. Researchers found that children of parents with social anxiety disorders are more likely to develop "trickle-down anxiety" -- not simply because of their genes, but because of their parents' behaviors toward them such as a lack of warmth and emotion, or high levels of criticism and doubt.


7. Tea And Chocolate
You probably know to take it easy on the coffee when you're already feeling on edge. "Caffeine is always going to make stress worse," says Yeager. But you may not think as much about drinking several cups of tea at once, or chowing down on a bar of dark chocolate -- both of which can contain nearly as much caffeine as a cup of joe. "Chocolate is a huge caffeine source," says Yeager. "I know people who don't drink coffee but they'll eat six little candy bars in a two-hour period because they want the same kind of jolt." Too much caffeine, in any form, can cause problems with sleep, digestion, and irritability. 


8. Your Expectations woman trail running
When things don't go the way you've planned, do you tend to get upset and act defensively, or do you roll with the punches and set off on a new plan? If it's the former, you could be contributing to a mindset of pessimism and victimization that will slowly wear you down, even when things may not be as bad as they seem. "Your level of serenity is inversely proportionate to your expectations," says Yeager. That doesn't mean you shouldn't set ambitious goals for yourself or settle for less than what you want, of course, but being realistic about what's truly possible is important, as well.


9. Your Reaction To Stress
If you tend to deal with stressful situations by working long hours, skipping your workouts, and bingeing on junk food, we've got some bad news: You're only making it worse. "We know that physical activity and healthy foods will help your body better deal with stress, and yet we often avoid them when we need them the most," says Yeager. "People really need to think about this downward spiral we get into and work harder to counteract it."


10. Multitasking
Think you're being super efficient by tackling four tasks at once? Chances are you're not -- and it's only decreasing your productivity while increasing your stress. A 2012 University of Irvine study, for example, found that people who responded to emails all day long while also trying to get their work done experienced more heart-rate variability (an indicator of mental stress) than those who waited to respond to all of their emails at one time. Focusing on one task at a time can ensure that you're doing that job to the best of your abilities and getting the most out of it, so you won't have to worry about or go back and fix it later, says Schieman. And don't worry: You'll have enough time to do it all. In fact, you may discover you have more time than you thought.


11. Your Favorite Sport
Watching a tight game of college hoops can stress you out -- even if your alma mater wins. "The body doesn't distinguish between 'bad' stress from life or work and 'good' stress caused by game-day excitement," says Jody Gilchrist, a nurse practitioner at the University of Alabama at Birmingham’s Heart and Vascular Clinic. Watching sports can even trigger the body's sympathetic nervous system, releasing adrenaline and reducing blood flow to the heart. Those temporary consequences aren't usually anything to be concerned about, but over time, chronic stress can lead to high blood pressure and increased disease risk. And, of course, it doesn't help if you're adding alcohol and binge-eating to a situation that's already stressful on your body. You may not be able to control the outcome of the game, says Gilchrist, but you can limit its effects on your own body. 


12. Digital Devices laptop in bed
Whether you're using it for work or play, technology may play a large role in your mental health, says Yeager. Using computers or e-readers too close to bedtime could lead to sleep problems, he says, and spending too much time virtually socializing can make real-life interactions seem extra stressful. (Plus, texting doesn't trigger the same feel-good hormones as face-to-face talk does.) Then there's the dreaded "work creep," says Schieman, when smartphones allow employees to be tethered to their jobs, even during off-hours. "People say they're only going to check email for an hour while they're on vacation, but the problem with email is that they're filled with responsibilities, new tasks, and dilemmas that are going to be hard to compartmentalize and put out of your head once that hour is up."


13. Your (Good) Health
While it may not be as stressful as having a chronic illness or getting bad news at the doctor's office, even people in the best shape of their lives worry about their bodies, their diets, and their fitness levels. In fact, people who take healthy living to an extreme may experience some rather unhealthy side effects. People who follow low-carb diets, for example, are more likely to report being sad or stressed out, while those on any kind of restrictive meal plan may feel more tired than usual. And it's not unheard of for someone to become obsessed with healthy eating (known as orthorexia) or working out (gymorexia). Like any form of perfectionism, these problems can be stressful at best, and extremely dangerous at worst.


14. Housework
Does folding laundry help you feel calm, or does it make your blood boil? If you're in a living situation where you feel you're responsible for an unfair share of work, even chores you once enjoyed may start to feel like torture. "Dividing up housework and parenting responsibilities can be tricky, especially if both partners work outside the home," says Schieman. "And whether you define that division of labor as equal or unequal can really change your attitude toward it."


15. Uncertainty
Stress can be defined as any perceived or actual threat, says Yeager, so any type of doubt that's looming over you can contribute to your anxiety levels on a daily basis. "When you know something could change at any minute, you always have your guard up and it's hard to just relax and enjoy anything." Financial uncertainty may be the most obvious stressor -- not being sure if you'll keep your job during a round of layoffs, or not knowing how you'll pay your credit card bill. Insecurities in other areas of life, like your relationship or your housing status, can eat away at you too.


16. Your Pet bulldog puppy
No matter how much you love your furry friends, there's no question that they add extra responsibility to your already full plate. Even healthy animals need to be fed, exercised, cleaned up after, and given plenty of attention on a regular basis -- and unhealthy ones can be a whole other story. "Pets can be the most positive source of unconditional love, but at the same time they require an extreme amount of energy," says Yeager. People also tend to underestimate the stress they'll experience when they lose a pet. "I've had people in my office tell me they cried more when their dog died than when their parent died. It's a very emotional connection."


17. Your Education
Having a college degree boosts your odds of landing a well-paying job, so although you're less likely to suffer from money-related anxiety, your education can bring on other types of stress, according to a 2014 study by Schieman and his University of Toronto colleagues. His research found that highly educated people were more likely to be stressed out thanks to job pressures, being overworked, and conflicts between work and family. "Higher levels of authority come with a lot more interpersonal baggage, such as supervising people or deciding whether they get promotions," says Schieman. "With that type of responsibility, you start to take things like incompetency and people not doing their jobs more personally, and it bothers you more."

View Article Here Read More

How the Secession Movement Could Break Up the U.S.



new U.S. map
Excerpt from charismanews.com  
A new map of the U.S. could include a state called Jefferson, made up of Northern California and Southern Oregon, a new state called Western Maryland and a new state called North Colorado. (CBN)

If you mention the word secession most people think of the South during the Civil War. But today, a new movement is gaining steam because of frustration over a growing, out-of-control federal government.
A number of conservative, rural Americans are taking about seceding and creating their own states, meaning a new map of the United States of America could include the following:
  • A 51st state called Jefferson, made up of Northern California and Southern Oregon
  • A new state called Western Maryland
  • A new state called North Colorado
These are real movements gaining traction with voters across the country. Jeffrey Hare runs the 51st State Initiative in Colorado, an effort to fight an out-of-control legislature trying to ram big government policies down the throats of voters.
"We're at this point of irreconcilable differences," Hare told CBN News.





Secessionist talk has filled town hall meetings and the divide discussed is not just ideological.
"It's predominately left versus right, but it's urban versus rural because you typically find more typical conservative values in rural America," Hare said.
An Attack on Colorado?
That's the crux of the issue. Rural Americans across many states feel they're not being heard. Their laundry list is long and at the top of that list are stricter gun control laws.
According to Weld County, Colo., Sheriff John Cooke, the state legislature is out of control.
"They are out of touch with rural Colorado," he said. "There is an attack on rural Colorado and it's not just on gun control laws. It's on several of the other bills that they passed."
Government mandates on renewable energy, environmental policies restricting oil and gas drilling, and controversial social issues like gay marriage have also led to this divide and talk of secession.
Organizers want to create "North Colorado," an idea that went to voters in 11 counties this past fall. But not everyone in Colorado thinks secession is a great idea.
"I don't think that's necessarily the way to make something happen within the area you live," Colorado resident Greg Howe told CBN News. "You're supposed to work within our electoral services."
The so-called secession movement in Colorado had mixed results this past November. Some counties approved it. Others didn't.
But the organizers of the 51st State Initiative are undaunted, saying this type of movement takes time.
"Movements take a while; education takes time," Hare said. "People do have a hard time saying ,'I want to live in a different state,' even though physically they live in the same house."
"It's hard for them since their lives have been Coloradoans," he explained. "Their whole lives to say that 'I'm going to be a new Coloradoan' or 'I want to live in the state of liberty' or something different."
An 'Amicable' Divorce
That desire for something different can also be felt in Arizona, Michigan, and in Western Maryland where thousands have signed secession petitions.
One website reads, "We intend to exercise our right of self-determination and self-governance to better secure our rights to life, liberty, and the pursuit of happiness."

Scott Strzelczyk, the leader of the Western Maryland movement, is ready to get going.
"If they are not going to listen or take our needs into consideration and govern in a way that's more in accordance with the way we want to be governed we are seeking an amicable divorce," he said.
Meanwhile, in Northern California and Southern Oregon, activists want to come together in the state of "Jefferson."
Their proposed state flag includes two "Xs," representing their feeling of being double-crossed by the state capitals of Sacramento, Calif., and Salem, Ore.
No Small Task
Creating a new state isn't easy. The last time a state actually gave up territory was in 1820, when Maine split from Massachusetts. Since then, additional efforts have been unsuccessful. 
The first step is getting it passed by the state legislature and then the U.S. Congress.
"This is a valid constitutional process that our founding fathers specifically wrote into the Constitution," Hare said. "Well, if they didn't write this into the Constitution to be used, then why did they write it in?"
But supporters have an uphill battle since the media will not be their friend.
"The danger is once the outside media start to grab hold of it, the attention is on the difficulty, the almost impossibility of it happening," professor Derek Everett, with Metropolitan State University in Denver, explained.
Voter 'Disconnect'
State secession proponents, like Roni Bell Sylvester of Colorado, say they will keep fighting because the dismissive attitude of state legislative bodies must end.
"I find the sort of arrogant, dismissive to be further proof as to just how disconnected the urban is from the rural," Sylvester said.
Movements like the one in Colorado and other states could be just the beginning—at least that's the talk at town hall meetings in places like Colorado and elsewhere.
It's called 'voter disconnect" where the people say they've had enough and are crying out for something to be done.
"We, at some point, have to figure out a way to get our point across or at least be able to have a dialogue and not be ignored because you haven't seen anything yet over the next 5 to 10 years," one resident warned at a recent town hall meeting in Colorado.
As for Hare, he said it boils down to one simple concept.
"I think ultimately what people want, whether you look at it from a right or left paradigm, is government to stay out of their business," he said.

View Article Here Read More

The Story of Human Evolution Now Challenged



Story of Human Evolution Challenged


Excerpt from newhistorian.com

The history of the evolution of early humans has been challenged.
Until now, one of the most dominant theories about our evolution claimed that our genus, Homo, had evolved from smaller early humans becoming taller, heavier and longer-legged. This process eventually resulted in Homo erectus, which was able to migrate out of Africa and colonise Eurasia.

Whilst we know that small-bodied H. erectus, averaging less than five feet tall and weighing under 50 kilograms, were living in southern Europe by 1.77 million years ago, the origin of the larger body size associated with modern humans has been elusive.

The paucity of knowledge about the origins of larger members of the Homo genus is primarily a result of a lack of evidence. Previous estimates of body size had been based on well-preserved specimens which were easy to assign a species to. Since these samples are rare and disparate in terms of both space and time, little is known about geographical and chronological variation in the body sizes of the early Homo.

A joint study between the Universities of Cambridge and Tübingen has shown that increases in body size occurred thousands of years after H. erectus left Africa; this growth in Homo body sizes primarily took place in the Koobi Fora region in modern Kenya.

“The evolution of larger bodies and longer legs can thus no longer be assumed to be the main driving factor behind the earliest excursions of our genus to Eurasia,” said Manuel Will, co-author of the study which has been published in the Journal of Human Evolution.

By using tiny fragments of fossil, the team were able to estimate our earliest ancestors’ height and body mass. Their findings, rather surprisingly, indicate a huge diversity in body size; this is particularly surprising as the wide variation we see in humans today was thought to be a relatively recent development.

“If someone asked you ‘are modern humans 6 foot tall and 70kg?’ you’d say ‘well some are, but many people aren’t,’ and what we’re starting to show is that this diversification happened really early in human evolution,” said Dr Jay Stock, co-author of the study.

Stock and Will are the first scientists in 20 years to compare the body size of humans from between 2.5 and 1.5 million years ago. They are also the first to use fragmentary fossils – many as small as toes, none longer than 5cm – to estimate body sizes.

By comparing measurements of fossils from sites in Kenya, Tanzania, South Africa and Georgia, the researchers have revealed substantial regional variation in the size of early humans. Groups who lived in South African caves, for example, were 4.8 feet tall on average. Some of the skeletons found in Kenya’s Koobi Fora region would have stood nearly 6 feet tall, a height comparable to the average height of modern British males.
“Basically every textbook on human evolution gives the perspective that one lineage of humans evolved larger bodies before spreading beyond Africa. But the evidence for this story about our origins and the dispersal out of Africa just no longer really fits,” said Stock.

It appears that Stock and Will have rewritten the history of the development of early humans; diversity has deep roots amongst the Homo genus.

View Article Here Read More

NASA video illustrates ‘X-ray wind’ blasting from a black hole

This artist's illustration shows interstellar gas, the raw material of star formation, being blown away.Excerpt from cnet.com It takes a mighty wind to keep stars from forming. Researchers have found one in a galaxy far, far away -- and NASA mad...

View Article Here Read More

How Quantum Physics will change your life and amaze the world!

 Excerpt from educatinghumanity.com "Anyone not shocked by quantum mechanics has not yet understood it."Niels Bohr10 Ways Quantum Physics Will Change the WorldEver want to have a "life do over", teleport, time travel, have your computer wor...

View Article Here Read More

Biologists fear DNA editing procedure can alter human DNA




Excerpt from themarketbusiness.com

A group of biologists was alarmed with the use a new genome-editing technique to modify human DNA in a way that it can become hereditary.
The biologists worry that the new technique is so effective and easy to use that some physicians may push ahead with it before its safety can be weigh up. They also want the public to understand the ethical issues surrounding the technique, which could be used to cure genetic diseases, but also to enhance qualities like beauty or intelligence. The latter is a path that many ethicists believe should never be taken.


“You could exert control over human heredity with this technique, and that is why we are raising the issue,” said David Baltimore, a former president of the California Institute of Technology and a member of the group whose paper on the topic was published in the journal Science.

Ethicists have been concerned for decades about the dangers of altering the human germ line — meaning to make changes to human sperm, eggs or embryos that will last through the life of the individual and be passed on to future generations. Until now, these worries have been theoretical. But a technique invented in 2012 makes it possible to edit the genome precisely and with much greater ease. The technique has already been used to edit the genomes of mice, rats and monkeys, and few doubt that it would work the same way in people.

The new genome-editing technique holds the power to repair or enhance any human gene. “It raises the most fundamental of issues about how we are going to view our humanity in the future and whether we are going to take the dramatic step of modifying our own germline and in a sense take control of our genetic destiny, which raises enormous peril for humanity,” said George Daley, a stem cell expert at Boston Children’s Hospital and a member of the group.

The biologists writing in Science support continuing laboratory research with the technique, and few if any scientists believe it is ready for clinical use. Any such use is tightly regulated in the United States and Europe. American scientists, for instance, would have to present a plan to treat genetic diseases in the human germline to the Food and Drug Administration.

The paper’s authors, however, are concerned about countries that have less regulation in science. They urge that “scientists should avoid even attempting, in lax jurisdictions, germ line genome modification for clinical application in humans” until the full implications “are discussed among scientific and governmental organizations.”

Though such a moratorium would not be legally enforceable and might seem unlikely to exert global sway, there is a precedent. In 1975, scientists worldwide were asked to refrain from using a method for manipulating genes, the recombinant DNA technique, until rules had been established.

“We asked at that time that nobody do certain experiments, and in fact nobody did, to my knowledge,” said Baltimore, who was a member of the 1975 group. “So there is a moral authority you can assert from the U.S., and that is what we hope to do.”

Recombinant DNA was the first in a series of ever-improving steps for manipulating genetic material. The chief problem has always been one of accuracy, of editing the DNA at precisely the intended site, since any off-target change could be lethal. Two recent methods, known as zinc fingers and TAL effectors, came close to the goal of accurate genome editing, but both are hard to use. The new genome-editing approach was invented by Jennifer Doudna of the University of California, Berkeley, and Emmanuelle Charpentier of Umea University in Sweden.

Their method, known by the acronym Crispr-Cas9, co-opts the natural immune system with which bacteria remember the DNA of the viruses that attack them so they are ready the next time those same invaders appear. Researchers can simply prime the defense system with a guide sequence of their choice and it will then destroy the matching DNA sequence in any genome presented to it. Doudna is the lead author of the Science article calling for control of the technique and organized the meeting at which the statement was developed.

Though highly efficient, the technique occasionally cuts the genome at unintended sites. The issue of how much mistargeting could be tolerated in a clinical setting is one that Doudna’s group wants to see thoroughly explored before any human genome is edited.

Scientists also say that replacing a defective gene with a normal one may seem entirely harmless but perhaps would not be.
“We worry about people making changes without the knowledge of what those changes mean in terms of the overall genome,” Baltimore said. “I personally think we are just not smart enough — and won’t be for a very long time — to feel comfortable about the consequences of changing heredity, even in a single individual.”
Many ethicists have accepted the idea of gene therapy, changes that die with the patient, but draw a clear line at altering the germline, since these will extend to future generations. The British Parliament in February approved the transfer of mitochondria, small DNA-containing organelles, to human eggs whose own mitochondria are defective. But that technique is less far-reaching because no genes are edited.

There are two broad schools of thought on modifying the human germline, said R. Alta Charo, a bioethicist at the University of Wisconsin and a member of the Doudna group. One is pragmatic and seeks to balance benefit and risk. The other “sets up inherent limits on how much humankind should alter nature,” she said. 
Some Christian doctrines oppose the idea of playing God, whereas in Judaism and Islam there is the notion “that humankind is supposed to improve the world.” She described herself as more of a pragmatist, saying, “I would try to regulate such things rather than shut a new technology down at its beginning.”

Other scientists agree with the Doudna group’s message.
“It is very clear that people will try to do gene editing in humans,” said Rudolf Jaenisch, a stem cell biologist at the Whitehead Institute in Cambridge, Massachusetts, who was not a member of the Doudna group. “This paper calls for a moratorium on any clinical application, which I believe is the right thing to do.”
Writing in Nature last week, Edward Lanphier and other scientists involved in developing the rival zinc finger technique for genome editing also called for a moratorium on human germline modification, saying that use of current technologies would be “dangerous and ethically unacceptable.”

The International Society for Stem Cell Research said Thursday that it supported the proposed moratorium.

The Doudna group calls for public discussion but is also working to develop some more formal process, such as an international meeting convened by the National Academy of Sciences, to establish guidelines for human use of the genome-editing technique.

“We need some principled agreement that we want to enhance humans in this way or we don’t,” Jaenisch said. “You have to have this discussion because people are gearing up to do this.”

View Article Here Read More

A Complete Guide to the March 20th Total Solar Eclipse


Credit
Totality! The 2012 total solar eclipse as seen from Australia. Credit and copyright: www.hughca.com.



Excerpt from universetoday.com



The first of two eclipse seasons for the year is upon us this month, and kicks off with the only total solar eclipse for 2015 on Friday, March 20th.

And what a bizarre eclipse it is. Not only does this eclipse begin just 15 hours prior to the March equinox marking the beginning of astronomical spring in the northern hemisphere, but the shadow of totality also beats path through the high Arctic and ends over the North Pole.


Credit:
An animation of the March 20th eclipse. Credit: NASA/GSFC/AT Sinclair.


Already, umbraphiles — those who chase eclipses — are converging on the two small tracts of terra firma where the umbra of the Moon makes landfall: the Faroe and Svalbard islands. All of Europe, the northern swath of the African continent, north-central Asia and the Middle East will see a partial solar eclipse, and the eclipse will be deeper percentage-wise the farther north you are .
2015 features four eclipses in all: two total lunars and two solars, with one total solar and one partial solar eclipse. Four is the minimum number of eclipses that can occur in a calendar year, and although North America misses out on the solar eclipse action this time ’round, most of the continent gets a front row seat to the two final total lunar eclipses of the ongoing tetrad on April 4th and September 28th.

How rare is a total solar eclipse on the vernal equinox? Well, the last total solar eclipse on the March equinox occurred back in 1662 on March 20th. There was also a hybrid eclipse — an eclipse which was annular along a portion of the track, and total along another — on March 20th, 1681. But you won’t have to wait that long for the next, as another eclipse falls on the northward equinox on March 20th, 2034.


Credit
The path of the March 20th eclipse across Europe, including start times for the partial phases, and the path of totality, click to enlarge. For more maps showing the percentage of occlusion, elevation, and more, click here. Credit: Michael Zeiler/GreatAmercianEclipse.com.


Note that in the 21st century, the March equinox falls on March 20th, and will start occasionally falling on March 19th in 2044. We’re also in that wacky time of year where North America has shifted back to ye ‘ole Daylight Saving (or Summer) Time, while Europe makes the change after the eclipse on March 29th. It really can wreak havoc with those cross-time zone plans, we know…
The March 20th eclipse also occurs only a day after lunar perigee, which falls on March 19th at 19:39 UT. This is also one of the closer lunar perigees for 2015 at 357,583 kilometres distant, though the maximum duration of totality for this eclipse is only 2 minutes and 47 seconds just northeast of the Faroe Islands.


Credit:
Views from selected locales in Europe and Africa. Credit: Stellarium.



This eclipse is number 61 of 71 in solar saros series 120, which runs from 933 to 2754 AD. It’s also the second to last total in the series, with the final total solar eclipse for the saros cycle occurring one saros later on March 30th, 2033.



What would it look like to sit at the North Pole and watch a total solar eclipse on the first day of Spring? It would be a remarkable sight, as the disk of the Sun skims just above the horizon for the first time since the September 2014 equinox. Does this eclipse occur at sunrise or sunset as seen from the pole? It would be a rare spectacle indeed!


Credit
An equinoctal eclipse as simulated from the North Pole. Credit: Stellarium.






Credit
Practicing eclipse safety in Africa. Credit: Michael Zeiler/GreatAmericanEclipse.com


Safety is paramount when observing the Sun and a solar eclipse. Eye protection is mandatory during all partial phases across Europe, northern Asia, North Africa and the Middle East. A proper solar filter mask constructed of Baader safety film is easy to construct, and should fit snugly over the front aperture of a telescope. No. 14 welder’s goggles are also dense enough to look at the Sun, as are safety glasses specifically designed for eclipse viewing. Observing the Sun via projection or by using a pinhole projector is safe and easy to do.


Credit
A solar filtered scope ready to go in Tucson, Arizona. Credit: photo by author.

Weather is always the big variable in the days leading up to any eclipse. Unfortunately, March in the North Atlantic typically hosts stormy skies, and the low elevation of the eclipse in the sky may hamper observations as well. From the Faroe Islands, the Sun sits 18 degrees above the horizon during totality, while from the Svalbard Islands it’s even lower at 12 degrees in elevation. Much of Svalbard is also mountainous, making for sunless pockets of terrain that will be masked in shadow on eclipse day. Mean cloud amounts for both locales run in the 70% range, and the Eclipser website hosts a great in-depth climatology discussion for this and every eclipse.


Credit
The view of totality and the planets as seen from the Faroe Islands. Credit: Starry Night.


But don’t despair: you only need a clear view of the Sun to witness an eclipse!

Solar activity is also another big variable. Witnesses to the October 23rd, 2014 partial solar eclipse over the U.S. southwest will recall that we had a massive and very photogenic sunspot turned Earthward at the time. The Sun has been remarkably calm as of late, though active sunspot region 2297 is developing nicely. It will have rotated to the solar limb come eclipse day, and we should have a good grasp on what solar activity during the eclipse will look like come early next week.

And speaking of which: could an auroral display be in the cards for those brief few minutes of totality? It’s not out of the question, assuming the Sun cooperates.  Of course, the pearly white corona of the Sun still gives off a considerable amount of light during totality, equal to about half the brightness of a Full Moon. Still, witnessing two of nature’s grandest spectacles — a total solar eclipse and the aurora borealis — simultaneously would be an unforgettable sight, and to our knowledge, has never been documented!

We also put together some simulations of the eclipse as seen from Earth and space:




Note that an area of southern Spain may witness a transit of the International Space Station during the partial phase of the eclipse. This projection is tentative, as the orbit of the ISS evolves over time. Be sure to check CALSky for accurate predictions in the days leading up to the eclipse.


Credit
The ISS transits the Sun during the eclipse around 9:05 UT as seen from southern Spain. Credit: Starry Night.


Can’t make it to the eclipse? Live in the wrong hemisphere? There are already a few planned webcasts for the March 20th eclipse:


View Article Here Read More

Surface of Venus revealed by new radio telescope data


https://i0.wp.com/www.smnweekly.com/wp-content/uploads/2015/03/Surface-of-Venus-revealed-by-new-radio-telescope-data.jpg?resize=605%2C608



Excerpt from smnweekly.com
By David M. DeMar

New radio telescope data from the National Radio Astronomy Observatory has revealed for the first time ever just what Venus has under its thick veil of clouds that otherwise occlude its surface from view.
25 million miles distant from us, Venus looks to the naked eye – or through a light telescope – much like a cloudy marble, thanks to the thick cloudbanks of carbon dioxide ringing the planet. However, the surface underneath, long a mystery to planetary scientists, has been laid bare thanks to the work of Puerto Rico’s Arecibo Observatory radio transmitter and the Green Bank Telescope, a radio telescope located in West Virginia and operated by the National Science Foundation.
The two facilities worked together with the NRAO in order to uncover the hidden surface of Mars. Arecibo sent radar signals to Venus, where they penetrated the thick atmosphere and bounced off the ground. The returning radio signals were picked up by the GBT in West Virginia in a process known as bistatic radar; the result is a radar image that shows craters and mountains strewn across the surface of Venus at a surprisingly high resolution.
The image is bisected by a dark line, representing areas where it’s particularly difficult to receive useful image data through the use of bistatic radar. However, scientists are intending to compare multiple images as time goes by in order to identify any active geologic processes on the surface of Venus such as volcanic activity.
It’s no particularly easy task to compare radar images in search of evidence of any change in this manner says Smithsonian senior scientist Bruce Campbell, but the work will continue. Campbell, who works at the National Air and Space Museum in the nation’s capital and is associated with the center for Earth and Planetary Studies, added that combining images from the latest NRAO endeavor and others will yield large amounts of data on how the surface of Venus might be altered by other processes.
The radar data, and a scientific paper based on it, will be published in April in Icarus, the scientific journal dedicated to studies of the solar system.

View Article Here Read More

Is playing ‘Space Invaders’ a milestone in artificial intelligence?





Excerpt from latimes.com

Computers have beaten humans at chess and "Jeopardy!," and now they can master old Atari games such as "Space Invaders" or "Breakout" without knowing anything about their rules or strategies.

Playing Atari 2600 games from the 1980s may seem a bit "Back to the Future," but researchers with Google's DeepMind project say they have taken a small but crucial step toward a general learning machine that can mimic the way human brains learn from new experience.

Unlike the Watson and Deep Blue computers that beat "Jeopardy!" and chess champions with intensive programming specific to those games, the Deep-Q Network built its winning strategies from keystrokes up, through trial and error and constant reprocessing of feedback to find winning strategies.

Image result for space invaders

“The ultimate goal is to build smart, general-purpose [learning] machines. We’re many decades off from doing that," said artificial intelligence researcher Demis Hassabis, coauthor of the study published online Wednesday in the journal Nature. "But I do think this is the first significant rung of the ladder that we’re on." 
The Deep-Q Network computer, developed by the London-based Google DeepMind, played 49 old-school Atari games, scoring "at or better than human level," on 29 of them, according to the study.
The algorithm approach, based loosely on the architecture of human neural networks, could eventually be applied to any complex and multidimensional task requiring a series of decisions, according to the researchers. 

The algorithms employed in this type of machine learning depart strongly from approaches that rely on a computer's ability to weigh stunning amounts of inputs and outcomes and choose programmed models to "explain" the data. Those approaches, known as supervised learning, required artful tailoring of algorithms around specific problems, such as a chess game.

The computer instead relies on random exploration of keystrokes bolstered by human-like reinforcement learning, where a reward essentially takes the place of such supervision.
“In supervised learning, there’s a teacher that says what the right answer was," said study coauthor David Silver. "In reinforcement learning, there is no teacher. No one says what the right action was, and the system needs to discover by trial and error what the correct action or sequence of actions was that led to the best possible desired outcome.”

The computer "learned" over the course of several weeks of training, in hundreds of trials, based only on the video pixels of the game -- the equivalent of a human looking at screens and manipulating a cursor without reading any instructions, according to the study.

Over the course of that training, the computer built up progressively more abstract representations of the data in ways similar to human neural networks, according to the study.
There was nothing about the learning algorithms, however, that was specific to Atari, or to video games for that matter, the researchers said.
The computer eventually figured out such insider gaming strategies as carving a tunnel through the bricks in "Breakout" to reach the back of the wall. And it found a few tricks that were unknown to the programmers, such as keeping a submarine hovering just below the surface of the ocean in "Seaquest."

The computer's limits, however, became evident in the games at which it failed, sometimes spectacularly. It was miserable at "Montezuma's Revenge," and performed nearly as poorly at "Ms. Pac-Man." That's because those games also require more sophisticated exploration, planning and complex route-finding, said coauthor Volodymyr Mnih.

And though the computer may be able to match the video-gaming proficiency of a 1980s teenager, its overall "intelligence" hardly reaches that of a pre-verbal toddler. It cannot build conceptual or abstract knowledge, doesn't find novel solutions and can get stuck trying to exploit its accumulated knowledge rather than abandoning it and resort to random exploration, as humans do. 

“It’s mastering and understanding the construction of these games, but we wouldn’t say yet that it’s building conceptual knowledge, or abstract knowledge," said Hassabis.

The researchers chose the Atari 2600 platform in part because it offered an engineering sweet spot -- not too easy and not too hard. They plan to move into the 1990s, toward 3-D games involving complex environments, such as the "Grand Theft Auto" franchise. That milestone could come within five years, said Hassabis.

“With a few tweaks, it should be able to drive a real car,” Hassabis said.

DeepMind was formed in 2010 by Hassabis, Shane Legg and Mustafa Suleyman, and received funding from Tesla Motors' Elon Musk and Facebook investor Peter Thiel, among others. It was purchased by Google last year, for a reported $650 million. 

Hassabis, a chess prodigy and game designer, met Legg, an algorithm specialist, while studying at the Gatsby Computational Neuroscience Unit at University College, London. Suleyman, an entrepreneur who dropped out of Oxford University, is a partner in Reos, a conflict-resolution consulting group.

View Article Here Read More

Why science is so hard to believe?

 
In the recent movie “Interstellar,” set in a futuristic, downtrodden America where NASA has been forced into hiding, school textbooks say the Apollo moon landings were faked.


Excerpt from 


There’s a scene in Stanley Kubrick’s comic masterpiece “Dr. Strangelove” in which Jack D. Ripper, an American general who’s gone rogue and ordered a nuclear attack on the Soviet Union, unspools his paranoid worldview — and the explanation for why he drinks “only distilled water, or rainwater, and only pure grain alcohol” — to Lionel Mandrake, a dizzy-with-anxiety group captain in the Royal Air Force.
Ripper: “Have you ever heard of a thing called fluoridation? Fluoridation of water?”
Mandrake: “Ah, yes, I have heard of that, Jack. Yes, yes.”Ripper: “Well, do you know what it is?”
Mandrake: “No. No, I don’t know what it is, no.”
Ripper: “Do you realize that fluoridation is the most monstrously conceived and dangerous communist plot we have ever had to face?” 

The movie came out in 1964, by which time the health benefits of fluoridation had been thoroughly established and anti-fluoridation conspiracy theories could be the stuff of comedy. Yet half a century later, fluoridation continues to incite fear and paranoia. In 2013, citizens in Portland, Ore., one of only a few major American cities that don’t fluoridate, blocked a plan by local officials to do so. Opponents didn’t like the idea of the government adding “chemicals” to their water. They claimed that fluoride could be harmful to human health.

Actually fluoride is a natural mineral that, in the weak concentrations used in public drinking-water systems, hardens tooth enamel and prevents tooth decay — a cheap and safe way to improve dental health for everyone, rich or poor, conscientious brushers or not. That’s the scientific and medical consensus.
To which some people in Portland, echoing anti-fluoridation activists around the world, reply: We don’t believe you.
We live in an age when all manner of scientific knowledge — from the safety of fluoride and vaccines to the reality of climate change — faces organized and often furious opposition. Empowered by their own sources of information and their own interpretations of research, doubters have declared war on the consensus of experts. There are so many of these controversies these days, you’d think a diabolical agency had put something in the water to make people argumentative.
Science doubt has become a pop-culture meme. In the recent movie “Interstellar,” set in a futuristic, downtrodden America where NASA has been forced into hiding, school textbooks say the Apollo moon landings were faked.


The debate about mandated vaccinations has the political world talking. A spike in measles cases nationwide has President Obama, lawmakers and even potential 2016 candidates weighing in on the vaccine controversy. (Pamela Kirkland/The Washington Post)
In a sense this is not surprising. Our lives are permeated by science and technology as never before. For many of us this new world is wondrous, comfortable and rich in rewards — but also more complicated and sometimes unnerving. We now face risks we can’t easily analyze.
We’re asked to accept, for example, that it’s safe to eat food containing genetically modified organisms (GMOs) because, the experts point out, there’s no evidence that it isn’t and no reason to believe that altering genes precisely in a lab is more dangerous than altering them wholesale through traditional breeding. But to some people, the very idea of transferring genes between species conjures up mad scientists running amok — and so, two centuries after Mary Shelley wrote “Frankenstein,” they talk about Frankenfood.
The world crackles with real and imaginary hazards, and distinguishing the former from the latter isn’t easy. Should we be afraid that the Ebola virus, which is spread only by direct contact with bodily fluids, will mutate into an airborne super-plague? The scientific consensus says that’s extremely unlikely: No virus has ever been observed to completely change its mode of transmission in humans, and there’s zero evidence that the latest strain of Ebola is any different. But Google “airborne Ebola” and you’ll enter a dystopia where this virus has almost supernatural powers, including the power to kill us all.
In this bewildering world we have to decide what to believe and how to act on that. In principle, that’s what science is for. “Science is not a body of facts,” says geophysicist Marcia McNutt, who once headed the U.S. Geological Survey and is now editor of Science, the prestigious journal. “Science is a method for deciding whether what we choose to believe has a basis in the laws of nature or not.”
The scientific method leads us to truths that are less than self-evident, often mind-blowing and sometimes hard to swallow. In the early 17th century, when Galileo claimed that the Earth spins on its axis and orbits the sun, he wasn’t just rejecting church doctrine. He was asking people to believe something that defied common sense — because it sure looks like the sun’s going around the Earth, and you can’t feel the Earth spinning. Galileo was put on trial and forced to recant. Two centuries later, Charles Darwin escaped that fate. But his idea that all life on Earth evolved from a primordial ancestor and that we humans are distant cousins of apes, whales and even deep-sea mollusks is still a big ask for a lot of people.
Even when we intellectually accept these precepts of science, we subconsciously cling to our intuitions — what researchers call our naive beliefs. A study by Andrew Shtulman of Occidental College showed that even students with an advanced science education had a hitch in their mental gait when asked to affirm or deny that humans are descended from sea animals and that the Earth goes around the sun. Both truths are counterintuitive. The students, even those who correctly marked “true,” were slower to answer those questions than questions about whether humans are descended from tree-dwelling creatures (also true but easier to grasp) and whether the moon goes around the Earth (also true but intuitive).
Shtulman’s research indicates that as we become scientifically literate, we repress our naive beliefs but never eliminate them entirely. They nest in our brains, chirping at us as we try to make sense of the world.
Most of us do that by relying on personal experience and anecdotes, on stories rather than statistics. We might get a prostate-specific antigen test, even though it’s no longer generally recommended, because it caught a close friend’s cancer — and we pay less attention to statistical evidence, painstakingly compiled through multiple studies, showing that the test rarely saves lives but triggers many unnecessary surgeries. Or we hear about a cluster of cancer cases in a town with a hazardous-waste dump, and we assume that pollution caused the cancers. Of course, just because two things happened together doesn’t mean one caused the other, and just because events are clustered doesn’t mean they’re not random. Yet we have trouble digesting randomness; our brains crave pattern and meaning.
Even for scientists, the scientific method is a hard discipline. They, too, are vulnerable to confirmation bias — the tendency to look for and see only evidence that confirms what they already believe. But unlike the rest of us, they submit their ideas to formal peer review before publishing them. Once the results are published, if they’re important enough, other scientists will try to reproduce them — and, being congenitally skeptical and competitive, will be very happy to announce that they don’t hold up. Scientific results are always provisional, susceptible to being overturned by some future experiment or observation. Scientists rarely proclaim an absolute truth or an absolute certainty. Uncertainty is inevitable at the frontiers of knowledge.
That provisional quality of science is another thing a lot of people have trouble with. To some climate-change skeptics, for example, the fact that a few scientists in the 1970s were worried (quite reasonably, it seemed at the time) about the possibility of a coming ice age is enough to discredit what is now the consensus of the world’s scientists: The planet’s surface temperature has risen by about 1.5 degrees Fahrenheit in the past 130 years, and human actions, including the burning of fossil fuels, are extremely likely to have been the dominant cause since the mid-20th century.
It’s clear that organizations funded in part by the fossil-fuel industry have deliberately tried to undermine the public’s understanding of the scientific consensus by promoting a few skeptics. The news media gives abundant attention to such mavericks, naysayers, professional controversialists and table thumpers. The media would also have you believe that science is full of shocking discoveries made by lone geniuses. Not so. The (boring) truth is that science usually advances incrementally, through the steady accretion of data and insights gathered by many people over many years. So it has with the consensus on climate change. That’s not about to go poof with the next thermometer reading.
But industry PR, however misleading, isn’t enough to explain why so many people reject the scientific consensus on global warming.
The “science communication problem,” as it’s blandly called by the scientists who study it, has yielded abundant new research into how people decide what to believe — and why they so often don’t accept the expert consensus. It’s not that they can’t grasp it, according to Dan Kahan of Yale University. In one study he asked 1,540 Americans, a representative sample, to rate the threat of climate change on a scale of zero to 10. Then he correlated that with the subjects’ science literacy. He found that higher literacy was associated with stronger views — at both ends of the spectrum. Science literacy promoted polarization on climate, not consensus. According to Kahan, that’s because people tend to use scientific knowledge to reinforce their worldviews.
Americans fall into two basic camps, Kahan says. Those with a more “egalitarian” and “communitarian” mind-set are generally suspicious of industry and apt to think it’s up to something dangerous that calls for government regulation; they’re likely to see the risks of climate change. In contrast, people with a “hierarchical” and “individualistic” mind-set respect leaders of industry and don’t like government interfering in their affairs; they’re apt to reject warnings about climate change, because they know what accepting them could lead to — some kind of tax or regulation to limit emissions.
In the United States, climate change has become a litmus test that identifies you as belonging to one or the other of these two antagonistic tribes. When we argue about it, Kahan says, we’re actually arguing about who we are, what our crowd is. We’re thinking: People like us believe this. People like that do not believe this.
Science appeals to our rational brain, but our beliefs are motivated largely by emotion, and the biggest motivation is remaining tight with our peers. “We’re all in high school. We’ve never left high school,” says Marcia McNutt. “People still have a need to fit in, and that need to fit in is so strong that local values and local opinions are always trumping science. And they will continue to trump science, especially when there is no clear downside to ignoring science.”
Meanwhile the Internet makes it easier than ever for science doubters to find their own information and experts. Gone are the days when a small number of powerful institutions — elite universities, encyclopedias and major news organizations — served as gatekeepers of scientific information. The Internet has democratized it, which is a good thing. But along with cable TV, the Web has also made it possible to live in a “filter bubble” that lets in only the information with which you already agree.
How to penetrate the bubble? How to convert science skeptics? Throwing more facts at them doesn’t help. Liz Neeley, who helps train scientists to be better communicators at an organization called Compass, says people need to hear from believers they can trust, who share their fundamental values. She has personal experience with this. Her father is a climate-change skeptic and gets most of his information on the issue from conservative media. In exasperation she finally confronted him: “Do you believe them or me?” She told him she believes the scientists who research climate change and knows many of them personally. “If you think I’m wrong,” she said, “then you’re telling me that you don’t trust me.” Her father’s stance on the issue softened. But it wasn’t the facts that did it.
If you’re a rationalist, there’s something a little dispiriting about all this. In Kahan’s descriptions of how we decide what to believe, what we decide sometimes sounds almost incidental. Those of us in the science-communication business are as tribal as anyone else, he told me. We believe in scientific ideas not because we have truly evaluated all the evidence but because we feel an affinity for the scientific community. When I mentioned to Kahan that I fully accept evolution, he said: “Believing in evolution is just a description about you. It’s not an account of how you reason.”
Maybe — except that evolution is real. Biology is incomprehensible without it. There aren’t really two sides to all these issues. Climate change is happening. Vaccines save lives. Being right does matter — and the science tribe has a long track record of getting things right in the end. Modern society is built on things it got right.
Doubting science also has consequences, as seen in recent weeks with the measles outbreak that began in California. The people who believe that vaccines cause autism — often well educated and affluent, by the way — are undermining “herd immunity” to such diseases as whooping cough and measles. The anti-vaccine movement has been going strong since a prestigious British medical journal, the Lancet, published a study in 1998 linking a common vaccine to autism. The journal later retracted the study, which was thoroughly discredited. But the notion of a vaccine-autism connection has been endorsed by celebrities and reinforced through the usual Internet filters. (Anti-vaccine activist and actress Jenny McCarthy famously said on “The Oprah Winfrey Show,” “The University of Google is where I got my degree from.”)
In the climate debate, the consequences of doubt are likely to be global and enduring. Climate-change skeptics in the United States have achieved their fundamental goal of halting legislative action to combat global warming. They haven’t had to win the debate on the merits; they’ve merely had to fog the room enough to keep laws governing greenhouse gas emissions from being enacted.
Some environmental activists want scientists to emerge from their ivory towers and get more involved in the policy battles. Any scientist going that route needs to do so carefully, says Liz Neeley. “That line between science communication and advocacy is very hard to step back from,” she says. In the debate over climate change, the central allegation of the skeptics is that the science saying it’s real and a serious threat is politically tinged, driven by environmental activism and not hard data. That’s not true, and it slanders honest scientists. But the claim becomes more likely to be seen as plausible if scientists go beyond their professional expertise and begin advocating specific policies.
It’s their very detachment, what you might call the cold-bloodedness of science, that makes science the killer app. It’s the way science tells us the truth rather than what we’d like the truth to be. Scientists can be as dogmatic as anyone else — but their dogma is always wilting in the hot glare of new research. In science it’s not a sin to change your mind when the evidence demands it. For some people, the tribe is more important than the truth; for the best scientists, the truth is more important than the tribe.

View Article Here Read More

6 Supermaterials That Could Change Our World


Graphene

Excerpt from gizmodo.com

Graphene isn't the only game-changing material to come out of a lab. From aerogels nearly as light as air to metamaterials that manipulate light, here are six supermaterials that have the potential to transform the world of the future.

Self-healing Materials — Bioinspired Plastics

6 Supermaterials That Could Change Our World 
Self-healing plastic. Image credit: UIUC


The human body is very good at fixing itself. The built environment is not. Scott White at the University of Illinois at Urbana Champlain has been engineering bioinspired plastics that can self-heal. Last year, White's lab created a new polymer that oozes to repair a visible hole. The polymer is embedded with a vascular system of liquids that when broken and combined, clot just like blood. While other materials have been able to heal microscopic cracks, this new one repaired a hole 4 millimeter wide with cracks radiating all around it. Not big deal for a human skin, but a pretty big deal for plastic.

Engineers have also been envisioning concrete, asphalt, and metal that can heal themselves. (Imagine a city with no more potholes!) The rub, of course, lies in making them cheap enough to actually use, which is why the first applications for self-healing materials are most likely to be in space or in remote areas on Earth. 

Thermoelectric Materials — Heat Scavengers

6 Supermaterials That Could Change Our World 
Power blocks with thermoelectric material sued inside Alphabet Energy 's generator. Image credit: Alphabet Energy


If you've ever had a laptop burn up in your lap or touched the hot hood of car, then you've felt evidence of waste. Waste heat is the inevitable effect of running any that device that uses power. One estimate puts the amount of waste heat as two-thirds of all energy used. But what if there was a way to capture all that wasted energy? The answer to that "what if" is thermoelectric materials, which makes electricity from a temperature gradient.

Last year, California-based Alphabet Energy introduced a thermoelectric generator that plugs right into the exhaust pipe of ordinary generator, turning waste heat back into useful electricity. Alphabet Energy's generator uses a relatively cheap and naturally occurring thermoelectric material called tetrahedrite. Alphabet Energy says tetrahedrite can reach 5 to 10 percent efficiency.
Back in the lab, scientists have also been tinkering with another promising and possibly even more efficient thermoelectric material called skutterudite, which is a type of mineral that contains cobalt. Thermoelectric materials have already had niche applications—like on spacecraft—but skutterudite could get cheap and efficient enough to be wrapped around the exhaust pipes of cars or fridges or any other power-hogging machine you can think of. [Nature, MIT Technology Review, New Scientist]

Perovskites — Cheap Solar Cells

6 Supermaterials That Could Change Our World 
Solar cells made of perovskites. Image credit: University of Oxford


The biggest hurdle in moving toward renewable energy is, as these things always are, money. Solar power is getting ever cheaper, but making a plant's worth of solar cells from crystalline silicon is still an expensive, energy-intensive process. There's an alternative material that has the solar world buzzing though, and that's perovskites. 

Perovskites were first discovered over a century ago, but scientists are only just realizing its potential. In 2009, solar cells made from perovskites had a solar energy conversion efficiency of a measly 3.8 percent. In 2014, the number had leapt to 19.3 percent. That may not seem like much compared to traditional crystalline silicon cells with efficiencies hovering around 20 percent, but there's two other crucial points to consider: 1) perovskites have made such leaps and bounds in efficiency in just a few years that scientist think it can get even better and 2) perovskites are much, much cheaper. 

Perovskites are a class of materials defined by a particular crystalline structure. They can contain any number of elements, usually lead and tin for perovskites used in solar cells. These raw materials are cheap compared to crystalline silicon, and they can be sprayed onto glass rather than meticulously assembled in clean rooms. Oxford Photovoltaics is one of the leading companies trying to commercialize perovskites, which as wonderful as they have been in the lab, still do need to hold up in the real world. [WSJ, IEEE Spectrum, Chemical & Engineering News, Nature Materials]

Aerogels — Superlight and Strong

6 Supermaterials That Could Change Our World 
Image credit: NASA

Aerogels look like they should not be real. Although ghostly and ethereal, they can easily withstand the heat of a blowtorch and the weight of a car. The material is almost what exactly the name implies: gels where where the liquid has been replaced entirely by air. But you can see why it's also been called "frozen smoke" or "blue smoke." The actual matrix of an aerogel can be made of any number of substances, including silica, metal oxides, and, yes, also graphene. But the fact that aerogel is actually mostly made of air means that it's an excellent insulator (see: blowtorch). Its structure also makes it incredibly strong (see: car).

Aerogels do have one fatal flaw though: brittleness, especially when made from silica. But NASA scientists have been experimenting with flexible aerogels made of polymers to use insulators for spacecraft burning through the atmosphere. Mixing other compounds into even silica-based aerogels could make them more flexible. Add that to aerogel's lightness, strength, and insulating qualities, and that's one incredible material. [New Scientist, Gizmodo]

Metamaterials — Light Manipulators

If you've heard of metamaterials, you likely heard about it in a sentence that also mentioned "Harry Potter" and "invisibility cloak." And indeed, metamaterials, whose nanostructures are design to scatter light in specific ways, could possibly one day be used to render objects invisible—though it still probably wouldn't be as magical as Harry Potter's invisibility cloak. 

What's more interesting about metamaterials is that they don't just redirect visible light. Depending on how and what a particular metamaterial is made of, it can also scatter microwaves, radiowaves, or the little-known T-rays, which are between microwaves and infrared light on the electromagnetic spectrum. Any piece of electromagnetic spectrum could be manipulated by metamaterials. 

That could be, for example, new T-ray scanners in medicine or security or a compact radio antennae made of metamaterials whose properties change on the fly. Metamaterials are at the promising but frustrating cusp where the theoretical possibilities are endless, but commercialization is still a long, hard road. [Nature, Discover Magazine]

Stanene — 100 percent efficient conductor

6 Supermaterials That Could Change Our World 
The molecular structure of stanene. Image credit: SLAC


Like the much better known graphene, stanene is also made of a single layer of atoms. But instead of carbon, stanene is made of tin, and this makes all the difference in allowing stanene to possibly do what even wondermaterial extraordinaire graphene cannot: conduct electricity with 100 percent efficiency.

Stanene was first theorized in 2013 by Stanford professor Shoucheng Zhang, whose lab specializes in, along other things, predicting the electronic properties of materials like stanene. According to their models, stanene is a topological insulator, which means its edges are a conductor and its inside is an insulator. (Think of a chocolate-covered ice cream bar. Chocolate conductor, ice cream insulator.) 

This means stanene could conduct electricity with zero resistance even, crucially, at room temperature. Stanene's properties have yet to been tested experimentally—making a single-atom sheet tin is no easy task—but several of Zhang's predictions about other topological insulators have proven correct.

If the predictions about stanene bear out, it could revolutionize the microchips inside all your devices. Namely, the chips could get a lot more powerful. Silicon chips are limited by the heat created by electrons zipping around—work 'em too fast and they'll simply get too hot. Stanene, which conducts electricity 100 percent efficiency, would have no such problem. [SLAC, Physical Review Letters, Scientific American]

View Article Here Read More

Time to see Comet Lovejoy fly past Pleiades before it leaves for 8,000 years

Comet C/2014 Q2 (Lovejoy) is visible to sky watchers using binoculars on clear nights in January 2015. (Jet Propulsion Laboratory)California sky watchers may be able to see two celestial bodies zooming past Earth in the next few days with just a pair...

View Article Here Read More
Older posts Newer posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑