Tag: dense (page 1 of 6)

Final Event Energies Update 03~31~18 Diving Into Balanced Harmonics Frequencies ~ Archeia Faith

https://lovehaswon.org/special-message-from-archangel-michael-game-changer-energies-gather-yourselves/
http://www.lovehaswon.org/
email: motherofallcreation@lovehaswon.org

Final Event Energies Update 03~31~18 Diving Into Balanced Harmonics Frequencies ~ Archeia Faith
By Archeia Faith

View Article Here Read More

What You’ll Never Read About Virus-Research Fraud

Jon Rappoport, GuestThe Rabbit HoleThere are very few investigators on the planet who are interested in this subject. I am one of them. There is a reason why.In many articles, I’ve written about the shocking lack of logic in the curriculum of advanced centers of learning. When I attended college, I was fortunate to have a professor who taught logic, and taught it in a way that appealed to the minds of his students. In other words, for those of us who cared, we could not only ab [...]

View Article Here Read More

What Most Doctors Won’t Tell You About Cholesterol

Dr. Ben Kim, GuestDuring my university years, I used to frustrate my parents by throwing away egg yolks and eating only the whites. No worries, I thought, as my parents just didn’t know enough to realize that I was reducing my risk of heart disease by avoiding cholesterol. Looking back, I’m sure that my parents were wondering how I could so easily toss away precious egg yolks that they were able afford only a few times a year when they lived in Korea.Today, I am grateful [...]

View Article Here Read More

Rare Quartet of Quasars Found in the Early Universe


This image shows a rare view of four quasars, indicated by white arrows, found together by astronomers using the Keck Observatory in Hawaii. The bright galactic nuclei are embedded in a giant nebula of cool, dense gas visible in the image as a blue haze. Hennawi & Arrigoni-Battaia, MPIA


Excerpt from smithsonian.com

The odds of success would make a Vegas bookie sit up and take notice. But in a one-in-10 million chance, astronomers surveying the sky have found a group of four tightly packed quasars in one of the most distant parts of the universe. The rare grouping may be a nascent galaxy cluster, and its unusually cold cradle of gas could prompt a re-think of how we model the early universe.

Quasars are among the brightest objects known—according to NASA, each one gives off more energy than 100 mature galaxies combined. But quasars are found only in the far reaches of the universe and can't be seen with the naked eye. Because of the time it takes light to travel that far, detecting such distant objects is akin to seeing back in time, so astronomers think quasars are the seeds of young galaxies, powered by gases falling into the supermassive black holes at their cores. As matter falls inward and gets close to the speed of light, it emits radiation that we can pick up with telescopes.

The quasar phase doesn't last long, only about a thousandth of a galaxy's lifetime. After that, the brightness dies down as the inflow of matter slows, says study leader Joseph Hennawi, an astrophysicist at the Max Planck Institute in Germany. Seeing any two quasars close together while they are still bright is a chancy business, so his team wasn't sure what they'd find when they set out to survey quasars using the W.M. Keck Observatory in Hawaii. To their surprise, they quickly pinpointed four of them in close proximity, cosmically speaking. The quartet is huddled up in an area of sky less than 600,000 light-years across that sits about 10 billion light-years from Earth.

"The authors found it by investigating the environment of just 29 bright quasars," says Michele Trenti, a senior lecturer at the University of Melbourne's School of Physics. "So at face value it seems like winning the lottery with a handful of tickets."
That's not all that was strange about this quasar quartet. The foursome was found inside a cloud of cold, dark gas, and the team's observations suggest that similar clouds surround about 10 percent of the tens of thousands of known quasars. That's odd, because according to current theories, quasars in groups like this should be surrounded by hot plasma, or ionized gas, at a temperature of about 10 million degrees.

“What this means is that there is some physical process that the models aren’t capturing,” says Hennawi, whose team reports the discovery this week in Science.



View Article Here Read More

Astronomers Giddy Over What They Call A Cosmic ‘Dinosaur Egg’ About To Hatch



cosmic dinosaur egg
The Antennae galaxies, shown in visible light in a Hubble image (upper image), were studied with ALMA, revealing extensive clouds of molecular gas (center right image). One cloud (bottom image) is incredibly dense and massive, yet apparently star free, suggesting it is the first example of a prenatal globular cluster ever identified.


Excerpt from huffingtonpost.com

A dense cloud of gas 50 million light-years away has astronomers buzzing, and they're using all sorts of strange metaphors to get the rest of us to pay attention.

They've discovered what they think may be a globular cluster -- a big ball of up to one million stars -- on the verge of being born.

“This remarkable object looks like it was plucked straight out of the very early universe," Dr. Kelsey Johnson, an astronomer at the University of Virginia in Charlottesville and lead author on a paper about the research, said in a written statement. "To discover something that has all the characteristics of a globular cluster, yet has not begun making stars, is like finding a dinosaur egg that’s about to hatch.”

cosmic egg
ALMA image of dense cores of molecular gas in the Antennae galaxies. The round yellow object near the center may be the first prenatal example of a globular cluster ever identified. It is surrounded by a giant molecular cloud.


Johnson and her colleagues spotted the bizarre object, which they call the "Firecracker," using the Atacama Large Millimeter/submillimeter Array (ALMA) in the Atacama desert in Chile. It's located inside a pair of interacting galaxies known to scientists as NGC 4038/NGC 4039, or The Antennae Galaxies.

The Firecracker has a mass that's 50 times that of our sun, and is under an enormous amount of pressure -- roughly 10,000 times greater than the average pressure in interstellar space. According to the researchers, this makes it a good candidate for collapsing into a globular cluster within the next million years.

What do other scientists make of the discovery? Dr. Alison Peck, ALMA scientist at the National Radio Astronomy Observatory, who was not involved in the new research, called it "important" and said she was "really excited to hear about these results."
She told The Huffington Post in an email:
"One of the things that we all yearn to understand is how our surroundings formed, how our galaxy and our solar system came to be. To do this, since we can’t actually watch things change over time, (it just takes too long), we need to find similar objects at different stages of development and compare them. What Dr. Johnson’s team have found here is an analog of an object that we look for in the very early universe, but they’ve found it so close by that we’ll be able to make extremely detailed observations and find out much more about the physical conditions in this exciting region."
The research is set to be published in the Astrophysical Journal. 

View Article Here Read More

Radiation from long Mars journey could damage astronauts’ brains






Excerpt from naplesnews.com

Many things would be difficult about conducting a manned mission to Mars, from designing a spacecraft that could make the 34-million-mile journey, to stocking and fueling it, to keeping its astronauts from getting flabby and bored.
On Friday, researchers shed light on another potential hurdle: figuring out a way to protect travelers’ brains from the damaging effects of cosmic rays in outer space.
When University of California, Irvine neuroscientist Charles Limoli and colleagues exposed mice to radiation similar to that astronauts would encounter far beyond Earth, the animals experienced changes in their brains that impaired their performance on tests of learning and memory, the team reported in an article — “What happens to your brain on the way to Mars” — in the journal Science Advances.
The researchers’ results suggested that astronauts could suffer cognitive impairment during an extended journey through space.
“Over the course of a two- to three-year mission, the damage would accumulate,” Limoli said. “To mitigate it, we need to understand it.”
To test the effects of space radiation on the brain, the researchers took mice to the NASA Space Radiation Laboratory at the Brookhaven National Laboratory in New York, which attempts to simulate radiation conditions in space. They exposed the animals to oxygen and titanium ions, atoms with their electrons stripped away that are similar to the charged particles in cosmic rays.
Six weeks later, back in California, they tested the mice’s learning and memory by placing them in pens with toys, letting them get used to their surroundings, and then making changes such as introducing a new toy. Mice that had been exposed to the radiation were less aware of or curious about the changes in their environment than controls that had not been irradiated — a sign that they had cognitive deficits.
“A smart animal will recognize the change,” Limoli said.
When the researchers later studied the animals’ brain tissue, they found that mice that performed poorly on the tests also had less dense branching in their brain cells, due to damage from the radiation. The structural changes would impede the brain’s ability to transmit signals and process information.
Limoli got involved in the NASA-backed research as an outgrowth of his work on the effects of radiation on brain cancer patients. Radiation therapy forestalls brain cancer progression, he said — but it can take a tremendous toll on the central nervous system, causing depression, anxiety and mood disorders, and deficits in learning and executive function. Pediatric patients can lose 20 to 30 I.Q. points after receiving radiation treatments to the brain.
“Doctors have gotten really good at curing cancer, but maintaining a good quality of life has been a problem,” Limoli said. “This is an unmet medical need.”
Astronauts flying to Mars and getting hit by cosmic rays, which are the remnants of supernova explosions, wouldn’t get anything close to the high doses of radiation that cancer patients receive, but they “might be prone to mistakes,” Limoli thought.
To counteract that threat during planning for a possible mission, scientists might come up with more advanced shielding options — perhaps embedded in helmets — or drug treatments that might ameliorate radiation’s impacts on the brain, similar to the ones Limoli is exploring for cancer patients.

View Article Here Read More

6 Natural Solutions To Decontaminate Soil

Marco Torres, Prevent DiseaseWith a progressively educated population becoming more aware of the inherent dangers of the conventional food supply, urban farming has become hugely popular. However, more people are also becoming aware of contaminated soil and how heavy metals pose potential risks to their food crops. As backyard gardening continues to explode in popularity, we must ask how contaminated is our soil?Many municipalities in many countries are embracing urban agri [...]

View Article Here Read More

‘Hats Off’ To HATS-6b: Discovery of ‘puffy’ new planet brings scientists closer to finding new life in outer space

An artist's impression of the planet HATS-6b, orbiting the star, HATS-6. (Supplied: ANU) Excerpt from abc.net.au A "puffy" new planet orbiting a small, cool star has been discovered 500 light years away from Earth, by a team of scientists c...

View Article Here Read More

This revolutionary discovery could help scientists see black holes for the first time


supermassive black hole
Artist's concept of the black hole.



Excerpt from finance.yahoo.com
Of all the bizarre quirks of nature, supermassive black holes are some of the most mysterious because they're completely invisible.
But that could soon change.
Black holes are deep wells in the fabric of space-time that eternally trap anything that dares too close, and supermassive black holes have the deepest wells of all. These hollows are generated by extremely dense objects thousands to billions of times more massive than our sun.
Not even light can escape black holes, which means they're invisible to any of the instruments astrophysicists currently use. Although they don't emit light, black holes will, under the right conditions, emit large amounts of gravitational waves — ripples in spacetime that propagate through the universe like ripples across a pond's surface.
And although no one has ever detected a gravitational wave, there are a handful of instruments around the world waiting to catch one.

Game-changing gravitational waves



.
black hole
This illustration shows two spiral galaxies - each with supermassive black holes at their center - as they are about to collide. 

Albert Einstein first predicted the existence of gravitational waves in 1916. According to his theory of general relativity, black holes will emit these waves when they accelerate to high speeds, which happens when two black holes encounter one another in the universe.  

As two galaxies collide, for example, the supermassive black holes at their centers will also collide. But first, they enter into a deadly cosmic dance where the smaller black hole spirals into the larger black hole, moving increasingly faster as it inches toward it's inevitable doom. As it accelerates, it emits gravitational waves.
Astrophysicists are out to observe these waves generated by two merging black holes with instruments like the Laser Interferometer Gravitational-Wave Observatory.
"The detection of gravitational waves would be a game changer for astronomers in the field," Clifford Will, a distinguished profess of physics at the University of Florida who studied under famed astrophysicist Kip Thorne told Business Insider. "We would be able to test aspects of general relativity that have not been tested."
Because these waves have never been detected, astrophysicists are still trying to figure out how to find them. To do this, they build computer simulations to predict what kinds of gravitational waves a black hole merger will produce. 

Learn by listening

In the simulation below, made by Steve Drasco at California Polytechnic State University (also known as Cal Poly), a black hole gets consumed by a supermassive black hole about 30,000 times as heavy.
You'll want to turn up the volume.
What you're seeing and hearing are two different things.
The black lines you're seeing are the orbits of the tiny black hole traced out as it falls into the supermassive black hole. What you're hearing are gravitational waves.
"The motion makes gravitational waves, and you are hearing the waves," Drasco wrote in a blog post describing his work.
Of course, there is no real sound in space, so if you somehow managed to encounter this rare cataclysmic event, you would not likely hear anything. However, what Drasco has done will help astrophysicists track down these illusive waves.

Just a little fine tuning 

Gravitational waves are similar to radio waves in that both have specific frequencies. On the radio, for example, the number corresponding to the station you're listening to represents the frequency at which that station transmits.


.
gwaves
3D visualization of gravitational waves produced by 2 orbiting black holes. Right now, astrophysicists only have an idea of what frequencies two merging black holes transmit because they’re rare and hard to find. In fact, the first ever detection of an event of this kind was only announced this month. 

Therefore, astrophysicists are basically toying with their instruments like you sometimes toy with your radio to find the right station, except they don’t know what station will give them the signal they’re looking for.
What Drasco has done in his simulation is estimate the frequency at which an event like this would produce and then see how that frequency changes, so astrophysicists have a better idea of how to fine tune their instruments to search for these waves.
Detecting gravitational waves would revolutionize the field of astronomy because it would give observers an entirely new way to see the universe. Armed with this new tool, they will be able to test general relativity in ways never before made possible.

View Article Here Read More

Cosmic tsunamis can regenerate ‘dead’ galaxies






Excerpt from thespacereporter.com



Astronomers have recently discovered that giant cosmic shockwaves emanating from colliding galaxy clusters are capable of jumpstarting new star generation.

According to a Nature World News report, galaxies are often clustered into groups containing “red and dead” galaxies that stopped forming new stars long ago. Scientists now believe that these “dead” galaxies can be brought back to “life” by colossal cosmic tsunamis.

To uncover this phenomenon, an international team of researchers observed how galaxy clusters can absorb smaller clusters much as a growing city absorbs its suburbs. When galaxy clusters collide during this absorption process, a huge shockwave of energy is created. This shockwave can re-energize the star formation process, causing dormant galaxies to begin producing new stars again.

Scientists from the University of Lisbon and Leiden Observatory came to this conclusion after studying the merging galaxy cluster officially known as CIZA J2242.8+5301 and affectionately known as the “Sausage.” The Sausage cluster, located 2.3 billion light-years away, showed evidence of its dormant galaxies coming to life with a new round of star formation.

“We assumed that the galaxies would be on the sidelines for this act, but it turns out they have a leading role. The comatose galaxies in the Sausage cluster are coming back to life, with stars forming at a tremendous rate. When we first saw this in the data, we simply couldn’t believe what it was telling us,” Andra Stroe of Liden Observatory said in a statement.The researchers are observing an event that actually unfolded one billion years ago, when the 6-million-mph shockwave spread out from the collision of the clusters. The team believes that the new star formation was instigated by the shockwave’s affect on galactic gas.

“Much like a teaspoon stirring a mug of coffee, the shocks lead to turbulence in the galactic gas. These then trigger an avalanche-like collapse, which eventually leads to the formation of very dense, cold gas clouds, which are vital for the formation of new stars,” Stroe said.

Despite the vigorous production of new stars in this instance, the team believes that, after the initial effects of the tsunami take place, the galaxies fall to an even deeper state of dormancy than before.

David Sobral of the University of Lisbon explains that “star formation at this rate leads to a lot of massive, short-lived stars coming into being, which explode as supernovae a few million years later. The explosions drive huge amounts of gas out of the galaxies and with most of the rest consumed in star formation, the galaxies soon run out of fuel. If you wait long enough, the cluster mergers make the galaxies even more red and dead – they slip back into a coma and have little prospect of a second resurrection.”

The study was published in the journal Monthly Notices of the Royal Astronomical Society.

View Article Here Read More

VLA photos 18 years apart show dramatic difference in young stellar system

Excerpt from bulletinstandard.com  A pair of pictures of a young star, produced 18 years apart, has revealed a dramatic distinction that is giving astronomers with a exclusive, "real-time" appear at how enormous stars create in the e...

View Article Here Read More

How Quantum Physics will change your life and amaze the world!

 Excerpt from educatinghumanity.com "Anyone not shocked by quantum mechanics has not yet understood it."Niels Bohr10 Ways Quantum Physics Will Change the WorldEver want to have a "life do over", teleport, time travel, have your computer wor...

View Article Here Read More

A Complete Guide to the March 20th Total Solar Eclipse


Credit
Totality! The 2012 total solar eclipse as seen from Australia. Credit and copyright: www.hughca.com.



Excerpt from universetoday.com



The first of two eclipse seasons for the year is upon us this month, and kicks off with the only total solar eclipse for 2015 on Friday, March 20th.

And what a bizarre eclipse it is. Not only does this eclipse begin just 15 hours prior to the March equinox marking the beginning of astronomical spring in the northern hemisphere, but the shadow of totality also beats path through the high Arctic and ends over the North Pole.


Credit:
An animation of the March 20th eclipse. Credit: NASA/GSFC/AT Sinclair.


Already, umbraphiles — those who chase eclipses — are converging on the two small tracts of terra firma where the umbra of the Moon makes landfall: the Faroe and Svalbard islands. All of Europe, the northern swath of the African continent, north-central Asia and the Middle East will see a partial solar eclipse, and the eclipse will be deeper percentage-wise the farther north you are .
2015 features four eclipses in all: two total lunars and two solars, with one total solar and one partial solar eclipse. Four is the minimum number of eclipses that can occur in a calendar year, and although North America misses out on the solar eclipse action this time ’round, most of the continent gets a front row seat to the two final total lunar eclipses of the ongoing tetrad on April 4th and September 28th.

How rare is a total solar eclipse on the vernal equinox? Well, the last total solar eclipse on the March equinox occurred back in 1662 on March 20th. There was also a hybrid eclipse — an eclipse which was annular along a portion of the track, and total along another — on March 20th, 1681. But you won’t have to wait that long for the next, as another eclipse falls on the northward equinox on March 20th, 2034.


Credit
The path of the March 20th eclipse across Europe, including start times for the partial phases, and the path of totality, click to enlarge. For more maps showing the percentage of occlusion, elevation, and more, click here. Credit: Michael Zeiler/GreatAmercianEclipse.com.


Note that in the 21st century, the March equinox falls on March 20th, and will start occasionally falling on March 19th in 2044. We’re also in that wacky time of year where North America has shifted back to ye ‘ole Daylight Saving (or Summer) Time, while Europe makes the change after the eclipse on March 29th. It really can wreak havoc with those cross-time zone plans, we know…
The March 20th eclipse also occurs only a day after lunar perigee, which falls on March 19th at 19:39 UT. This is also one of the closer lunar perigees for 2015 at 357,583 kilometres distant, though the maximum duration of totality for this eclipse is only 2 minutes and 47 seconds just northeast of the Faroe Islands.


Credit:
Views from selected locales in Europe and Africa. Credit: Stellarium.



This eclipse is number 61 of 71 in solar saros series 120, which runs from 933 to 2754 AD. It’s also the second to last total in the series, with the final total solar eclipse for the saros cycle occurring one saros later on March 30th, 2033.



What would it look like to sit at the North Pole and watch a total solar eclipse on the first day of Spring? It would be a remarkable sight, as the disk of the Sun skims just above the horizon for the first time since the September 2014 equinox. Does this eclipse occur at sunrise or sunset as seen from the pole? It would be a rare spectacle indeed!


Credit
An equinoctal eclipse as simulated from the North Pole. Credit: Stellarium.






Credit
Practicing eclipse safety in Africa. Credit: Michael Zeiler/GreatAmericanEclipse.com


Safety is paramount when observing the Sun and a solar eclipse. Eye protection is mandatory during all partial phases across Europe, northern Asia, North Africa and the Middle East. A proper solar filter mask constructed of Baader safety film is easy to construct, and should fit snugly over the front aperture of a telescope. No. 14 welder’s goggles are also dense enough to look at the Sun, as are safety glasses specifically designed for eclipse viewing. Observing the Sun via projection or by using a pinhole projector is safe and easy to do.


Credit
A solar filtered scope ready to go in Tucson, Arizona. Credit: photo by author.

Weather is always the big variable in the days leading up to any eclipse. Unfortunately, March in the North Atlantic typically hosts stormy skies, and the low elevation of the eclipse in the sky may hamper observations as well. From the Faroe Islands, the Sun sits 18 degrees above the horizon during totality, while from the Svalbard Islands it’s even lower at 12 degrees in elevation. Much of Svalbard is also mountainous, making for sunless pockets of terrain that will be masked in shadow on eclipse day. Mean cloud amounts for both locales run in the 70% range, and the Eclipser website hosts a great in-depth climatology discussion for this and every eclipse.


Credit
The view of totality and the planets as seen from the Faroe Islands. Credit: Starry Night.


But don’t despair: you only need a clear view of the Sun to witness an eclipse!

Solar activity is also another big variable. Witnesses to the October 23rd, 2014 partial solar eclipse over the U.S. southwest will recall that we had a massive and very photogenic sunspot turned Earthward at the time. The Sun has been remarkably calm as of late, though active sunspot region 2297 is developing nicely. It will have rotated to the solar limb come eclipse day, and we should have a good grasp on what solar activity during the eclipse will look like come early next week.

And speaking of which: could an auroral display be in the cards for those brief few minutes of totality? It’s not out of the question, assuming the Sun cooperates.  Of course, the pearly white corona of the Sun still gives off a considerable amount of light during totality, equal to about half the brightness of a Full Moon. Still, witnessing two of nature’s grandest spectacles — a total solar eclipse and the aurora borealis — simultaneously would be an unforgettable sight, and to our knowledge, has never been documented!

We also put together some simulations of the eclipse as seen from Earth and space:




Note that an area of southern Spain may witness a transit of the International Space Station during the partial phase of the eclipse. This projection is tentative, as the orbit of the ISS evolves over time. Be sure to check CALSky for accurate predictions in the days leading up to the eclipse.


Credit
The ISS transits the Sun during the eclipse around 9:05 UT as seen from southern Spain. Credit: Starry Night.


Can’t make it to the eclipse? Live in the wrong hemisphere? There are already a few planned webcasts for the March 20th eclipse:


View Article Here Read More
Older posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑