Tag: commercial (page 2 of 6)

Is In-Flight Refueling Coming to Commercial Airlines?




Excerpt from space.com

This article was originally published on The Conversation. The publication contributed this article to Space.com's Expert Voices: Op-Ed & Insights.

There’s real pressure on the aviation industry to introduce faster, cheaper and greener aircraft, while maintaining the high safety standards demanded of airlines worldwide.

Airlines carry more than three billion passengers each year, which presents an enormous challenge not only for aircraft manufacturers but for the civil aviation infrastructure that makes this extraordinary annual mass-migration possible. Many international airports are close to or already at capacity. The International Air Transport Association (IATA) has estimated that, without intervention, many global airports – including major hubs such as London Heathrow, Amsterdam Schiphol, Beijing and Dubai – will have run out of runway or terminal capacity by 2020. 


The obvious approach to tackling this problem is to extend and enlarge airport runways and terminals – such as the long-proposed third runway at London Heathrow. However there may be other less conventional alternatives, such as introducing in-flight refuelling for civil aircraft on key long-haul routes. Our project, Research on a Cruiser-Enabled Air Transport Environment (Recreate), began in 2011 to evaluate whether this was something that could prove a viable, and far cheaper, solution.

If in-flight refuelling seems implausible, it’s worth remembering that it was first trialed in the 1920s, and the military has continued to develop the technology ever since. The appeal is partly to reduce the aircraft’s weight on take-off, allowing it to carry additional payload, and partly to extend its flight range. Notably, during the Falklands War in 1982 RAF Vulcan bombers used in-flight refuelling to stage what was at the time the longest bombing mission ever, flying 8,000 miles non-stop from Ascension Island in the South Atlantic to the Falklands and back.

Reducing take-off weight could offer many benefits for civilian aircraft too. Without the need to carry so much fuel the aircraft can be smaller, which means less noise on take-off and landing and shorter runways. This opens up the network of smaller regional airports as new potential sites for long-haul routes, relieving pressure on the major hubs that are straining at the seams.

There are environmental benefits too, as a smaller, lighter aircraft requires less fuel to reach its destination. Our initial estimates from air traffic simulations demonstrate that it’s possible to reduce fuel burn by up to 11% over today’s technology by simply replacing existing global long-haul flight routes with specifically designed 250-seater aircraft with a range of 6,000nm after one refuelling – roughly the distance from London to Hong Kong. This saving could potentially grow to 23% with further efficiencies, all while carrying the same number of passengers the same distance as is possible with the current aircraft fleet, and despite the additional fuel burn of the tanker aircraft.

Tornado fighter jets in-flight refuel
Imagine if these Tornado fighter jets were 250-seater passenger aircraft and you’ve got the idea.

However, this is not the whole picture – in-flight refuelling will require the aerial equivalent of petrol stations in order to deliver keep passenger aircraft in the sky. With so much traffic it simply wouldn’t be possible to refuel any aircraft any time, anywhere it was needed. The location of these refuelling zones, coupled with the flight distance between the origin and destination airports can greatly affect the potential benefits achievable, possibly pulling flights away from their shortest route, and even making refuelling on some routes impossible – if for example the deviation to the nearest refuelling zone meant burning as much fuel as would have been saved.

Safety and automation

As with all new concepts – particularly those that involve bringing one aircraft packed with people and another full of fuel into close proximity during flight – it’s quite right to ask whether this is safe. To try and answer this question, the Dutch National Aerospace Laboratory and German Aerospace Centre used their flight simulators to test the automated in-flight refuelling flight control system developed as part of the Recreate project.

One simulator replicated the manoeuvre from the point of view of the tanker equipped with an in-flight refuelling boom, the other simulated the aircraft being refuelled mid-flight. Critical test situations such as engine failure, high air turbulence and gusts of wind were simulated with real flight crews to assess the potential danger to the operation. The results were encouraging, demonstrating that the manoeuvre doesn’t place an excessive workload on the pilots, and that the concept is viable from a human as well as a technical perspective.

So far we’ve demonstrated the potential aerial refuelling holds for civilian aviation, but putting it into practice would still pose challenges. Refuelling hubs would need to be established worldwide, shared between airlines. There would need to be fundamental changes to airline pilot training, alongside a wider public acceptance of this departure from traditional flight operations.

However, it does demonstrate that, in addition to all the high-tech work going into designing new aircraft, new materials, new engines and new fuels, the technology we already have offers solutions to the long-term problems of ferrying billions of passengers by air around the world.

View Article Here Read More

Why the U.S. Gave Up on the Moon

Moon nearside



Excerpt from spacenews.com


Recently, several space advocacy groups joined forces to form the Alliance for Space Development. Their published objectives include a mention of obvious near-term goals such as supporting the commercial crew program, transitioning from use of the International Space Station to future private space stations and finding ways to reduce the cost of access to space.  What is notably missing from these objectives and those of many other space agencies, companies and advocacy groups is any mention of building a permanent settlement on the moon. It’s as if the lunar surface has become our crazy uncle that we all acknowledge exists but we’d prefer not to mention (or visit).  What made the next logical step in mankind’s progression beyond the bounds of Earth such a taboo subject?  If, as the Alliance for Space Development suggests, our nation wishes to move toward a path of permanent space settlements, the most logical step is our own planet’s satellite.

Lunar base conception
A 2006 NASA conception of a lunar base. Credit: NASA


A base on the lunar surface is a better place to study space settlement than a space station or Mars for many reasons. Unlike a space station, the base does not have to contend with aerodynamic drag, attitude control issues or contamination and impingement from its own thrusters. Unlike a space station, which exists in a total vacuum and resource void, a lunar base has access to at least some surface resources in the forms of minerals, albeit fewer than might be available on Mars.  Many people naturally want to go directly to Mars as our next step. Even SpaceX has publicly stated this as its ultimate goal, with SpaceX President Gwynne Shotwell noting that “we’re not moon people.” However, Mars makes sense only if we think the technology is ready to safely support humans on another surface for long periods of time. Furthermore, budget restrictions make an ambitious goal like going immediately to Mars an unlikely prospect. Why are we afraid to take the seemingly necessary baby steps of developing the technology for a long-term base on a surface that can be reached in mere days instead of months?  The tendency to want to skip a lunar settlement is not a new phenomenon. Even before the first landing on the moon, U.S. and NASA political leadership was contemplating the future of manned space, and few of the visions involved a lunar base. The early space program was driven by Cold War competition with Moscow, and the kinds of ideas that circulated at the time involved milestones that seemed novel such as reusable spaceplanes, nuclear-powered rockets, space stations and missions to Mars. 

When the United States was on the verge of a series of landings on the moon, building a permanent base just didn’t seem like much of a new giant leap. NASA's ConstellationNASA’s Constellation program, featuring the Orion manned capsule set atop the Ares 1 launch vehicle, was meant to send astronauts back to the moon. Credit: NASA  The idea of a lunar landing mission was not reintroduced seriously until the George W. Bush administration and the introduction of the Constellation program. This program came at a complex time for NASA: The space shuttle was recovering from the Columbia disaster, the space station was in the midst of construction and the United States found itself with large budget deficits. However, despite its budgetary and schedule problems, which are common in any serious aerospace development project from space programs to jumbo-jet development, it provided NASA with a vision and a goal that were reasonable and sensible as next steps toward a long-term future of exploration beyond Earth. 

Constellation was nevertheless canceled, and we have since returned to a most uncommon sense.  The decision to avoid any sort of lunar activity in current space policy may have been biased by the Obama administration’s desire to move as far away as possible from the policies of the previous administration. 

Regardless of the cause, discussion of returning to the moon is no longer on the table.  Without the moon, the only feasible mission that NASA could come up with that is within reach given the current technology and budget is the Asteroid Redirect Mission.  
Even planetary scientists have spoken out against the mission, finding that it will provide little scientific value. It will also provide limited engineering and technology value, if we assume that our long-term goal is to permanently settle space. The experience gained from this sort of flight has little applicability to planetary resource utilization, long-term life support or other technologies needed for settlement.  

If we are to have a program of manned space exploration, we must decide what the long-term goals of such a program should be, and we should align our actions with those goals. When resources such as funding are limited, space agencies and political leaders should not squander these limited resources on missions that make no sense. Instead, the limited funding should be used to continue toward our long-term goals, accepting a slower pace or slight scale-back in mission scope.  Establishing a permanent human settlement in space is a noble goal, one that will eventually redefine humanity. Like explorers before us, it is also not a goal that will be achieved in a short period of time. We would be wise to keep our eyes on that goal and the road needed to get us there. And the next likely stop on that road is a permanent home just above our heads, on the surface of the brightest light in the night sky.  

Paul Brower is an aerospace systems engineer on the operations team for the O3b Networks satellite fleet. He previously worked in mission control at NASA for 10 years.
Recently, several space advocacy groups joined forces to form the Alliance for Space Development. Their published objectives include a mention of obvious near-term goals such as supporting the commercial crew program, transitioning from use of the International Space Station to future private space stations and finding ways to reduce the cost of access to space.
What is notably missing from these objectives and those of many other space agencies, companies and advocacy groups is any mention of building a permanent settlement on the moon. It’s as if the lunar surface has become our crazy uncle that we all acknowledge exists but we’d prefer not to mention (or visit).
What made the next logical step in mankind’s progression beyond the bounds of Earth such a taboo subject?
If, as the Alliance for Space Development suggests, our nation wishes to move toward a path of permanent space settlements, the most logical step is our own planet’s satellite.
Lunar base conception
A 2006 NASA conception of a lunar base. Credit: NASA
A base on the lunar surface is a better place to study space settlement than a space station or Mars for many reasons. Unlike a space station, the base does not have to contend with aerodynamic drag, attitude control issues or contamination and impingement from its own thrusters. Unlike a space station, which exists in a total vacuum and resource void, a lunar base has access to at least some surface resources in the forms of minerals, albeit fewer than might be available on Mars.
Many people naturally want to go directly to Mars as our next step. Even SpaceX has publicly stated this as its ultimate goal, with SpaceX President Gwynne Shotwell noting that “we’re not moon people.” However, Mars makes sense only if we think the technology is ready to safely support humans on another surface for long periods of time. Furthermore, budget restrictions make an ambitious goal like going immediately to Mars an unlikely prospect. Why are we afraid to take the seemingly necessary baby steps of developing the technology for a long-term base on a surface that can be reached in mere days instead of months?
The tendency to want to skip a lunar settlement is not a new phenomenon. Even before the first landing on the moon, U.S. and NASA political leadership was contemplating the future of manned space, and few of the visions involved a lunar base. The early space program was driven by Cold War competition with Moscow, and the kinds of ideas that circulated at the time involved milestones that seemed novel such as reusable spaceplanes, nuclear-powered rockets, space stations and missions to Mars. When the United States was on the verge of a series of landings on the moon, building a permanent base just didn’t seem like much of a new giant leap.
NASA's Constellation
NASA’s Constellation program, featuring the Orion manned capsule set atop the Ares 1 launch vehicle, was meant to send astronauts back to the moon. Credit: NASA
The idea of a lunar landing mission was not reintroduced seriously until the George W. Bush administration and the introduction of the Constellation program. This program came at a complex time for NASA: The space shuttle was recovering from the Columbia disaster, the space station was in the midst of construction and the United States found itself with large budget deficits. However, despite its budgetary and schedule problems, which are common in any serious aerospace development project from space programs to jumbo-jet development, it provided NASA with a vision and a goal that were reasonable and sensible as next steps toward a long-term future of exploration beyond Earth.
Constellation was nevertheless canceled, and we have since returned to a most uncommon sense.
The decision to avoid any sort of lunar activity in current space policy may have been biased by the Obama administration’s desire to move as far away as possible from the policies of the previous administration. Regardless of the cause, discussion of returning to the moon is no longer on the table.
Without the moon, the only feasible mission that NASA could come up with that is within reach given the current technology and budget is the Asteroid Redirect Mission.
Even planetary scientists have spoken out against the mission, finding that it will provide little scientific value. It will also provide limited engineering and technology value, if we assume that our long-term goal is to permanently settle space. The experience gained from this sort of flight has little applicability to planetary resource utilization, long-term life support or other technologies needed for settlement.
Advertisement
If we are to have a program of manned space exploration, we must decide what the long-term goals of such a program should be, and we should align our actions with those goals. When resources such as funding are limited, space agencies and political leaders should not squander these limited resources on missions that make no sense. Instead, the limited funding should be used to continue toward our long-term goals, accepting a slower pace or slight scale-back in mission scope.
Establishing a permanent human settlement in space is a noble goal, one that will eventually redefine humanity. Like explorers before us, it is also not a goal that will be achieved in a short period of time. We would be wise to keep our eyes on that goal and the road needed to get us there. And the next likely stop on that road is a permanent home just above our heads, on the surface of the brightest light in the night sky.

Paul Brower is an aerospace systems engineer on the operations team for the O3b Networks satellite fleet. He previously worked in mission control at NASA for 10 years.
- See more at: http://spacenews.com/op-ed-why-the-u-s-gave-up-on-the-moon/#sthash.czfTscvg.dpuf

View Article Here Read More

Concorde Comeback? Two New Jets Plan to Take Air Passengers Supersonic Again




Concorde Comeback? Two New Jets Plan to Take Air Passengers Supersonic Again
Lockheed Martin and NASA’s N+2 jet could cut cross-country flight times in half. (Photo: Lockheed Martin)



Excerpt from yahoo.com

Lockheed Martin and NASA’s N+2 jet could cut cross-country flight times in half. New York to Los Angeles in just over two hours? Passenger jets that fly faster than the speed of sound without that annoying sonic boom?  


That could become reality thanks to two projects that aim to bring supersonic planes back to commercial air travel.  Lockheed Martin is working with NASA on a design called the N+2, an 80-passenger jet capable of cruising at Mach 1.7 (1.7 times the speed of sound). 

But what about that loud sonic boom you get when an airplane exceeds the sound barrier? Lockheed Martin and NASA are working hard to lower the boom, so to speak. They say their proposed new jet will be 100 times quieter than the Concorde, the supersonic passenger jets that flew transatlantic routes from 1969 until they were grounded in 2003.

image
The supersonic Concorde flew from 1969 to 2003. (Photo: AP)


A quieter jet would allow the N+2 to fly at supersonic speeds on cross-country routes as the FAA, concerned about sonic booms going off over sleepy U.S. suburbs, currently bans civilian planes from going all “Danger Zone” in American airspace. Lockheed Martin says their new jet would cut cross-country flight times in half.  Related: Race for the First Windowless Plane Heats Up  A rival supersonic jet development project is underway in Reno, Nevada, where European aircraft maker Airbus is working with American firm Aerion on a new, fuel-efficient plane for business clients. The 12-passenger Aerion AS2 will fly at 1,217 mph (which is almost as fast as the Concorde, which flew at 1,350 mph). That would take you from New York to London in three hours and from Los Angeles to Tokyo in six.  

Since the AS2 would do most of its flying over oceans, its designers aren’t as concerned with loud sonic booms. The AS2’s big innovation is fuel efficiency, with new wings that are said to reduce drag by 20 percent.  The makers of the AS2 plan to deliver their first plane in 2022 while Lockheed Martin hopes to have the N+2 flying in 2025.  

View Article Here Read More

Billionaire teams up with NASA to mine the moon




Excerpt from cnbc.com
By Susan Caminiti



Moon Express, a Mountain View, California-based company that's aiming to send the first commercial robotic spacecraft to the moon next year, just took another step closer toward that lofty goal. 

Earlier this year, it became the first company to successfully test a prototype of a lunar lander at the Kennedy Space Center in Florida. The success of this test—and a series of others that will take place later this year—paves the way for Moon Express to send its lander to the moon in 2016, said company co-founder and chairman Naveen Jain.

Moon Express conducted its tests with the support of NASA engineers, who are sharing with the company their deep well of lunar know-how. The NASA lunar initiative—known as Catalyst—is designed to spur new commercial U.S. capabilities to reach the moon and tap into its considerable resources.In addition to Moon Express, NASA is also working with Astrobotic Technologies of Pittsburgh, Pennsylvania, and Masten Space Systems of Mojave, California, to develop commercial robotic spacecrafts. 

Jain said Moon Express also recently signed an agreement to take over Space Launch Complex 36 at Cape Canaveral. The historic launchpad will be used for Moon Express's lander development and flight-test operations. Before it was decommissioned, the launchpad was home to NASA's Atlas-Centaur rocket program and its Surveyor moon landers.

"Clearly, NASA has an amazing amount of expertise when it comes to getting to the moon, and it wants to pass that knowledge on to a company like ours that has the best chance of being successful," said Jain, a serial entrepreneur who also founded Internet companies Infospace and Intelius. He believes that the moon holds precious metals and rare minerals that can be brought back to help address Earth's energy, health and resource challenges. 

Among the moon's vast riches: gold, cobalt, iron, palladium, platinum, tungsten and Helium-3, a gas that can be used in future fusion reactors to provide nuclear power without radioactive waste. "We went to the moon 50 years ago, yet today we have more computing power with our iPhones than the computers that sent men into space," Jain said. "That type of exponential technological growth is allowing things to happen that was never possible before."

An eye on the Google prize

Source: MoonExpress

Helping to drive this newfound interest in privately funded space exploration is the Google Lunar X Prize. It's a competition organized by the X Prize Foundation and sponsored by Google that will award $30 million to the first company that lands a commercial spacecraft on the moon, travels 500 meters across its surface and sends high-definition images and video back to Earth—all before the end of 2016.

Moon Express is already at the front of the pack. In January it was awarded a $1 million milestone prize from Google for being the only company in the competition so far to test a prototype of its lander. "Winning the X prize would be a great thing," said Jain. "But building a great company is the ultimate goal with us." When it comes to space exploration, he added, "it's clear that the baton has been passed from the government to the private sector."

Testing in stages

Jain said Moon Express has been putting its lunar lander through a series of tests at the space center. The successful outing earlier this year involved tethering the vehicle—which is the size of a coffee table—to a crane in order to safely test its control systems. "The reason we tethered it to the crane is because the last thing we wanted was the aircraft to go completely haywire and hurt someone," he said. 

At the end of March, the company will conduct a completely free flight test with no tethering. The lander will take off from the pad, go up and sideways, then land back at the launchpad. "This is to test that the vehicle knows where to go and how to get back to the launchpad safely," Jain explained.


Once all these tests are successfully completed, Jain said the lander—called MX-1—will be ready to travel to the moon. The most likely scenario is that it will be attached to a satellite that will take the lander into a low orbit over the Earth. From there the MX-1 will fire its own rocket, powered by hydrogen peroxide, and launch from that orbit to complete its travel to the moon's surface. 

The lander's first mission is a one-way trip, meaning that it's not designed to travel back to the Earth, said Jain. "The purpose is to show that for the first time, a company has developed the technology to land softly on the moon," he said. "Landing on the moon is not the hard part. Landing softly is the hard part." 

That's because even though the gravity of the moon is one-sixth that of the Earth's, the lander will still be traveling down to the surface of the moon "like a bullet," Jain explained. Without the right calculations to indicate when its rockets have to fire in order to slow it down, the lander would hit the surface of the moon and break into millions of pieces. "Unlike here on Earth, there's no GPS on the moon to tell us this, so we have to do all these calculations first," he said. 

Looking ahead 15 or 20 years, Jain said he envisions a day when the moon is used as a sort of way station enabling easier travel for exploration to other planets. In the meantime, he said the lander's second and third missions could likely involve bringing precious metals, minerals and even moon rocks back to Earth. "Today, people look at diamonds as this rare thing on Earth," Jain said.
He added, "Imagine telling someone you love her by giving her the moon."

View Article Here Read More

Australia researchers create ‘world’s first’ 3D-printed jet engines

(Reuters) - Australian researchers unveiled the world's first 3D-printed jet engine on Thursday, a manufacturing breakthrough that could lead to cheaper, lighter and more fuel-efficient jets. Engineers at Monash University and its commercial arm are...

View Article Here Read More

Windwheel concept combines tourist attraction with "silent turbine"


 The Dutch Windwheel concept is designed to be part energy icon, part tourist attraction an...


Excerpt from gizmag.com
By Stu Robarts


The Dutch have long used windmills to harness wind energy. A new concept proposed for city of Rotterdam, however, is surely one of the most elaborate windmills ever conceived. The Dutch Windwheel is a huge circular wind energy converter that houses apartments, a hotel and a giant coaster ride.

The concept is designed to be part energy icon, part tourist attraction and part residential building. It is a 174-m (571-ft) structure comprising two huge rings that appear to lean against each other. "We wanted to combine a big attraction for Rotterdam with a state-of-the-art sustainable concept," explains Lennart Graaff of the Dutch Windwheel Corporation, to Gizmag.

The larger outer ring houses 40 pods on rails that move around the ring and provide those who visit with views of Rotterdam and its port. The smaller inner ring, meanwhile, houses 72 apartments, a 160-room hotel across seven floors and a panoramic restaurant and viewing gallery. Perhaps most remarkable feature of of all, however, is a huge "bladeless turbine" that spans the center smaller ring.

Although this may look and sound like some of the more out-there architectural concepts that Gizmag has featured, it is actually based on existing (albeit prototypical) technology. The electrostatic wind energy convertor (EWICON) was developed at Delft Technical University and generates electricity by harnessing the movement of charged water droplets in the wind. Its lack of moving parts makes it noiseless and easier to maintain than traditional turbines.

Dhiradj Djairam, of the TU Delft team that developed the EWICON, tells Gizmag that the Dutch Windwheel Corporation has expressed "a serious interest" in the technology. Djairam says he has provided an explanation of the technology to the organization and provided a rough outline for a realistic research and development program. To date, only small-scale research projects have been carried out, with additional funding opportunities being explored.

The Dutch Windwheel concept is 174 m (571 ft) tall and has underwater foundations

The Dutch Windwheel concept has other sustainable aspects, too. Photovoltaic thermal hybrid panels would be used to contribute to the generation of electricity, and rainwater would be collected for use in the building. The Dutch Windwheel Corporation says the building itself is designed to be built with locally-sourced materials, and in such a way as it could ultimately be disassembled and re-used elsewhere.

Among the other features of the design are space for commercial functions in the structure's plinth, and foundations that are underwater, making it it look as though the structure is floating. 

We're told that the amount of power the Dutch Windwheel will require to run – and be able to generate – is not yet clear. Likewise, the final technologies and additional sustainability features that would be present in the building have yet to be finalized...

View Article Here Read More

Virgin Galactic Opens LauncherOne Facility in Long Beach ~ Schedules March 7th Job Fair


 


Excerpt from spacenews.com
by Jeff Foust 

Virgin Galactic announced Feb. 12 that the company is opening a new facility in Long Beach, California, devoted to development of its small satellite launch vehicle.  Virgin Galactic said that it is leasing a 13,900-square-meter building at the Long Beach Airport that it will use for the design and manufacturing of LauncherOne.

The company did not disclose the terms of the lease.  “The technical progress our team has made designing and testing LauncherOne has enabled a move into a dedicated facility to produce the rocket at quantity,” Virgin Galactic chief executive George Whitesides said in a statement announcing the new facility. 

LauncherOne work has been based to date in Mojave, California.  LauncherOne is an air-launch system for satellites weighing up to 225 kilograms. The system will use the same aircraft, WhiteKnightTwo, as the company’s SpaceShipTwo suborbital vehicle, but replaces SpaceShipTwo with a two-stage launch vehicle using engines fueled by liquid oxygen and kerosene.  At the Federal Aviation Administration Commercial Space Transportation Conference Feb. 4, William Pomerantz, vice president of special projects for Virgin Galactic, said the company has already tested engines and other “core infrastructure” of LauncherOne. 

“We are a fairly vertically-integrated team,” he said. “We really do control a lot of the production in house.”  Pomerantz said that about 60 of the 450 employees of Virgin Galactic and its wholly-owned subsidiary, The Spaceship Company, are currently dedicated to the LauncherOne program.  Virgin Galactic said it will hold a job fair at its new Long Beach facility March 7, but did not disclose how many people it plans to hire there. The Virgin Galactic website lists approximately 20 job opening related to the LauncherOne program as of Feb. 12.  When Virgin Galactic announced the LauncherOne program in 2012, it said it had signed up several companies as initial customers, including Planetary Resources, GeoOptics, Spaceflight Inc., and Skybox Imaging, since acquired by Google.  

In January, the Virgin Group announced it was investing in OneWeb, a venture that plans a constellation of nearly 650 satellites in low Earth orbit to provide broadband communications, with at least some of those satellites to be launched by LauncherOne. 

Virgin Galactic Opens LauncherOne Facility in Long Beach

by — February 12, 2015
Virgin Galactic LauncherOne
Virgin Galactic’s LauncherOne. Credit: Virgin Galactic
WASHINGTON — Virgin Galactic announced Feb. 12 that the company is opening a new facility in Long Beach, California, devoted to development of its small satellite launch vehicle.
Virgin Galactic said that it is leasing a 13,900-square-meter building at the Long Beach Airport that it will use for the design and manufacturing of LauncherOne. The company did not disclose the terms of the lease.
“The technical progress our team has made designing and testing LauncherOne has enabled a move into a dedicated facility to produce the rocket at quantity,” Virgin Galactic chief executive George Whitesides said in a statement announcing the new facility. LauncherOne work has been based to date in Mojave, California.
Advertisement
LauncherOne is an air-launch system for satellites weighing up to 225 kilograms. The system will use the same aircraft, WhiteKnightTwo, as the company’s SpaceShipTwo suborbital vehicle, but replaces SpaceShipTwo with a two-stage launch vehicle using engines fueled by liquid oxygen and kerosene.
At the Federal Aviation Administration Commercial Space Transportation Conference Feb. 4, William Pomerantz, vice president of special projects for Virgin Galactic, said the company has already tested engines and other “core infrastructure” of LauncherOne. “We are a fairly vertically-integrated team,” he said. “We really do control a lot of the production in house.”
Pomerantz said that about 60 of the 450 employees of Virgin Galactic and its wholly-owned subsidiary, The Spaceship Company, are currently dedicated to the LauncherOne program.
Virgin Galactic said it will hold a job fair at its new Long Beach facility March 7, but did not disclose how many people it plans to hire there. The Virgin Galactic website lists approximately 20 job opening related to the LauncherOne program as of Feb. 12.
When Virgin Galactic announced the LauncherOne program in 2012, it said it had signed up several companies as initial customers, including Planetary Resources, GeoOptics, Spaceflight Inc., and Skybox Imaging, since acquired by Google.
In January, the Virgin Group announced it was investing in OneWeb, a venture that plans a constellation of nearly 650 satellites in low Earth orbit to provide broadband communications, with at least some of those satellites to be launched by LauncherOne.
- See more at: http://spacenews.com/virgin-galactic-opens-launcherone-facility-in-long-beach/#sthash.sxcVmjTW.dpuf

View Article Here Read More

US Issuing Licenses for Mineral Mining on Moon

Excerpt from space-travel.comWashington DC (Sputnik) Feb 09, 2015Bigelow Aerospace plans to test a space habitat at the International Space Station this year, and then operate free-flying orbital outposts for customers, including government agencies...

View Article Here Read More

Cape hopes to be world’s busiest spaceport in 2016



A United Launch Alliance Delta IV rocket, with the
A United Launch Alliance Delta IV rocket, with the Air Force’s AFSPC-4 mission aboard.(Photo: United Launch Alliance)


Excerpt from news-press.com


With two dozen rockets projected to blast payloads into orbit, Cape Canaveral this year hopes to claim the title of "world's busiest spaceport," the Air Force's 45th Space Wing said Tuesday.
"It's a great time to be here," said Col. Thomas Falzarano, commander of the Wing's 45th Operations Group. "Business is booming."

Falzarano presented the Eastern Range launch forecast to several hundred guests at the National Space Club Florida Committee's meeting in Cape Canaveral.

Weather, technical issues and program changes frequently delay launches, so it's likely some of the missions will slip into next year. But the forecast shows the Space Coast launching at an increasingly busy clip even without human spaceflight missions, which aren't expected to resume for several years.

The 2015 forecast anticipates United Launch Alliance matching last year's total of 10 Cape launches, including eight by Atlas V rockets and two by Delta IV rockets.

And it assumes as many as 14 launches by SpaceX. Last year had six Falcon 9 flights.

That was SpaceX's most launches in a calendar year, but five fewer than was projected last January.


This year the company hopes to activate a second launch pad, complementing its existing one at Cape Canaveral Air Force Station.

The debut of the Falcon Heavy rocket from a former Apollo and shuttle pad at Kennedy Space Center would be one of this year's most highly anticipated launches.

In addition, SpaceX plans to launch more ISS resupply missions, and commercial and government satellites.


ULA's first launch of the year is coming up Tuesday, with an Atlas V targeting a 7:43 p.m. liftoff with a Navy communications satellite.

The Boeing-Lockheed Martin joint venture has its usual slate of high-value science and national security missions. The manifest includes a roughly $1 billion NASA science mission, an X-37B military space plane and more Global Positioning System satellites.

Overall last year, the 45th Space Wing supported 16 space launches — five less than projected last January (all attributed to SpaceX) — plus two Trident missile tests launched from submarines.
That ranked the Cape No. 2 behind the Baikonur Cosmodrome in Kazakstan, Falzarano said.

But with 24 missions potentially on the books this year and more than 30 in various planning stages for 2016, Falzarano said the Eastern Range is facing its busiest two-year stretch in more than two decades.

"The Cape, right here, is going to be the busiest spaceport in the world," he said.



Growing launch rate
2013: 14
2014: 18
2015: 24 (projected)
Source: U.S. Air Force 45th Space Wing

View Article Here Read More

Elon Musk Attempts Landing a Rocket on a Boat


Picture of the SpaceX Falcon 9 rocket at Cape Canaveral
A SpaceX Falcon 9 rocket stands ready to boost a Dragon capsule on its fifth commercial resupply mission to the International Space Station. If all goes as planned, the rocket will land on a barge on Saturday.

Excerpt from 
news.nationalgeographic.com


SpaceX chief aims to make rockets reusable by guiding them to a barge instead of letting them splash down. 

Rockets have landed on the moon and on Mars, but now SpaceX rocket maven Elon Musk aims to land one someplace really exotic—a barge floating in the Atlantic Ocean.

The barge, or "autonomous spaceport drone ship" as SpaceX calls it, is scheduled to land its returned rocket on Saturday, about 17 minutes after the planned 4:47 a.m. (EST) launch of a Dragon cargo spacecraft heading to the International Space Station from the Cape Canaveral Air Force Station in Florida.

The point of the barge landing is to recover the rocket's expensive engines and reuse them. Until now, rocket engines have typically been allowed to burn up on reentry or plummet into the ocean, either for disposal or recovery later by boat. If SpaceX pulls off the barge landing, it will be a first for ocean landings.

The barge's landing site, just 300 feet by 170 feet in size (about 90 by 50 meters), will act as the outfielder's glove to catch the massive first stage of the Falcon 9 launch rocket, maneuvered into place by remote control.

"Our main mission is to get cargo to the space station," said SpaceX's Hans Koenigsmann, speaking last week at a NASA briefing. "I'm pretty sure it will be pretty exciting," he said of the attempted controlled landing of the 14-story-tall first stage of the rocket on a flat floating platform.

Failure an Option

SpaceX has successfully landed rocket stages on land, and made a controlled landing on water after a past cargo launch, which still led to the loss of the rocket stage in the drink. Musk has previously suggested that barge landings of stages would expedite their reuse, leading to cheaper rocketry.

Musk gave 50 percent odds of the barge landing working out. ("I pretty much made that up. I have no idea," he added in a recent web chat on Reddit.)

View Article Here Read More

CIA: All Those 1950s UFO Sightings? ‘It Was Us’

Excerpt from usatoday.comMaybe it was a bird. Maybe it was a plane.But it was probably not a UFO.The Central Intelligence Agency had some fun Monday tweeting out its most popular stories of the year.No. 1? "Reports of unusual activity in the skies in t...

View Article Here Read More

The Future of Technology in 2015?




Excerpt from
cnet.com


The year gone by brought us more robots, worries about artificial intelligence, and difficult lessons on space travel. The big question: where's it all taking us?

Every year, we capture a little bit more of the future -- and yet the future insists on staying ever out of reach.
Consider space travel. Humans have been traveling beyond the atmosphere for more than 50 years now -- but aside from a few overnights on the moon four decades ago, we have yet to venture beyond low Earth orbit.
Or robots. They help build our cars and clean our kitchen floors, but no one would mistake a Kuka or a Roomba for the replicants in "Blade Runner." Siri, Cortana and Alexa, meanwhile, are bringing some personality to the gadgets in our pockets and our houses. Still, that's a long way from HAL or that lad David from the movie "A.I. Artificial Intelligence."
Self-driving cars? Still in low gear, and carrying some bureaucratic baggage that prevents them from ditching certain technology of yesteryear, like steering wheels.
And even when these sci-fi things arrive, will we embrace them? A Pew study earlier this year found that Americans are decidedly undecided. Among the poll respondents, 48 percent said they would like to take a ride in a driverless car, but 50 percent would not. And only 3 percent said they would like to own one.
"Despite their general optimism about the long-term impact of technological change," Aaron Smith of the Pew Research Center wrote in the report, "Americans express significant reservations about some of these potentially short-term developments" such as US airspace being opened to personal drones, robot caregivers for the elderly or wearable or implantable computing devices that would feed them information.
Let's take a look at how much of the future we grasped in 2014 and what we could gain in 2015.

Space travel: 'Space flight is hard'

In 2014, earthlings scored an unprecedented achievement in space exploration when the European Space Agency landed a spacecraft on a speeding comet, with the potential to learn more about the origins of life. No, Bruce Willis wasn't aboard. Nobody was. But when the 220-pound Philae lander, carried to its destination by the Rosetta orbiter, touched down on comet 67P/Churyumov-Gerasimenko on November 12, some 300 million miles from Earth, the celebration was well-earned.
A shadow quickly fell on the jubilation, however. Philae could not stick its first landing, bouncing into a darker corner of the comet where its solar panels would not receive enough sunlight to charge the lander's batteries. After two days and just a handful of initial readings sent home, it shut down. For good? Backers have allowed for a ray of hope as the comet passes closer to the sun in 2015. "I think within the team there is no doubt that [Philae] will wake up," lead lander scientist Jean-Pierre Bibring said in December. "And the question is OK, in what shape? My suspicion is we'll be in good shape."
The trip for NASA's New Horizons spacecraft has been much longer: 3 billion miles, all the way to Pluto and the edge of the solar system. Almost nine years after it left Earth, New Horizons in early December came out of hibernation to begin its mission: to explore "a new class of planets we've never seen, in a place we've never been before," said project scientist Hal Weaver. In January, it will begin taking photos and readings of Pluto, and by mid-July, when it swoops closest to Pluto, it will have sent back detailed information about the dwarf planet and its moon, en route to even deeper space.


Also in December, NASA made a first test spaceflight of its Orion capsule on a quick morning jaunt out and back, to just over 3,600 miles above Earth (or approximately 15 times higher than the International Space Station). The distance was trivial compared to those those traveled by Rosetta and New Horizons, and crewed missions won't begin till 2021, but the ambitions are great -- in the 2030s, Orion is expected to carry humans to Mars.
In late March 2015, two humans will head to the ISS to take up residence for a full year, in what would be a record sleepover in orbit. "If a mission to Mars is going to take a three-year round trip," said NASA astronaut Scott Kelly, who will be joined in the effort by Russia's Mikhail Kornienko, "we need to know better how our body and our physiology performs over durations longer than what we've previously on the space station investigated, which is six months."
There were more sobering moments, too, in 2014. In October, Virgin Galactic's sleek, experimental SpaceShipTwo, designed to carry deep-pocketed tourists into space, crashed in the Mojave Desert during a test flight, killing one test pilot and injuring the other. Virgin founder Richard Branson had hoped his vessel would make its first commercial flight by the end of this year or in early 2015, and what comes next remains to be seen. Branson, though, expressed optimism: "Space flight is hard -- but worth it," he said in a blog post shortly after the crash, and in a press conference, he vowed "We'll learn from this, and move forward together." Virgin Galactic could begin testing its next spaceship as soon as early 2015.
The crash of SpaceShipTwo came just a few days after the explosion of an Orbital Sciences rocket lofting an unmanned spacecraft with supplies bound for the International Space Station. And in July, Elon Musk's SpaceX had suffered the loss of one of its Falcon 9 rockets during a test flight. Musk intoned, via Twitter, that "rockets are tricky..."
Still, it was on the whole a good year for SpaceX. In May, it unveiled its first manned spacecraft, the Dragon V2, intended for trips to and from the space station, and in September, it won a $2.6 billion contract from NASA to become one of the first private companies (the other being Boeing) to ferry astronauts to the ISS, beginning as early as 2017. Oh, and SpaceX also has plans to launch microsatellites to establish low-cost Internet service around the globe, saying in November to expect an announcement about that in two to three months -- that is, early in 2015.
One more thing to watch for next year: another launch of the super-secret X-37B space place to do whatever it does during its marathon trips into orbit. The third spaceflight of an X-37B -- a robotic vehicle that, at 29 feet in length, looks like a miniature space shuttle -- ended in October after an astonishing 22 months circling the Earth, conducting "on-orbit experiments."

Self-driving cars: Asleep at what wheel?

Spacecraft aren't the only vehicles capable of autonomous travel -- increasingly, cars are, too. Automakers are toiling toward self-driving cars, and Elon Musk -- whose name comes up again and again when we talk about the near horizon for sci-fi tech -- says we're less than a decade away from capturing that aspect of the future. In October, speaking in his guise as founder of Tesla Motors, Musk said: "Like maybe five or six years from now I think we'll be able to achieve true autonomous driving where you could literally get in the car, go to sleep and wake up at your destination." (He also allowed that we should tack on a few years after that before government regulators give that technology their blessing.)
Prototype, unbound: Google's ride of the future, as it looks today Google
That comment came as Musk unveiled a new autopilot feature -- characterizing it as a sort of super cruise control, rather than actual autonomy -- for Tesla's existing line of electric cars. Every Model S manufactured since late September includes new sensor hardware to enable those autopilot capabilities (such as adaptive cruise control, lane-keeping assistance and automated parking), to be followed by an over-the-air software update to enable those features.
Google has long been working on its own robo-cars, and until this year, that meant taking existing models -- a Prius here, a Lexus there -- and buckling on extraneous gear. Then in May, the tech titan took the wraps off a completely new prototype that it had built from scratch. (In December, it showed off the first fully functional prototype.) It looked rather like a cartoon car, but the real news was that there was no steering wheel, gas pedal or brake pedal -- no need for human controls when software and sensors are there to do the work.
Or not so fast. In August, California's Department of Motor Vehicles declared that Google's test vehicles will need those manual controls after all -- for safety's sake. The company agreed to comply with the state's rules, which went into effect in September, when it began testing the cars on private roads in October.
Regardless of who's making your future robo-car, the vehicle is going to have to be not just smart, but actually thoughtful. It's not enough for the car to know how far it is from nearby cars or what the road conditions are. The machine may well have to make no-win decisions, just as human drivers sometimes do in instantaneous, life-and-death emergencies. "The car is calculating a lot of consequences of its actions," Chris Gerdes, an associate professor of mechanical engineering, said at the Web Summit conference in Dublin, Ireland, in November. "Should it hit the person without a helmet? The larger car or the smaller car?"

Robots: Legging it out

So when do the robots finally become our overlords? Probably not in 2015, but there's sure to be more hand-wringing about both the machines and the artificial intelligence that could -- someday -- make them a match for homo sapiens. At the moment, the threat seems more mundane: when do we lose our jobs to a robot?
The inquisitive folks at Pew took that very topic to nearly 1,900 experts, including Vint Cerf, vice president at Google; Web guru Tim Bray; Justin Reich of Harvard University's Berkman Center for Internet & Society; and Jonathan Grudin, principal researcher at Microsoft. According to the resulting report, published in August, the group was almost evenly split -- 48 percent thought it likely that, by 2025, robots and digital agents will have displaced significant numbers of blue- and white-collar workers, perhaps even to the point of breakdowns in the social order, while 52 percent "have faith that human ingenuity will create new jobs, industries, and ways to make a living, just as it has been doing since the dawn of the Industrial Revolution."


Still, for all of the startling skills that robots have acquired so far, they're often not all there yet. Here's some of what we saw from the robot world in 2014:
Teamwork: Researchers at the École Polytechnique Fédérale De Lausanne in May showed off their "Roombots," cog-like robotic balls that can join forces to, say, help a table move across a room or change its height.
A sense of balance: We don't know if Boston Dynamics' humanoid Atlas is ready to trim bonsai trees, but it has learned this much from "The Karate Kid" (the original from the 1980s) -- it can stand on cinder blocks and hold its balance in a crane stance while moving its arms up and down.
Catlike jumps: MIT's cheetah-bot gets higher marks for locomotion. Fed a new algorithm, it can run across a lawn and bound like a cat. And quietly, too. "Our robot can be silent and as efficient as animals. The only things you hear are the feet hitting the ground," MIT's Sangbae Kim, a professor of mechanical engineering, told MIT News. "This is kind of a new paradigm where we're controlling force in a highly dynamic situation. Any legged robot should be able to do this in the future."
Sign language: Toshiba's humanoid Aiko Chihira communicated in Japanese sign language at the CEATEC show in October. Her rudimentary skills, limited for the moment to simple messages such as signed greetings, are expected to blossom by 2020 into areas such as speech synthesis and speech recognition.
Dance skills: Robotic pole dancers? Tobit Software brought a pair, controllable by an Android smartphone, to the Cebit trade show in Germany in March. More lifelike was the animatronic sculpture at a gallery in New York that same month -- but what was up with that witch mask?
Emotional ambition: Eventually, we'll all have humanoid companions -- at least, that's always been one school of thought on our robotic future. One early candidate for that honor could be Pepper, from Softbank and Aldebaran Robotics, which say the 4-foot-tall Pepper is the first robot to read emotions. This emo-bot is expected to go on sale in Japan in February.

Ray guns: Ship shape

Damn the photon torpedoes, and full speed ahead. That could be the motto for the US Navy, which in 2014 deployed a prototype laser weapon -- just one -- aboard a vessel in the Persian Gulf. Through some three months of testing, the device "locked on and destroyed the targets we designated with near-instantaneous lethality," Rear Adm. Matthew L. Klunder, chief of naval research, said in a statement. Those targets were rather modest -- small objects mounted aboard a speeding small boat, a diminutive Scan Eagle unmanned aerial vehicle, and so on -- but the point was made: the laser weapon, operated by a controller like those used for video games, held up well, even in adverse conditions.

Artificial intelligence: Danger, Will Robinson?

What happens when robots and other smart machines can not only do, but also think? Will they appreciate us for all our quirky human high and low points, and learn to live with us? Or do they take a hard look at a species that's run its course and either turn us into natural resources, "Matrix"-style, or rain down destruction?
laser-weapon-system-on-uss-ponce.jpg
When the machines take over, will they be packing laser weapons like this one the US Navy just tried out? John F. Williams/US Navy
As we look ahead to the reboot of the "Terminator" film franchise in 2015, we can't help but recall some of the dire thoughts about artificial intelligence from two people high in the tech pantheon, the very busy Musk and the theoretically inclined Stephen Hawking.
Musk himself more than once in 2014 invoked the likes of the "Terminator" movies and the "scary outcomes" that make them such thrilling popcorn fare. Except that he sees a potentially scary reality evolving. In an interview with CNBC in June, he spoke of his investment in AI-minded companies like Vicarious and Deep Mind, saying: "I like to just keep an eye on what's going on with artificial intelligence. I think there is potentially a dangerous outcome."
He has put his anxieties into some particularly colorful phrases. In August, for instance, Musk tweeted that AI is "potentially more dangerous than nukes." And in October, he said this at a symposium at MIT: "With artificial intelligence, we are summoning the demon. ... You know all those stories where there's the guy with the pentagram and the holy water and he's like... yeah, he's sure he can control the demon, [but] it doesn't work out."
Musk has a kindred spirit in Stephen Hawking. The physicist allowed in May that AI could be the "biggest event in human history," and not necessarily in a good way. A month later, he was telling John Oliver, on HBO's "Last Week Tonight," that "artificial intelligence could be a real danger in the not too distant future." How so? "It could design improvements to itself and outsmart us all."
But Google's Eric Schmidt, is having none of that pessimism. At a summit on innovation in December, the executive chairman of the far-thinking tech titan -- which in October teamed up with Oxford University to speed up research on artificial intelligence -- said that while our worries may be natural, "they're also misguided."

View Article Here Read More

NASA selects four key commercial partners for improved spaceflight



Excerpt from
thespacereporter.com



According to a NASA statement, on December 23, the agency released the names of the four American companies selected for future developmental collaborations. The companies were chosen under the auspices of the Collaborators for Commercial Space Capabilities program, which facilities industry access to NASA’s spaceflight resources. The products of the partnerships will be made available to governmental and non-governmental entities within the next five years.

The four companies that have been chosen are the following: ATK Space Systems of Beltsville, Maryland, which is space transportation capacity; Final Frontier Design of Brooklyn, New York, which is developing space suits for intra-vehicular operations; Space Exploration Technologies of Hawthorne, California, which is developing space transportation means that could be used to facilitate future deep space missions; and United Launch Alliance of Centennial, Colorado, which is developing new, less expensive launch vehicles with greater performance.

“These awards demonstrate the diversity and maturity of the commercial space industry. We look forward to working with these partners to advance space capabilities and make them available to NASA and other customers in the coming years,” said Phil McAlister, director of commercial spaceflight at NASA. Although NASA will contribute expertise, technology, evaluations and the resultant data and insights, it is up to the four companies to cover the costs of their collaboration with NASA.

View Article Here Read More
Older posts Newer posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑