Tag: cool (page 1 of 4)

UFO Headline News Friday June 9th, 2017

In case you missed it here is the UFO Headline News for today

The post UFO Headline News Friday June 9th, 2017 appeared first on Inception Radio Network | UFO & Paranormal Talk Radio.

View Article Here Read More

Is The CIA Manipulating The Weather?

Derrick Broze, ContributorIn a recent speech, the director of the Central Intelligence Agency discussed the controversial topic of geoengineering, leading some activists to ask whether the agency is actively and deliberately modifying the weather.​In late June, John Brennan, director of the Central Intelligence Agency, spoke at a Council on Foreign Relations meeting about threats to global security. Director Brennan mentioned a number of threats to stability before di [...]

View Article Here Read More

Gluten-Free: “Fad” or Not? Studies Suggest Most Gluten Sensitivity Is Imagined

Makia Freeman, ContributorGluten-free food is now very common and available, whether you are in a restaurant, cafe or grocery store. Although there are definitely people who suffer from celiac disease and other diseases triggered by gluten, the entire gluten-free movement has left many health experts and nutritionalists scratching their heads in bewilderment. Since when did large chunks of populations used to eating bread, pasta and other wheat products suddenly suffer from [...]

View Article Here Read More

Cover Up – Mainstream Reporting on Fukushima a Joke

Terence Newton, Staff WriterIt has been over four years since the 9.0 magnitude Tōhoku earthquake and ensuing catastrophic tsunami leveled the Pacific coast of Japan, setting off a nuclear meltdown at the Fukushima Daichi power plant. Radiation has been pouring into the ocean, into the earth below, and into the air for over 1500 days now and there is still zero sense of urgency on the part of the government and world leaders to seriously address this blooming catastrop [...]

View Article Here Read More

How to Turn Milk Into Healthy Probiotic Medicine

Anna Hunt, Staff WriterOur sterile, pre-packaged, convenient foods, coupled with a diet high in antibiotic-filled, factory-farmed meats, have resulted in an increased need for probiotic-rich foods and supplements if we are to maintain a healthy gut flora. An ideal balance of good and bad bacteria in the digestive system means improved digestion and better body function in general.Probiotic supplements, such as the high-quality brands BioImmersion and Kla [...]

View Article Here Read More

Rare Quartet of Quasars Found in the Early Universe


This image shows a rare view of four quasars, indicated by white arrows, found together by astronomers using the Keck Observatory in Hawaii. The bright galactic nuclei are embedded in a giant nebula of cool, dense gas visible in the image as a blue haze. Hennawi & Arrigoni-Battaia, MPIA


Excerpt from smithsonian.com

The odds of success would make a Vegas bookie sit up and take notice. But in a one-in-10 million chance, astronomers surveying the sky have found a group of four tightly packed quasars in one of the most distant parts of the universe. The rare grouping may be a nascent galaxy cluster, and its unusually cold cradle of gas could prompt a re-think of how we model the early universe.

Quasars are among the brightest objects known—according to NASA, each one gives off more energy than 100 mature galaxies combined. But quasars are found only in the far reaches of the universe and can't be seen with the naked eye. Because of the time it takes light to travel that far, detecting such distant objects is akin to seeing back in time, so astronomers think quasars are the seeds of young galaxies, powered by gases falling into the supermassive black holes at their cores. As matter falls inward and gets close to the speed of light, it emits radiation that we can pick up with telescopes.

The quasar phase doesn't last long, only about a thousandth of a galaxy's lifetime. After that, the brightness dies down as the inflow of matter slows, says study leader Joseph Hennawi, an astrophysicist at the Max Planck Institute in Germany. Seeing any two quasars close together while they are still bright is a chancy business, so his team wasn't sure what they'd find when they set out to survey quasars using the W.M. Keck Observatory in Hawaii. To their surprise, they quickly pinpointed four of them in close proximity, cosmically speaking. The quartet is huddled up in an area of sky less than 600,000 light-years across that sits about 10 billion light-years from Earth.

"The authors found it by investigating the environment of just 29 bright quasars," says Michele Trenti, a senior lecturer at the University of Melbourne's School of Physics. "So at face value it seems like winning the lottery with a handful of tickets."
That's not all that was strange about this quasar quartet. The foursome was found inside a cloud of cold, dark gas, and the team's observations suggest that similar clouds surround about 10 percent of the tens of thousands of known quasars. That's odd, because according to current theories, quasars in groups like this should be surrounded by hot plasma, or ionized gas, at a temperature of about 10 million degrees.

“What this means is that there is some physical process that the models aren’t capturing,” says Hennawi, whose team reports the discovery this week in Science.



View Article Here Read More

What astronomers learned when Messenger space probe crashed into Mercury



Excerpt from statecolumn.com


On April 30, NASA concluded an historic voyage known as the Mercury Surface, Space Environment, Geochemistry and Ranging mission. The mission came to an end when the spacecraft carrying analytical instruments, Messenger, crashed into the planet’s surface after consuming all of its fuel.
The mission was far from a waste, however, as NASA rarely expects to see the majority of the spacecraft they launch ever again. According to Discovery, The probe sent back a spectacular photo of the surface of Mercury, using the craft’s Narrow Angle Camera in tandem with the Mercury Dual Imaging System. The photo shows a mile-wide view of the nearby planet’s surface in 2.1 meters per pixel resolution.
Right after the probe delivered the photo to NASA’s Deep Space Network, which is a collection of global radio antennae that tracks data on the agency’s robotic missions around the solar system, the signal was lost in what scientists assume was the craft’s final contact with the closest planet to the sun.
The four-year mission came to an end when the craft could no longer maintain its orbit around the solar system’s innermost planet due to lack of fuel. Mercury is just 36 miles from the sun, compared to Earth, which is 93 million miles away from the center of the solar system. Mercury is a peculiar world, with both frigid and extremely hot temperatures. Messenger also revealed that Mercury has a magnetic field similar to that of Earth’s, created by the motion of metallic fluids within the planet’s core.
The main challenge the Messenger mission faced was getting the space probe into orbit around Mercury. Due to the planet’s proximity to the sun, it was extremely difficult for flight engineers to avoid its gravitational pull. In addition to the challenge of catching Mercury’s comparatively weak gravitational force, high temperatures also made things tricky. Messenger was equipped with a sunshield designed to protect the spaceship cool on the side that faced the sun. NASA engineers also attempted to chart a long, elliptical orbit around Mercury, giving Messenger time to cool off as it rounded the backside of the planet.
Messenger made over 4,000 orbits around Mercury between 2011 and 2015, many more than the originally planned one-year mission would allow.
With the close-up shots of Mercury’s surface provided by Messenger, NASA scientists were able to detect trace signals of magnetic activity in Mercury’s crust. Using clues from the number of impact craters on the surface, scientists figured that Mercury’s magnetized regions could be as old as 3.7 billion years. Astronomers count the craters on a planet in order to estimate its age – the logic being that younger surfaces should have fewer impact sites than older surfaces.
The data sent back by Messenger has caused astronomers to reconsider their understanding of Mercury’s magnetic history. They now date the beginning of magnetism on Mercury to about 700 million years after the planet was formed. They cannot say for sure, however, if the magnetic field has been consistently active over this timeframe.
According to Messenger guest investigator Catherine Johnson, geophysicist at the University of British Columbia in Vancouver, that it was possible the magnetic field has been active under constant conditions, though she suspects it might also oscillate over time, like Earth’s. Information for the time period between 4 billion years ago and present day is sparse, though Johnson added that additional research is in the pipeline.
Johnson was pleased, however, with the insight offered into Mercury’s formation provided by these new magnetic clues. Magnetism on a planetary scale typically indicates a liquid metal interior. Since Mercury is so tiny, scientists originally believed that its center would be solid, due to the rate of cooling. The presence of liquid in the planet’s center suggests other materials’ presence, which would lower the freezing point. This suggests that a totally solid core would be unlikely.
Mercury’s magnetic field offers valuable insight into the formation of the planet, the solar system, and even the universe. Magnetism on Mercury indicates that it has a liquid iron core, according to Messenger lead scientist Sean Solomon of Columbia University.

View Article Here Read More

‘Hats Off’ To HATS-6b: Discovery of ‘puffy’ new planet brings scientists closer to finding new life in outer space

An artist's impression of the planet HATS-6b, orbiting the star, HATS-6. (Supplied: ANU) Excerpt from abc.net.au A "puffy" new planet orbiting a small, cool star has been discovered 500 light years away from Earth, by a team of scientists c...

View Article Here Read More

Black Holes, the Large Hadron Collider, & Finding Parallel Universes

Excerpt from huffingtonpost.comI am a huge science enthusiast and an unabashed science fiction fan. There are tons of really cool stories out there that fire the imagination and even inspire young people to go into science. (I know they did me.) ...

View Article Here Read More

Mystery space explosion in 1670 solved


Nova Vulpeculae 1670


By Kathy Fey

A mystery explosion in the night sky turns out to have been caused by colliding stars.




One of history’s mysteries revolved around a strange explosion observed in the sky in 1670, long thought to have been the first nova on record. Recent research suggests that this enigmatic event was actually a rare stellar collision.

According to a report by Astronomy Magazine, the so-called Nova Vulpeculae of 1670 was more likely the collision of two stars, which shines brighter than a nova but not as brightly as a supernova.

Observations made with various telescopes including the Submillimeter Array, the Effelsburg radio telescope and APEX have revealed the more unusual nature of the light source – a violent collision.

When the event first occurred, it would have been visible from Earth with the naked eye. Now, submillimeter telescopes are needed to detect the traces left in the aftermath of the event.

When first observed, 17th century astronomers described what they saw as a new star appearing in the head of Cygnus, the swan constellation.

“For many years, this object was thought to be a nova, but the more it was studied, the less it looked like an ordinary nova, or indeed any other kind of exploding star,” said Tomasz Kaminski of the European Southern Observatory.

Having observed the area of the supposed nova with both submillimeter and radio wavelengths, scientists “have found that the surroundings of the remnant are bathed in a cool gas rich in molecules with a very unusual chemical composition,” said Kaminski.

Researchers concluded that the amount of cool material they observed was too much to have been produced by a nova. The nature of the gas debris best fit with the rare scenario of two stars merging in an explosive collision.

The team’s report was published in the journal Nature.

Karl Menten of the Max Planck Institute called the discovery “the most fun – something that is completely unexpected.”

View Article Here Read More

Astronomers find star speeding out of the galaxy





(Reuters) - Astronomers have found a star hurtling through the galaxy faster than any other, the result of being blasted away by the explosion of a massive partner star, researchers said on Thursday.
The star, known as US 708, is traveling at about 746 miles (1,200 km) per second, fast enough to actually leave the Milky Way galaxy in about 25 million years, said astronomer Stephan Geier with Germany-based European Southern Observatory, which operates three telescopes in Chile.

"At that speed you could travel from Earth to the moon in five minutes," noted University of Hawaii astronomer Eugene Magnier.
US 708 is not the first star astronomers have found that is moving fast enough to escape the galaxy, but it is the only one so far that appears to have been slingshot in a supernova explosion.

The 20 other stars discovered so far that are heading out of the galaxy likely got their impetus from coming too close to the supermassive black hole that lives at the center of the Milky Way, scientists report in an article in this week’s edition of the journal Science.

Before it was sent streaming across the galaxy, US 708 was once a cool giant star, but it was stripped of nearly all of its hydrogen by a closely orbiting partner. Scientists suspect it was this feeding that triggered the partner’s detonation.

If confirmed, these types of ejected stars may provide more insight into how supernova explosions occur. Since the explosions give off a fairly standard amount of radiation, scientists can calculate their distances by measuring how bright or dim they appear and determine how fast the universe is expanding.

View Article Here Read More

Another Problem for Evolution Theory? ‘Big Brain’ Gene Found in Humans, But Not in Chimps



Image: Mouse brain
M. Florio and W. Huttner / Max Planck Institute
This embryonic mouse cerebral cortex was stained to identify cell nuclei (in blue) and a marker for deep-layer neurons (in red). The human-specific gene known as ARHGAP11B was selectively expressed in the right hemisphere: Note the folding of the neocortical surface.

Excerpt from  nbcnews.com

By Tia Ghose

ave the way for the rise of human intelligence by dramatically increasing the number of neurons found in a key brain region. 

This gene seems to be uniquely human: It is found in modern-day humans, Neanderthals and another branch of extinct humans called Denisovans, but not in chimpanzees. 

By allowing the brain region called the neocortex to contain many more neurons, the tiny snippet of DNA may have laid the foundation for the human brain's massive expansion.
"It is so cool that one tiny gene alone may suffice to affect the phenotype of the stem cells, which contributed the most to the expansion of the neocortex," said study lead author Marta Florio, a doctoral candidate in molecular and cellular biology and genetics at the Max Planck Institute of Molecular Cell Biology and Genetics in Dresden, Germany. 

She and her colleagues found that the gene, called ARHGAP11B, is turned on and highly activated in the human neural progenitor cells, but isn't present at all in mouse cells. This tiny snippet of DNA, just 804 genetic bases long, was once part of a much longer gene. Somehow, this fragment was duplicated, and the duplicated fragment was inserted into the human genome. 

In follow-up experiments, the team inserted and turned on this DNA snippet in the brains of mice. The mice with the gene insertion grew what looked like larger neocortex regions. 

The researchers reviewed a wide variety of genomes from modern-day and extinct species — confirming that Neanderthals and Denisovans had this gene, while chimpanzees and mice do not. That suggests that the gene emerged soon after humans split off from chimpanzees, and that it helped pave the way for the rapid expansion of the human brain. 

Florio stressed that the gene is probably just one of many genetic changes that make human cognition special.

The gene was described in a paper published online Thursday by the journal Science.

View Article Here Read More

Planck telescope puts new datestamp on first stars


Polarisation of the sky
Planck has mapped the delicate polarisation of the CMB across the entire sky



Excerpt from bbc.com

Scientists working on Europe's Planck satellite say the first stars lit up the Universe later than previously thought.

The team has made the most precise map of the "oldest light" in the cosmos.

Earlier observations of this radiation had suggested the first generation of stars were bursting into life by about 420 million years after the Big Bang.

Planck's data indicates this great ignition was well established by some 560 million years after it all began.

"This difference of 140 million years might not seem that significant in the context of the 13.8-billion-year history of the cosmos, but proportionately it's actually a very big change in our understanding of how certain key events progressed at the earliest epochs," said Prof George Efstathiou, one of the leaders of the Planck Science Collaboration.

Subtle signal

The assessment is based on studies of the "afterglow" of the Big Bang, the ancient light called the Cosmic Microwave Background (CMB), which still washes over the Earth today.
Prof George Efstathiou: "We don't need more complicated explanations"

The European Space Agency's (Esa) Planck satellite mapped this "fossil" between 2009 and 2013.

It contains a wealth of information about early conditions in the Universe, and can even be used to work out its age, shape and do an inventory of its contents.

Scientists can also probe it for very subtle "distortions" that tell them about any interactions the CMB has had on its way to us.

Forging elements

One of these would have been imprinted when the infant cosmos underwent a major environmental change known as re-ionisation.

Prof Richard McMahon: "The two sides of the bridge now join"
It is when the cooling neutral hydrogen gas that dominated the Universe in the aftermath of the Big Bang was then re-energised by the ignition of the first stars.

These hot giants would have burnt brilliant but brief lives, producing the very first heavy elements. But they would also have "fried" the neutral gas around them - ripping electrons off the hydrogen protons.

And it is the passage of the CMB through this maze of electrons and protons that would have resulted in it picking up a subtle polarisation.

ImpressionImpression: The first stars would have been unwieldy behemoths that burnt brief but brilliant lives


The Planck team has now analysed this polarisation in fine detail and determined it to have been generated at 560 million years after the Big Bang.

The American satellite WMAP, which operated in the 2000s, made the previous best estimate for the peak of re-ionisation at 420 million years. 

The problem with that number was that it sat at odds with Hubble Space Telescope observations of the early Universe.

Hubble could not find stars and galaxies in sufficient numbers to deliver the scale of environmental change at the time when WMAP suggested it was occurring.

Planck's new timing "effectively solves the conflict," commented Prof Richard McMahon from Cambridge University, UK.

"We had two groups of astronomers who were basically working on different sides of the problem. The Planck people came at it from the Big Bang side, while those of us who work on galaxies came at it from the 'now side'. 

"It's like a bridge being built over a river. The two sides do now join where previously we had a gap," he told BBC News.

That gap had prompted scientists to invoke complicated scenarios to initiate re-ionisation, including the possibility that there might have been an even earlier population of giant stars or energetic black holes. Such solutions are no longer needed.

No-one knows the exact timing of the very first individual stars. All Planck does is tell us when large numbers of these stars had gathered into galaxies of sufficient strength to alter the cosmic environment. 

By definition, this puts the ignition of the "founding stars" well before 560 million years after the Big Bang. Quite how far back in time, though, is uncertain. Perhaps, it was as early as 200 million years. It will be the job of the next generation of observatories like Hubble's successor, the James Webb Space Telescope, to try to find the answer.

JWSTBeing built now: The James Webb telescope will conduct a survey of the first galaxies and their stars
line
The history of the Universe

Graphic of the history of time
  • Planck's CMB studies indicate the Big Bang was 13.8bn years ago
  • The CMB itself can be thought of as the 'afterglow' of the Big Bang
  • It spreads across the cosmos some 380,000 years after the Big Bang
  • This is when the conditions cool to make neutral hydrogen atoms
  • The period before the first stars is often called the 'Dark Ages'
  • When the first stars ignite, they 'fry' the neutral gas around them
  • These giants also forge the first heavy elements in big explosions
  • 'First Light', or 'Cosmic Renaissance', is a key epoch in history
line

The new Planck result is contained in a raft of new papers just posted on the Esa website. 

These papers accompany the latest data release from the satellite that can now be used by the wider scientific community, not just collaboration members.
Dr Andrew Jaffe: "The simplest models for inflation are ruled out"
Two years ago, the data dump largely concerned interpretations of the CMB based on its temperature profile. It is the CMB's polarisation features that take centre-stage this time.
It was hoped that Planck might find direct evidence in the CMB's polarisation for inflation - the super-rapid expansion of space thought to have occurred just fractions of a second after the Big Bang. This has not been possible. But all the Planck data - temperature and polarisation information - is consistent with that theory, and the precision measurements mean new, tighter constraints have been put on the likely scale of the inflation signal, which other experiments continue to chase.
What is clear from the Planck investigation is that the simplest models for how the super-rapid expansion might have worked are probably no longer tenable, suggesting some exotic physics will eventually be needed to explain it.
"We're now being pushed into a parameter space we didn't expect to be in," said collaboration scientist Dr Andrew Jaffe from Imperial College, UK. "That's OK. We like interesting physics; that's why we're physicists, so there's no problem with that. It's just we had this naïve expectation that the simplest answer would be right, and sometimes it just isn't."

View Article Here Read More
Older posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑