Tag: collectively (page 1 of 4)

MAKE THIS VIRAL! WEEKLY ASCENSION MEDITATION

  It is time to take action again! It is time to take the destiny of our world in our own hands! We all agree that the process of planetary liberation is taking too long. Here is our chance to collectively speed up the process. Therefore we are up...

View Article Here Read More

An Alien Radio Beacon? Possibly Not This Time



An Alien Radio Beacon? Possibly Not This Time.

Excerpt from postpioneer.com


For practically a decade, astronomers have puzzled over strong bursts of radio energy that appear to be hailing from billions of light years away. Recently, we received reports of a new wrinkle to this mystery: The bursts seem to comply with a mathematical...

For practically a decade, astronomers have puzzled over strong bursts of radio energy that appear to be hailing from billions of light years away. Recently, we received reports of a new wrinkle to this mystery: The bursts seem to comply with a mathematical pattern, one that does not line up with something we know about cosmic physics.

And, of course, when we hear “mathematical pattern,” “radio transmission,” and “outer space,” all strung collectively, we straight away jump to our preferred explanation—aliens! (Or, you know, a decaying pulsar star, an unmapped spy satellite, or a cell telephone tower.)

It’s also probable that the pattern doesn’t basically exist.

Because 2007, telescopes have picked up almost a dozen so-known as “fast radio bursts,” pulses that last for mere milliseconds, but erupt with as a great deal power as the sun releases in a month. Where could they be coming from? To come across out, a group of researchers took advantage of a basic principle: That higher frequency radio waves encounter less interference as they traverse space, and are detected by our telescopes earlier than reduce frequency waves. The time delay, or “dispersion measure”, in between larger and reduce frequency radio waves from the very same pulse event can be applied to figure out the distance those waves traveled.

Here’s where things got weird. When researchers calculated the dispersion distance for each and every of eleven rapid radio bursts, they identified that every distance is an integer many of a single number: 187.5. When plotted on a graph, as the researchers show us in Figure 1 of their paper, the points type a striking pattern.

A single explanation is that the bursts are coming from distinctive sources, all at on a regular basis spaced intervals from the Earth, billions of light years away. They could also be brought on by a smaller cosmic object a lot closer to residence, such as a pulsar star, behaving according to some sort of physics we don’t yet understand. And then there’s the possibility that aliens are trying to communicate, by blasting simple numeric patterns into space.

But no matter how you slice it, eleven data points is a tiny sample set to draw any meaningful conclusions from. A handful of deviant observations could bring about the complete pattern to unravel.

And that is precisely what seems to be happening. As Nadia Drake reports for National Geographic, newer observations, not integrated in the most up-to-date scientific report or other well known media articles, don’t fit:

“There are 5 quickly radio bursts to be reported,” says Michael Kramer of Germany’s Max Planck Institute for Radioastronomy. “They do not fit the pattern.”
Rather of aliens, unexpected astrophysics, or even Earthly interference, the mysterious mathematical pattern is probably an artifact produced by a little sample size, Ransom says. When working with a limited quantity of data – say, a population of 11 quickly radio bursts – it’s straightforward to draw lines that connect the dots. Usually, on the other hand, these lines disappear when much more dots are added.
“My prediction is that this pattern will be washed out quite immediately after a lot more fast radio bursts are located,” says West Virginia University’s Duncan Lorimer, who reported the very first burst in 2007. “It’s a great instance of how apparently considerable final results can be identified in sparse information sets.”

That is a bit of a bummer, but nevertheless, these radio bursts are fascinating, and what could be causing them remains as a lot of a mystery as ever. It could even nonetheless be aliens, if not an alien beacon. As SETI Institute Director Seth Shostak told me in an e mail:

“If it is a signal, nicely, it is surely NOT a message — except perhaps to say ‘here we are’. There’s not actual bandwidth to it, which suggests these speedy radio bursts can not encode several bits. But there are so many other possibilities, I feel that automatically attributing one thing in the sky that we don’t (at very first) understand to the operate of aliens is … premature!”

If there’s 1 point that is clear in this whole organization, it is that we’ve nonetheless got plenty to discover about the patterns woven into the universe around us.

View Article Here Read More

Study: 70% of People on Antidepressants Don’t Have Depression

Mike Barrett, Natural SocietyIf sales for antidepressants such as Zoloft, Lexapro, or Prozac tell us anything, it’s that depression is sweeping the nation. But a new study questions the validity of most of these sales. The study has found that the majority of individuals on antidepressants – a whopping 69% – do not even meet the criteria for clinical depression. These individuals are likely just experiencing normal sadness and hardships that most of u [...]

View Article Here Read More

With innovators from around the globe digging in, public moon travel may be only 20 years away



moon
Image Credit: hkeita/Shutterstock


Excerpt from  venturebeat.com
By Vivek Wadhwa

Five teams competing for the $30 million Google Lunar XPRIZE have just been awarded a combined $5.25 million for meeting significant milestones in developing a robot that can safely land on the surface of the moon, travel 500 meters over the lunar surface, and send mooncasts back to the Earth. A tiny startup from India, Team Indus, with no experience in robotics or space flight just won $1 million of this prize. It stood head to head with companies that had been funded by billionaires, had received the assistance of NASA, and had the support of leading universities.
The good news is that governments no longer have a monopoly on space exploration. In two or three decades, we will have entrepreneurs taking us on private spaceflights to the moon. That is what has become possible.

What has changed since the days of the Apollo moon landings is that the cost of building technologies has dropped exponentially. What cost billions of dollars then costs millions now, and sometimes even less. Our smartphones have computers that are more powerful than the Cray supercomputers of yesteryear — which had strict export controls and cost tens of millions of dollars. We carry high-definition cameras in our pockets that are more powerful than those on NASA spacecraft. The cameras in the Mars Curiosity Rover, for example, have a resolution of 2 megapixels with 8GB of flash memory, the same as our clunky first-generation iPhones. The Apollo Guidance Computer, which took humans to the moon in 1966, had a 2.048 MHz processor — slower than those you find in calculators and musical greeting cards.

The same technologies as are available in the United States and Europe are available worldwide. Innovation has globalized.
I met Team Indus while I was in Mumbai to speak at INK last November. When they told me they were competing for the Google Lunar XPRIZE. I didn’t take them seriously because I had seen their counterpart in Silicon Valley, Moon Express, which has the support of tech moguls such as Naveen Jain. How could a scrawny little startup in Bangalore take on Naveen Jain, former NASA engineer Bob Richards, and NASA itself, I thought. The Moon Express team is a force of nature, has the advantage of being on the NASA Ames Research campus, and has been given R&D worth billions of dollars by NASA.

Team Indus was also up against Astrobotic, which is a spinoff from the Carnegie Mellon University Robotics Institute, and Israel-based SpaceIL, which has the backing of the country’s top research institutes.

The company’s win blew my mind. Even though the subject of my INK talk was how Indian entrepreneurs could help change the world, I didn’t think it was already happening.

(See my Jan. 1 story on the Indian tech scene and watch this talk to learn more: Why India shouldn’t be succeeding but is.)

The Bangalore-based startup was founded by former I.T. executive Rahul Narayan and four of his friends: an Air Force pilot, a marketing executive, an investment banker, and an aerospace engineer. None of the team had experience in building spacecraft or robots, yet they were able to build technology that could navigate to the moon.

Narayan says he expects completion of his space mission to cost around $30 million. Moon Express chief executive Bob Richards estimates $50 million. These numbers are higher than the $20 million prize that they hope to win. But both see far greater opportunities: They hope to be pioneers in what could be a trillion-dollar industry. Richards is looking to mine the moon for minerals and bring them back to Earth. Each payload could be worth billions.

The Google Lunar XPRIZE has 26 teams competing from around the world. Collectively, they will spend in the hundreds of millions of dollars on their efforts. For them, it is not all about winning the contest; many of the losers will still commercialize their space technologies or put their knowledge to use in other fields. This is the power of such competitions. They lead entrants to spend multiples of the offered purse on innovative solutions. And they motivate people outside the industry, such as Narayan, to enter it with out-of-the-box thinking.

Innovation prizes are not new. In fact, a number of celebrated historical feats were made possible, in part, by the desire to win these prizes. In the 1920s, New York hotel owner Raymond Orteig offered a $25,000 prize to the first person to fly non-stop between New York and Paris. Several unsuccessful attempts were made before an American airmail pilot named Charles Lindbergh won the competition in 1927 with his plane, The Spirit of St. Louis
Lindbergh’s achievement made him a national hero and a global celebrity. And it sparked the interest and investment that led to the modern aviation industry.

That is what I expect will come of the Lunar XPRIZE. And that is why I am looking forward to booking my round-trip ticket to the moon one summer in the 2030s.

View Article Here Read More

Liftoff! SpaceX Gets $1 Billion From Google and Fidelity

 Excerpt from  nbcnews.com SpaceX, the California-based rocket company that now has its sights set on a globe-spanning satellite constellation, says it has received a $1 billion investment from Google and Fidelity that values the c...

View Article Here Read More

The New American Dream ~ The Case for Colonizing Mars




Excerpt from Ad Astra

by Robert Zubrin


Mars Is The New World

Among extraterrestrial bodies in our solar system, Mars is singular in that it possesses all the raw materials required to support not only life, but a new branch of human civilization. This uniqueness is illustrated most clearly if we contrast Mars with the Earth's Moon, the most frequently cited alternative location for extraterrestrial human colonization.

In contrast to the Moon, Mars is rich in carbon, nitrogen, hydrogen and oxygen, all in biologically readily accessible forms such as carbon dioxide gas, nitrogen gas, and water ice and permafrost. Carbon, nitrogen, and hydrogen are only present on the Moon in parts per million quantities, much like gold in seawater. Oxygen is abundant on the Moon, but only in tightly bound oxides such as silicon dioxide (SiO2), ferrous oxide (Fe2O3), magnesium oxide (MgO), and aluminum oxide (Al2O3), which require very high energy processes to reduce.

The Moon is also deficient in about half the metals of interest to industrial society (copper, for example), as well as many other elements of interest such as sulfur and phosphorus. Mars has every required element in abundance. Moreover, on Mars, as on Earth, hydrologic and volcanic processes have occurred that are likely to have consolidated various elements into local concentrations of high-grade mineral ore. Indeed, the geologic history of Mars has been compared to that of Africa, with very optimistic inferences as to its mineral wealth implied as a corollary. In contrast, the Moon has had virtually no history of water or volcanic action, with the result that it is basically composed of trash rocks with very little differentiation into ores that represent useful concentrations of anything interesting.

You can generate power on either the Moon or Mars with solar panels, and here the advantages of the Moon's clearer skies and closer proximity to the Sun than Mars roughly balances the disadvantage of large energy storage requirements created by the Moon's 28-day light-dark cycle. But if you wish to manufacture solar panels, so as to create a self-expanding power base, Mars holds an enormous advantage, as only Mars possesses the large supplies of carbon and hydrogen needed to produce the pure silicon required for producing photovoltaic panels and other electronics. In addition, Mars has the potential for wind-generated power while the Moon clearly does not. But both solar and wind offer relatively modest power potential — tens or at most hundreds of kilowatts here or there. To create a vibrant civilization you need a richer power base, and this Mars has both in the short and medium term in the form of its geothermal power resources, which offer potential for large numbers of locally created electricity generating stations in the 10 MW (10,000 kilowatt) class. In the long-term, Mars will enjoy a power-rich economy based upon exploitation of its large domestic resources of deuterium fuel for fusion reactors. Deuterium is five times more common on Mars than it is on Earth, and tens of thousands of times more common on Mars than on the Moon.

But the biggest problem with the Moon, as with all other airless planetary bodies and proposed artificial free-space colonies, is that sunlight is not available in a form useful for growing crops. A single acre of plants on Earth requires four megawatts of sunlight power, a square kilometer needs 1,000 MW. The entire world put together does not produce enough electrical power to illuminate the farms of the state of Rhode Island, that agricultural giant. Growing crops with electrically generated light is just economically hopeless. But you can't use natural sunlight on the Moon or any other airless body in space unless you put walls on the greenhouse thick enough to shield out solar flares, a requirement that enormously increases the expense of creating cropland. Even if you did that, it wouldn't do you any good on the Moon, because plants won't grow in a light/dark cycle lasting 28 days.

But on Mars there is an atmosphere thick enough to protect crops grown on the surface from solar flare. Therefore, thin-walled inflatable plastic greenhouses protected by unpressurized UV-resistant hard-plastic shield domes can be used to rapidly create cropland on the surface. Even without the problems of solar flares and month-long diurnal cycle, such simple greenhouses would be impractical on the Moon as they would create unbearably high temperatures. On Mars, in contrast, the strong greenhouse effect created by such domes would be precisely what is necessary to produce a temperate climate inside. Such domes up to 50 meters in diameter are light enough to be transported from Earth initially, and later on they can be manufactured on Mars out of indigenous materials. Because all the resources to make plastics exist on Mars, networks of such 50- to 100-meter domes could be rapidly manufactured and deployed, opening up large areas of the surface to both shirtsleeve human habitation and agriculture. That's just the beginning, because it will eventually be possible for humans to substantially thicken Mars' atmosphere by forcing the regolith to outgas its contents through a deliberate program of artificially induced global warming. Once that has been accomplished, the habitation domes could be virtually any size, as they would not have to sustain a pressure differential between their interior and exterior. In fact, once that has been done, it will be possible to raise specially bred crops outside the domes.

The point to be made is that unlike colonists on any known extraterrestrial body, Martian colonists will be able to live on the surface, not in tunnels, and move about freely and grow crops in the light of day. Mars is a place where humans can live and multiply to large numbers, supporting themselves with products of every description made out of indigenous materials. Mars is thus a place where an actual civilization, not just a mining or scientific outpost, can be developed. And significantly for interplanetary commerce, Mars and Earth are the only two locations in the solar system where humans will be able to grow crops for export.

Interplanetary Commerce

Mars is the best target for colonization in the solar system because it has by far the greatest potential for self-sufficiency. Nevertheless, even with optimistic extrapolation of robotic manufacturing techniques, Mars will not have the division of labor required to make it fully self-sufficient until its population numbers in the millions. Thus, for decades and perhaps longer, it will be necessary, and forever desirable, for Mars to be able to import specialized manufactured goods from Earth. These goods can be fairly limited in mass, as only small portions (by weight) of even very high-tech goods are actually complex. Nevertheless, these smaller sophisticated items will have to be paid for, and the high costs of Earth-launch and interplanetary transport will greatly increase their price. What can Mars possibly export back to Earth in return?
It is this question that has caused many to incorrectly deem Mars colonization intractable, or at least inferior in prospect to the Moon.

For example, much has been made of the fact that the Moon has indigenous supplies of helium-3, an isotope not found on Earth and which could be of considerable value as a fuel for second generation thermonuclear fusion reactors. Mars has no known helium-3 resources. On the other hand, because of its complex geologic history, Mars may have concentrated mineral ores, with much greater concentrations of precious metal ores readily available than is currently the case on Earth — because the terrestrial ores have been heavily scavenged by humans for the past 5,000 years. If concentrated supplies of metals of equal or greater value than silver (such as germanium, hafnium, lanthanum, cerium, rhenium, samarium, gallium, gadolinium, gold, palladium, iridium, rubidium, platinum, rhodium, europium, and a host of others) were available on Mars, they could potentially be transported back to Earth for a substantial profit. Reusable Mars-surface based single-stage-to-orbit vehicles would haul cargoes to Mars orbit for transportation to Earth via either cheap expendable chemical stages manufactured on Mars or reusable cycling solar or magnetic sail-powered interplanetary spacecraft. The existence of such Martian precious metal ores, however, is still hypothetical.

But there is one commercial resource that is known to exist ubiquitously on Mars in large amount — deuterium. Deuterium, the heavy isotope of hydrogen, occurs as 166 out of every million hydrogen atoms on Earth, but comprises 833 out of every million hydrogen atoms on Mars. Deuterium is the key fuel not only for both first and second generation fusion reactors, but it is also an essential material needed by the nuclear power industry today. Even with cheap power, deuterium is very expensive; its current market value on Earth is about $10,000 per kilogram, roughly fifty times as valuable as silver or 70% as valuable as gold. This is in today's pre-fusion economy. Once fusion reactors go into widespread use deuterium prices will increase. All the in-situ chemical processes required to produce the fuel, oxygen, and plastics necessary to run a Mars settlement require water electrolysis as an intermediate step. As a by product of these operations, millions, perhaps billions, of dollars worth of deuterium will be produced.

Ideas may be another possible export for Martian colonists. Just as the labor shortage prevalent in colonial and nineteenth century America drove the creation of "Yankee ingenuity's" flood of inventions, so the conditions of extreme labor shortage combined with a technological culture that shuns impractical legislative constraints against innovation will tend to drive Martian ingenuity to produce wave after wave of invention in energy production, automation and robotics, biotechnology, and other areas. These inventions, licensed on Earth, could finance Mars even as they revolutionize and advance terrestrial living standards as forcefully as nineteenth century American invention changed Europe and ultimately the rest of the world as well.

Inventions produced as a matter of necessity by a practical intellectual culture stressed by frontier conditions can make Mars rich, but invention and direct export to Earth are not the only ways that Martians will be able to make a fortune. The other route is via trade to the asteroid belt, the band of small, mineral-rich bodies lying between the orbits of Mars and Jupiter. There are about 5,000 asteroids known today, of which about 98% are in the "Main Belt" lying between Mars and Jupiter, with an average distance from the Sun of about 2.7 astronomical units, or AU. (The Earth is 1.0 AU from the Sun.) Of the remaining two percent known as the near-Earth asteroids, about 90% orbit closer to Mars than to the Earth. Collectively, these asteroids represent an enormous stockpile of mineral wealth in the form of platinum group and other valuable metals.


Historical Analogies

The primary analogy I wish to draw is that Mars is to the new age of exploration as North America was to the last. The Earth's Moon, close to the metropolitan planet but impoverished in resources, compares to Greenland. Other destinations, such as the Main Belt asteroids, may be rich in potential future exports to Earth but lack the preconditions for the creation of a fully developed indigenous society; these compare to the West Indies. Only Mars has the full set of resources required to develop a native civilization, and only Mars is a viable target for true colonization. Like America in its relationship to Britain and the West Indies, Mars has a positional advantage that will allow it to participate in a useful way to support extractive activities on behalf of Earth in the asteroid belt and elsewhere.

But despite the shortsighted calculations of eighteenth-century European statesmen and financiers, the true value of America never was as a logistical support base for West Indies sugar and spice trade, inland fur trade, or as a potential market for manufactured goods. The true value of America was as the future home for a new branch of human civilization, one that as a combined result of its humanistic antecedents and its frontier conditions was able to develop into the most powerful engine for human progress and economic growth the world had ever seen. The wealth of America was in fact that she could support people, and that the right kind of people chose to go to her. People create wealth. People are wealth and power. Every feature of Frontier American life that acted to create a practical can-do culture of innovating people will apply to Mars a hundred-fold.

Mars is a harsher place than any on Earth. But provided one can survive the regimen, it is the toughest schools that are the best. The Martians shall do well.



Robert Zubrin is former Chairman of the National Space Society, President of the Mars Society, and author of The Case For Mars: The Plan to Settle the Red Planet and Why We Must.

View Article Here Read More

7 Types of Non-Believers Who Don’t Need Religion

Valerie Tarico, AlterNetReligious labels help shore up identity. So what are some of the things non-believers can call themselves?Catholic, born-again, Reformed, Jew, Muslim, Shiite, Sunni, Hindu, Sikh, Buddhist…religions give people labels. The downside can be tribalism, an assumption that insiders are better than outsiders, that they merit more compassion, integrity and generosity or even that violence toward “infidels” is acceptable. But the upside is that religious o [...]

View Article Here Read More

How Living Your Best Life Will Save the World

Randi G. Fine, Contributor“Be the change you wish to see in the world.” GhandiMany of us feel helpless when we hear about the inhumane atrocities that are occurring around the world. We have witnessed unfathomable cruelty – evil.  We live in terror of the possibility that this evil will soon pervade our own homelands.We desperately pray to God to save us. We throw our hands up in despair asking, “Where is God when we need him [...]

View Article Here Read More

Update on the Ascension Process

There has been many questions and confusion as of late as to how the Ascension Process is going, what has happened, and what has yet to happen. The process of Ascension (also referred to as raising consciousness or raising vibration) is being activated by a Universal energy known as the Photon Belt.The Photon Belt has been named Dark Matter by the scientific community, and is currently being studied by those in the fields of Astronomy and Astrophysics. The Photon Belt appears as a dark st [...]

View Article Here Read More

Tesla owner wants to build cities on Mars

By , computerworld.com 

Calling Mars a real 'fixer upper,' Elon Musk looks to colonize Red Planet


Elon Musk, CEO and co-founder of SpaceX, not only wants to send astronauts to Mars, he wants to build a city there. 

SpaceX is vying with Boeing Co. for a $3 billion project that would have astronauts in spacecraft launching from U.S. soil again. Since the U.S. retired its fleet of space shuttles in 2011, NASA has been dependent on Russia to ferry its astronauts back and forth to the International Space Station.

That arrangement has proved to be increasingly sticky given the increased tensions between the two countries since Russia has aggressively moved to annex Ukraine. 

NASA executives hope to have the spacecraft and launching capabilities to send humans into orbit by 2017. 

SpaceX, one of two private companies ferrying supplies, food and scientific experiments to the space shuttle, wants to be the company ferrying humans as well. 

And in a press conference last week, Musk reportedly reiterated that he wants to populate Mars and he wants SpaceX to be the company at the core of that project. 

Musk told a group of reporters that winning the $3 billion project, which is expected to be announced this month, would be a solid step toward his goal of creating cities on Mars, according to a report in Bloomberg.com

In last week's press conference, Musk echoed what he said over the summer in an interview with Stephen Colbert, host of the TV show, The Colbert Report

"We're aspiring to send people to Mars," Musk said on the show. "If humanity is on more than one planet – if we're a multi-planet species… then civilization as we know it -- the light of consciousness -- will likely propagate much further than if we're a single-planet species. And although I'm quite optimistic about life on Earth, at some point there's likely to be some calamity, either natural or man made. I'm not a doomsdayer but that preserves the future of humanity. It's like life insurance, collectively." 

Other than hoping to save the human species, Musk also said colonizing Mars would be thrilling.
"It would be just the greatest adventure ever," he said. "It would be really exciting and inspiring… It is a fixer upper of a planet. It's going to take some work but it's possible to transform Mars into an Earth-like planet." 

SpaceX is scheduled to launch a resupply mission to the space station on Sept. 20 from Cape Canaveral Air Force Station in Florida. Along with cargo of food and equipment, the spacecraft also will carry what's been dubbed the ISS-RapidScat instrument. 

The instrument is a replacement for NASA's QuikScat Earth satellite, which has been monitoring ocean winds for climate research, weather predictions, and hurricane monitoring.

View Article Here Read More

Schumann Resonance And The Time Speeding Up Phenomenon

Time is actually speeding up (or collapsing). For thousands of years the Schumann Resonance or pulse (heartbeat) of Earth has been 7.83 cycles per second, The military have used this as a very reliable reference. However, since 1980 this resonance has been slowly rising. Some scientists believe that it is rising faster than we can measure seeing as it is constantly rising while measuring.This is from a member of the Physics Forum:"The universe is expanding; interstellar distances [...]

View Article Here Read More

Intention and the Rite of Disengagement

What we participate in is pretty much the name of the game. What do we spend our time, energy and intention on? What are we consciously and/or subconsciously empowering that’s leading to our own dis-empowerment? Where attention and thus intention goes, energy flows. Where is ours going, collectively and individually? Something to seriously consider on a continual basis in this massively manipulated energetic world.I’ve been blown away recently by the rapid rise in consciousness [...]

View Article Here Read More

Gaining the Strength to Reach Your Limitless Potential

The stroke of midnight is here. Prepare yourselves for a quantum leap in consciousness. …..What is next for us cosmically? The huge Mayan shift back in 2012 has definitely left us with something to think about, but is anyone really aware of just what that shift filled with subtle nuances entails? How do we identify with anything subtle in this not-so-subtle world?Why aren’t we seeing the effects of a shift in the world? Doesn’t it feel as if things have just gotten far w [...]

View Article Here Read More
Older posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑