Tag: cold (page 2 of 7)

Nuclear Experimentation Year 70 – Playing With Madness

Ethan Indigo Smith, ContributorThe recent “news” on the nuclear situation in Iran brings to light the madhouse of cards on which the postmodern world is built. Or rather, it would bring the madness to light if the major media outlets of the world were not bought up and sold out to the military industrial complex, and therefore completely misinformed on the actions and dangers of the nuclear experimentation industry.The story is not just about [...]

View Article Here Read More

Mystery Disappearance ~ Missing Environmentalist’s dog Kimnik found alive in High Arctic

Environmentalists Marc Cornelissen and Philip de RooA dog travelling with two Dutch environmental researchers presumed drowned in Nunavut has been found alive, according to the research organization that organized their trip.Marc Corneli...

View Article Here Read More

Cosmic tsunamis can regenerate ‘dead’ galaxies






Excerpt from thespacereporter.com



Astronomers have recently discovered that giant cosmic shockwaves emanating from colliding galaxy clusters are capable of jumpstarting new star generation.

According to a Nature World News report, galaxies are often clustered into groups containing “red and dead” galaxies that stopped forming new stars long ago. Scientists now believe that these “dead” galaxies can be brought back to “life” by colossal cosmic tsunamis.

To uncover this phenomenon, an international team of researchers observed how galaxy clusters can absorb smaller clusters much as a growing city absorbs its suburbs. When galaxy clusters collide during this absorption process, a huge shockwave of energy is created. This shockwave can re-energize the star formation process, causing dormant galaxies to begin producing new stars again.

Scientists from the University of Lisbon and Leiden Observatory came to this conclusion after studying the merging galaxy cluster officially known as CIZA J2242.8+5301 and affectionately known as the “Sausage.” The Sausage cluster, located 2.3 billion light-years away, showed evidence of its dormant galaxies coming to life with a new round of star formation.

“We assumed that the galaxies would be on the sidelines for this act, but it turns out they have a leading role. The comatose galaxies in the Sausage cluster are coming back to life, with stars forming at a tremendous rate. When we first saw this in the data, we simply couldn’t believe what it was telling us,” Andra Stroe of Liden Observatory said in a statement.The researchers are observing an event that actually unfolded one billion years ago, when the 6-million-mph shockwave spread out from the collision of the clusters. The team believes that the new star formation was instigated by the shockwave’s affect on galactic gas.

“Much like a teaspoon stirring a mug of coffee, the shocks lead to turbulence in the galactic gas. These then trigger an avalanche-like collapse, which eventually leads to the formation of very dense, cold gas clouds, which are vital for the formation of new stars,” Stroe said.

Despite the vigorous production of new stars in this instance, the team believes that, after the initial effects of the tsunami take place, the galaxies fall to an even deeper state of dormancy than before.

David Sobral of the University of Lisbon explains that “star formation at this rate leads to a lot of massive, short-lived stars coming into being, which explode as supernovae a few million years later. The explosions drive huge amounts of gas out of the galaxies and with most of the rest consumed in star formation, the galaxies soon run out of fuel. If you wait long enough, the cluster mergers make the galaxies even more red and dead – they slip back into a coma and have little prospect of a second resurrection.”

The study was published in the journal Monthly Notices of the Royal Astronomical Society.

View Article Here Read More

Buried Mars Glaciers are Brimming With Water

Researchers have identified thousands of glacier-like formations on the planet.
NASA/Levy et al./Nanna Karlsson



Excerpt from news.discovery.com

Glaciers beneath the dusty sands of Mars contain enough water to coat the planet with more than three feet of ice, a new study shows.
“We have calculated that the ice in the glaciers is equivalent to over 150 billion cubic meters of ice — that much ice could cover the entire surface of Mars with 1.1 meters (3.6 feet) of ice,” Nanna Bjørnholt Karlsson, a post-doctoral researcher the Niels Bohr Institute at the University of Copenhagen, said in a statement.

Radar images previously revealed thousands of buried glacier-like formations in the planet’s northern and southern hemispheres.
That data has now been incorporated into computer models of ice flow to determine the glaciers’ size and hence how much water they contain.

“We have looked at radar measurements spanning 10 years back in time to see how thick the ice is and how it behaves. A glacier is, after all, a big chunk of ice and it flows and gets a form that tells us something about how soft it is. We then compared this with how glaciers on Earth behave and from that we have been able to make models for the ice flow,” she said.

The glaciers are located in belts around Mars between 30 degrees and 50 degrees latitude, roughly equivalent to just south of Denmark’s location on Earth. The glaciers are found on both the northern and southern hemispheres.

The finding could be an important clue to what happened to Mars’ water. The planet, which is now a cold, dry desert, once had oceans, lakes and habitats suitable for microbial life, results from past and ongoing science missions show.

“The ice at the mid-latitudes is an important part of Mars’ water reservoir,” Karlsson said.

Scientists suspect the thick layer of dust covering the ice has saved if from evaporating out into space.

The study appears in this week’s Geophysical Research Letters.

View Article Here Read More

Science of frustrated magnets: Hall Effect experiment reveals clues to their discontent

Excerpt from thewestsidestory.netA scientific study carried out in Princeton has brought about the discovery of unlikely properties in materials called frustrated magnets using the Hall Effect.Hall Effect is the property of magnetic fields having inf...

View Article Here Read More

Why the U.S. Gave Up on the Moon

Moon nearside



Excerpt from spacenews.com


Recently, several space advocacy groups joined forces to form the Alliance for Space Development. Their published objectives include a mention of obvious near-term goals such as supporting the commercial crew program, transitioning from use of the International Space Station to future private space stations and finding ways to reduce the cost of access to space.  What is notably missing from these objectives and those of many other space agencies, companies and advocacy groups is any mention of building a permanent settlement on the moon. It’s as if the lunar surface has become our crazy uncle that we all acknowledge exists but we’d prefer not to mention (or visit).  What made the next logical step in mankind’s progression beyond the bounds of Earth such a taboo subject?  If, as the Alliance for Space Development suggests, our nation wishes to move toward a path of permanent space settlements, the most logical step is our own planet’s satellite.

Lunar base conception
A 2006 NASA conception of a lunar base. Credit: NASA


A base on the lunar surface is a better place to study space settlement than a space station or Mars for many reasons. Unlike a space station, the base does not have to contend with aerodynamic drag, attitude control issues or contamination and impingement from its own thrusters. Unlike a space station, which exists in a total vacuum and resource void, a lunar base has access to at least some surface resources in the forms of minerals, albeit fewer than might be available on Mars.  Many people naturally want to go directly to Mars as our next step. Even SpaceX has publicly stated this as its ultimate goal, with SpaceX President Gwynne Shotwell noting that “we’re not moon people.” However, Mars makes sense only if we think the technology is ready to safely support humans on another surface for long periods of time. Furthermore, budget restrictions make an ambitious goal like going immediately to Mars an unlikely prospect. Why are we afraid to take the seemingly necessary baby steps of developing the technology for a long-term base on a surface that can be reached in mere days instead of months?  The tendency to want to skip a lunar settlement is not a new phenomenon. Even before the first landing on the moon, U.S. and NASA political leadership was contemplating the future of manned space, and few of the visions involved a lunar base. The early space program was driven by Cold War competition with Moscow, and the kinds of ideas that circulated at the time involved milestones that seemed novel such as reusable spaceplanes, nuclear-powered rockets, space stations and missions to Mars. 

When the United States was on the verge of a series of landings on the moon, building a permanent base just didn’t seem like much of a new giant leap. NASA's ConstellationNASA’s Constellation program, featuring the Orion manned capsule set atop the Ares 1 launch vehicle, was meant to send astronauts back to the moon. Credit: NASA  The idea of a lunar landing mission was not reintroduced seriously until the George W. Bush administration and the introduction of the Constellation program. This program came at a complex time for NASA: The space shuttle was recovering from the Columbia disaster, the space station was in the midst of construction and the United States found itself with large budget deficits. However, despite its budgetary and schedule problems, which are common in any serious aerospace development project from space programs to jumbo-jet development, it provided NASA with a vision and a goal that were reasonable and sensible as next steps toward a long-term future of exploration beyond Earth. 

Constellation was nevertheless canceled, and we have since returned to a most uncommon sense.  The decision to avoid any sort of lunar activity in current space policy may have been biased by the Obama administration’s desire to move as far away as possible from the policies of the previous administration. 

Regardless of the cause, discussion of returning to the moon is no longer on the table.  Without the moon, the only feasible mission that NASA could come up with that is within reach given the current technology and budget is the Asteroid Redirect Mission.  
Even planetary scientists have spoken out against the mission, finding that it will provide little scientific value. It will also provide limited engineering and technology value, if we assume that our long-term goal is to permanently settle space. The experience gained from this sort of flight has little applicability to planetary resource utilization, long-term life support or other technologies needed for settlement.  

If we are to have a program of manned space exploration, we must decide what the long-term goals of such a program should be, and we should align our actions with those goals. When resources such as funding are limited, space agencies and political leaders should not squander these limited resources on missions that make no sense. Instead, the limited funding should be used to continue toward our long-term goals, accepting a slower pace or slight scale-back in mission scope.  Establishing a permanent human settlement in space is a noble goal, one that will eventually redefine humanity. Like explorers before us, it is also not a goal that will be achieved in a short period of time. We would be wise to keep our eyes on that goal and the road needed to get us there. And the next likely stop on that road is a permanent home just above our heads, on the surface of the brightest light in the night sky.  

Paul Brower is an aerospace systems engineer on the operations team for the O3b Networks satellite fleet. He previously worked in mission control at NASA for 10 years.
Recently, several space advocacy groups joined forces to form the Alliance for Space Development. Their published objectives include a mention of obvious near-term goals such as supporting the commercial crew program, transitioning from use of the International Space Station to future private space stations and finding ways to reduce the cost of access to space.
What is notably missing from these objectives and those of many other space agencies, companies and advocacy groups is any mention of building a permanent settlement on the moon. It’s as if the lunar surface has become our crazy uncle that we all acknowledge exists but we’d prefer not to mention (or visit).
What made the next logical step in mankind’s progression beyond the bounds of Earth such a taboo subject?
If, as the Alliance for Space Development suggests, our nation wishes to move toward a path of permanent space settlements, the most logical step is our own planet’s satellite.
Lunar base conception
A 2006 NASA conception of a lunar base. Credit: NASA
A base on the lunar surface is a better place to study space settlement than a space station or Mars for many reasons. Unlike a space station, the base does not have to contend with aerodynamic drag, attitude control issues or contamination and impingement from its own thrusters. Unlike a space station, which exists in a total vacuum and resource void, a lunar base has access to at least some surface resources in the forms of minerals, albeit fewer than might be available on Mars.
Many people naturally want to go directly to Mars as our next step. Even SpaceX has publicly stated this as its ultimate goal, with SpaceX President Gwynne Shotwell noting that “we’re not moon people.” However, Mars makes sense only if we think the technology is ready to safely support humans on another surface for long periods of time. Furthermore, budget restrictions make an ambitious goal like going immediately to Mars an unlikely prospect. Why are we afraid to take the seemingly necessary baby steps of developing the technology for a long-term base on a surface that can be reached in mere days instead of months?
The tendency to want to skip a lunar settlement is not a new phenomenon. Even before the first landing on the moon, U.S. and NASA political leadership was contemplating the future of manned space, and few of the visions involved a lunar base. The early space program was driven by Cold War competition with Moscow, and the kinds of ideas that circulated at the time involved milestones that seemed novel such as reusable spaceplanes, nuclear-powered rockets, space stations and missions to Mars. When the United States was on the verge of a series of landings on the moon, building a permanent base just didn’t seem like much of a new giant leap.
NASA's Constellation
NASA’s Constellation program, featuring the Orion manned capsule set atop the Ares 1 launch vehicle, was meant to send astronauts back to the moon. Credit: NASA
The idea of a lunar landing mission was not reintroduced seriously until the George W. Bush administration and the introduction of the Constellation program. This program came at a complex time for NASA: The space shuttle was recovering from the Columbia disaster, the space station was in the midst of construction and the United States found itself with large budget deficits. However, despite its budgetary and schedule problems, which are common in any serious aerospace development project from space programs to jumbo-jet development, it provided NASA with a vision and a goal that were reasonable and sensible as next steps toward a long-term future of exploration beyond Earth.
Constellation was nevertheless canceled, and we have since returned to a most uncommon sense.
The decision to avoid any sort of lunar activity in current space policy may have been biased by the Obama administration’s desire to move as far away as possible from the policies of the previous administration. Regardless of the cause, discussion of returning to the moon is no longer on the table.
Without the moon, the only feasible mission that NASA could come up with that is within reach given the current technology and budget is the Asteroid Redirect Mission.
Even planetary scientists have spoken out against the mission, finding that it will provide little scientific value. It will also provide limited engineering and technology value, if we assume that our long-term goal is to permanently settle space. The experience gained from this sort of flight has little applicability to planetary resource utilization, long-term life support or other technologies needed for settlement.
Advertisement
If we are to have a program of manned space exploration, we must decide what the long-term goals of such a program should be, and we should align our actions with those goals. When resources such as funding are limited, space agencies and political leaders should not squander these limited resources on missions that make no sense. Instead, the limited funding should be used to continue toward our long-term goals, accepting a slower pace or slight scale-back in mission scope.
Establishing a permanent human settlement in space is a noble goal, one that will eventually redefine humanity. Like explorers before us, it is also not a goal that will be achieved in a short period of time. We would be wise to keep our eyes on that goal and the road needed to get us there. And the next likely stop on that road is a permanent home just above our heads, on the surface of the brightest light in the night sky.

Paul Brower is an aerospace systems engineer on the operations team for the O3b Networks satellite fleet. He previously worked in mission control at NASA for 10 years.
- See more at: http://spacenews.com/op-ed-why-the-u-s-gave-up-on-the-moon/#sthash.czfTscvg.dpuf

View Article Here Read More

NASA video illustrates ‘X-ray wind’ blasting from a black hole

This artist's illustration shows interstellar gas, the raw material of star formation, being blown away.Excerpt from cnet.com It takes a mighty wind to keep stars from forming. Researchers have found one in a galaxy far, far away -- and NASA mad...

View Article Here Read More

Scientists Take Key Step to Resurrecting Extinct Woolly Mammoth; First Mammoth Could be Born in 2018

Excerpt from en.yibada.comScientists from Harvard University announced their success in splicing DNA from the extinct woolly mammoth into living cells of an Asian elephant, making it possible to "de-extinct" the animal that died-off 4,000 years ago....

View Article Here Read More

If the Moon Landings Were Real, Then Why is NASA Stumped by This?

Buck Rogers, Staff WriterWaking TimesDuring the cold war era the Soviet Union and the United States were locked in an arms and technology race, each nation wanting to prove their dominance over the other, each striving to be the next reigning superpower in a world still shattered by the second world war. The Soviet’s took the lead when in April of 1961, cosmonaut Yuri Gagarin successfully orbited the earth and returned home safely. In May, president John F. Kennedy ma [...]

View Article Here Read More

How Quantum Physics will change your life and amaze the world!

 Excerpt from educatinghumanity.com "Anyone not shocked by quantum mechanics has not yet understood it."Niels Bohr10 Ways Quantum Physics Will Change the WorldEver want to have a "life do over", teleport, time travel, have your computer wor...

View Article Here Read More

Rare & severe geomagnetic storm enables Aurora Borealis to be seen from U.S. tonight

Excerpt from mashable.com Thanks to a rare, severe geomagnetic storm, the Northern Lights may be visible on Tuesday night in areas far to the south of its typical home in the Arctic.  The northern tier of the U.S., from Washington State to Michiga...

View Article Here Read More

Scientists: Enceladus may have warm water ocean with ingredients for life


Enceladus ocean
This artist's impression of the interior of Saturn's moon Enceladus shows that interactions between hot water and rock occur at the floor of the subsurface ocean -- the type of environment that might be friendly to life, scientists say. (NASA/JPL-Caltech)



Excerpt from latimes.com

Scientists say they’ve discovered evidence of a watery ocean with warm spots hiding beneath the surface of Saturn’s icy moon Enceladus. The findings, described in the journal Nature, are the first signs of hydrothermal activity on another world outside of Earth – and raise the chances that Enceladus has the potential to host microbial life.

Scientists have wondered about what lies within Enceladus at least since NASA’s Cassini spacecraft caught the moon spewing salty water vapor out from cracks in its frozen surface. Last year, a study of its gravitational field hinted at a 10-kilometer-thick regional ocean around the south pole lying under an ice crust some 30 to 40 kilometers deep.

Another hint also emerged about a decade ago, when Cassini discovered tiny dust particles escaping Saturn’s system that were nanometer-sized and rich in silicon.

“It’s a peculiar thing to find particles enriched with silicon,” said lead author Hsiang-Wen Hsu, a planetary scientist at the University of Colorado, Boulder. In Saturn’s moons and among its rings, water ice dominates, so these odd particles clearly stood out.

The scientists traced these particles’ origin to Saturn’s E-ring, which lies between the orbits of the moons Mimas and Titan and whose icy particles are known to come from Enceladus. So Hsu and colleagues studied the grains to understand what was going on inside the gas giant’s frigid satellite.   
Rather than coming in a range of sizes, these particles were all uniformly tiny – just a few nanometers across. Studying the spectra of these grains, the scientists found that they were made of silicon dioxide, or silica. That’s not common in space, but it’s easily found on Earth because it’s a product of water interacting with rock. 

Knowing how silica interacts in given conditions such as temperature, salinity and alkalinity, the scientists could work backward to determine what kind of environment creates these unusual particles.

A scientist could do the same thing with a cup of warm coffee, Hsu said.

“You put in the sugar and as the coffee gets cold, if you know the relation of the solubility of sugar as a function of temperature, you will know how hot your coffee was,” Hsu said. “And applying this to Enceladus’s ocean, we can derive a minimum [temperature] required to form these particles.”

The scientists then ran experiments in the lab to determine how such silica particles came to be. With the particles’ particular makeup and size distribution, they could only have formed under very specific circumstances, the study authors found, determining that the silica particles must have formed in water that had less than 4% salinity and that was slightly alkaline (with a pH of about 8.5 to 10.5) and at temperatures of at least 90 degrees Celsius (roughly 190 degrees Fahrenheit).

The heat was likely being generated in part by tidal forces as Saturn’s gravity kneads its icy moon. (The tidal forces are also probably what open the cracks in its surface that vent the water vapor into space.)
Somewhere inside the icy body, there was hydrothermal activity – salty warm water interacting with rocks. It’s the kind of environment that, on Earth, is very friendly to life.  

“It’s kind of obvious, the connection between hydrothermal interactions and finding life,” Hsu said. “These hydrothermal activities will provide the basic activities to sustain life: the water, the energy source and of course the nutrients that water can leach from the rocks.”

Enceladus, Hsu said, is now likely the “second-top object for astrobiology interest” – the first being Jupiter’s icy moon and fellow water-world, Europa.
This activity is in all likelihood going on right now, Hsu said – over time, these tiny grains should glom together into larger and larger particles, and because they haven’t yet, they must have been recently expelled from Enceladus, within the last few months or few years at most.

Gabriel Tobie of the University of Nantes in France, who was not involved in the research, compared the conditions that created these silica particles to a hydrothermal field in the Atlantic Ocean known as Lost City.

“Because it is relatively cold, Lost City has been posited as a potential analogue of hydrothermal systems in active icy moons. The current findings confirm this,” Tobie wrote in a commentary on the paper. “What is more, alkaline hydrothermal vents might have been the birthplace of the first living organisms on the early Earth, and so the discovery of similar environments on Enceladus opens fresh perspectives on the search for life elsewhere in the Solar System.”

However, Hsu pointed out, it’s not enough to have the right conditions for life – they have to have been around for long enough that life would have a fighting chance to emerge.

“The other factor that is also very important is the time.… For Enceladus, we don’t know how long this activity has been or how stable it is,” Hsu said. “And so that’s a big uncertainty here.”

One way to get at this question? Send another mission to Enceladus, Tobie said.

“Cassini will fly through the moon’s plume again later this year,” he wrote, “but only future missions that can undertake improved in situ investigations, and possibly even return samples to Earth, will be able to confirm Enceladus’ astrobiological potential and fully reveal the secrets of its hot springs. ”

View Article Here Read More

Officers Who Saved Baby in Icy River Heard Mysterious "Voice"

Excerpt from cbsnews.comALT LAKE CITY -- Police responding to a report from a fisherman about an overturned car in an icy Utah river were stunned to discover an 18-month-old girl dangling in a car seat inside, unconscious but alive. The officers also ...

View Article Here Read More
Older posts Newer posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑