Tag: charged (page 1 of 4)

Galactic Wave of Love


In the center of our Galaxy, there is a huge double star, the source of Light and life for this Galaxy, the Galactic Goddess, the Pleroma, the Galactic Central Sun. It breathes and pulses with a regular rhythm, each heartbeat taking 26,000 years to complete. Every time the Galactic heart beats, the Galactic center sends a wave of highly charged physical and non-physical particles throughout the Galaxy. 
This Galactic heart beat has entrained the precession of the Earth axis to align with the 26,000 year cycle:
We are approaching a Galactic wave right now and it will culminate in the Event. 
Previous Galactic pulses have been quite intense, as it has been very accurately described by PaulLaViolette:
He and many other people are expecting the current Galactic pulse to be quite intense:


In reality, there are powerful Light forces present inside our Solar system to ensure that the process will be much more harmonious this time. 
There will still be a lot of emotional intensity and some increase in tectonic activity:
But the main aspect of this Galactic pulse will be a wave of cosmic Love. This Love energy is the basis of universal cosmic reality and is now reaching our shores. This energy has Galactic proportions and can not be stopped by the Cabal, no matter what they try to do. 



This energy will completely clear the primary anomaly and the plasma octopus entity around the Earth, which was called Yaladaboth in Gnostic teachings:
Gnostic myth clearly states that Yaldabaoth was hidden in the »thick cloud« of plasmatic plane:
Pleromic energy of Galactic Love will dissolve all false teachings of the Archons, as you can read in those two excellent articles:
As we are getting closer to the Event, the energies will trigger human suppressed reactions even more. Therefore it is of the utmost importance for the people to learn how to debate constructively and stop attacking each other. You can find instructions how to do this in the following article:
American Kabuki has put it even more simply:


Many people are expecting the Galactic wave to hit us in September or even before that. This is very unlikely, as complexity wave analysis shows first increased probability peak in October-December timeframe. Complexity wave analysis is a very sophisticated computer model of the Resistance Movement which predicts future trends based on cosmic cycles and free will vector analysis. 
It is important to understand that the Event is an active interaction between our global consciousness and the Galactic Center and that Galactic energies are coming to us based on our ability to receive them. This is why it is so important for as many people to awaken as soon as possible. 
It is also good for you to have a personal connection with the Galactic Center in your meditations. If the energies flowing through you are too strong, you can communicate to the Galactic Center to tone them down.
Our active communication with the Pleroma, with the Galactic Center, is creating a feedback loop that will trigger the Event when the time is right.
The Breakthrough is near!

View Article Here Read More

The sun unleashes its biggest flare of the year




Excerpt from dailytimes.com.pk

The sun has unleashed its most powerful flare of the year causing radio blackouts throughout the Pacific region.

The enormous X-class solar flare peaked at 6:11pm ET yesterday from a sunspot called Active Region 2339 (AR2339).

Solar flares are powerful bursts of radiation that, when intense enough, can disturb the atmosphere in the layer where GPS and communications signals travel - and scientists say they could get more powerful in the future.

This latest flare is classified as an X2.7. X-class denotes the most intense flares, while the number provides more information about its strength.

Despite the recent radio blackouts, scientists say the flare is unlikely to cause any further major issues here on Earth.

‘Given the impulsive nature of this event, as well as the source location on the eastern limb of the sun, we are not expecting a radiation storm at Earth,’ scientists with the U.S. Space Weather Prediction Center (SWPC) in Boulder, Colorado.

‘We will be on the lookout for new imagery from the Nasa Soho [Solar and Heliospheric Observatory] mission to determine if there was an associated coronal mass ejection (CME) with this event,’ they added.

‘Given the same logic above, however, we do not expect there to be one that would impact Earth.’

Yesterday Kazunari Shibata, an astrophysicist from Kyoto University in Japan, said the sun has the potential to unleash a flare of such a magnitude that it would be larger than anything humans have ever seen.

At the Space Weather Workshop in Colorado, Shibata said ‘superflares,’ that contain energy 1,000 times larger than what we have seen could be on their way.

He said there is evidence of this happening every 800 to 5,000 years on Earth,

Scientists say such a solar ‘super-storm’ would pose a ‘catastrophic’ and ‘long-lasting’ threat to life on Earth.

A superflare would induce huge surges of electrical currents in the ground and in overhead transmission lines, causing widespread power outages and severely damaging critical electrical components.

The largest ever solar super-storm on record occurred in 1859 and is known as the Carrington Event, named after the English astronomer Richard Carrington who spotted the preceding solar flare.

This massive CME released about 1022 kJ of energy - the equivalent to 10 billion Hiroshima bombs exploding at the same time - and hurled around a trillion kilos of charged particles towards the Earth at speeds of up to 3000 km/s.

However, its impact on the human population was relatively benign as our electronic infrastructure at the time amounted to no more than about 124,000 miles (200,000 km) of telegraph lines.

Nasa has also released incredible footage showing the sun unleashing a huge lick of plasma that increased the star’s visible hemisphere by almost half.

The solar filament, which exploded on April 28 and 29, was suspended above the sun due to strong magnetic fields that pushed outwards.

Solar astronomers around the world had their eyes on this unusually large filament and kept track as it erupted.

Nasa’s animation involves images taken from the orbiting Solar and Heliospheric Observatory using its Large Angle Spectrometric Coronagraph.

The diameter of the animation is about 30 million miles (45 million km) at the distance of the sun, or half of the diameter of the orbit of Mercury.

The white circle in the centre of the round disk represents the size of the sun, which is being blocked by the telescope in order to see the fainter material around it.

View Article Here Read More

Mysterious Glow Detected At Center Of Milky Way Galaxy

In this image, the magenta color indicates the mysterious glow detected by NASA's NuSTAR space telescope.Excerpt from huffingtonpost.com A mysterious glow has been observed at the center of the Milky Way, and scientists are struggling to figure o...

View Article Here Read More

Radiation from long Mars journey could damage astronauts’ brains






Excerpt from naplesnews.com

Many things would be difficult about conducting a manned mission to Mars, from designing a spacecraft that could make the 34-million-mile journey, to stocking and fueling it, to keeping its astronauts from getting flabby and bored.
On Friday, researchers shed light on another potential hurdle: figuring out a way to protect travelers’ brains from the damaging effects of cosmic rays in outer space.
When University of California, Irvine neuroscientist Charles Limoli and colleagues exposed mice to radiation similar to that astronauts would encounter far beyond Earth, the animals experienced changes in their brains that impaired their performance on tests of learning and memory, the team reported in an article — “What happens to your brain on the way to Mars” — in the journal Science Advances.
The researchers’ results suggested that astronauts could suffer cognitive impairment during an extended journey through space.
“Over the course of a two- to three-year mission, the damage would accumulate,” Limoli said. “To mitigate it, we need to understand it.”
To test the effects of space radiation on the brain, the researchers took mice to the NASA Space Radiation Laboratory at the Brookhaven National Laboratory in New York, which attempts to simulate radiation conditions in space. They exposed the animals to oxygen and titanium ions, atoms with their electrons stripped away that are similar to the charged particles in cosmic rays.
Six weeks later, back in California, they tested the mice’s learning and memory by placing them in pens with toys, letting them get used to their surroundings, and then making changes such as introducing a new toy. Mice that had been exposed to the radiation were less aware of or curious about the changes in their environment than controls that had not been irradiated — a sign that they had cognitive deficits.
“A smart animal will recognize the change,” Limoli said.
When the researchers later studied the animals’ brain tissue, they found that mice that performed poorly on the tests also had less dense branching in their brain cells, due to damage from the radiation. The structural changes would impede the brain’s ability to transmit signals and process information.
Limoli got involved in the NASA-backed research as an outgrowth of his work on the effects of radiation on brain cancer patients. Radiation therapy forestalls brain cancer progression, he said — but it can take a tremendous toll on the central nervous system, causing depression, anxiety and mood disorders, and deficits in learning and executive function. Pediatric patients can lose 20 to 30 I.Q. points after receiving radiation treatments to the brain.
“Doctors have gotten really good at curing cancer, but maintaining a good quality of life has been a problem,” Limoli said. “This is an unmet medical need.”
Astronauts flying to Mars and getting hit by cosmic rays, which are the remnants of supernova explosions, wouldn’t get anything close to the high doses of radiation that cancer patients receive, but they “might be prone to mistakes,” Limoli thought.
To counteract that threat during planning for a possible mission, scientists might come up with more advanced shielding options — perhaps embedded in helmets — or drug treatments that might ameliorate radiation’s impacts on the brain, similar to the ones Limoli is exploring for cancer patients.

View Article Here Read More

6 Natural Solutions To Decontaminate Soil

Marco Torres, Prevent DiseaseWith a progressively educated population becoming more aware of the inherent dangers of the conventional food supply, urban farming has become hugely popular. However, more people are also becoming aware of contaminated soil and how heavy metals pose potential risks to their food crops. As backyard gardening continues to explode in popularity, we must ask how contaminated is our soil?Many municipalities in many countries are embracing urban agri [...]

View Article Here Read More

Seattle Company Raises Minimum Wage to $70,000 a Year For All Employees!






Excerpt from nytimes.com

The idea began percolating, said Dan Price, the founder of Gravity Payments, after he read an article on happiness. It showed that, for people who earn less than about $70,000, extra money makes a big difference in their lives.

His idea bubbled into reality on Monday afternoon, when Mr. Price surprised his 120-person staff by announcing that he planned over the next three years to raise the salary of even the lowest-paid clerk, customer service representative and salesman to a minimum of $70,000.

“Is anyone else freaking out right now?” Mr. Price asked after the clapping and whooping died down into a few moments of stunned silence. “I’m kind of freaking out.”

If it’s a publicity stunt, it’s a costly one. Mr. Price, who started the Seattle-based credit-card payment processing firm in 2004 at the age of 19, said he would pay for the wage increases by cutting his own salary from nearly $1 million to $70,000 and using 75 to 80 percent of the company’s anticipated $2.2 million in profit this year.

Employees reacting to the news. The average salary at Gravity Payments had been $48,000 year. Credit Matthew Ryan Williams for The New York Times

The paychecks of about 70 employees will grow, with 30 ultimately doubling their salaries, according to Ryan Pirkle, a company spokesman. The average salary at Gravity is $48,000 year.

Mr. Price’s small, privately owned company is by no means a bellwether, but his unusual proposal does speak to an economic issue that has captured national attention: The disparity between the soaring pay of chief executives and that of their employees.

The United States has one of the world’s largest pay gaps, with chief executives earning nearly 300 times what the average worker makes, according to some economists’ estimates. That is much higher than the 20-to-1 ratio recommended by Gilded Age magnates like J. Pierpont Morgan and the 20th century management visionary Peter Drucker.

“The market rate for me as a C.E.O. compared to a regular person is ridiculous, it’s absurd,” said Mr. Price, who said his main extravagances were snowboarding and picking up the bar bill. He drives a 12-year-old Audi, which he received in a barter for service from the local dealer.

“As much as I’m a capitalist, there is nothing in the market that is making me do it,” he said, referring to paying wages that make it possible for his employees to go after the American dream, buy a house and pay for their children’s education.

Under a financial overhaul passed by Congress in 2010, the Securities and Exchange Commission was supposed to require all publicly held companies to disclose the ratio of C.E.O. pay to the median pay of all other employees, but it has so far failed to put it in effect. Corporate executives have vigorously opposed the idea, complaining it would be cumbersome and costly to implement.

Mr. Price started the company, which processed $6.5 billion in transactions for more than 12,000 businesses last year, in his dorm room at Seattle Pacific University with seed money from his older brother. The idea struck him a few years earlier when he was playing in a rock band at a local coffee shop. The owner started having trouble with the company that was processing credit card payments and felt ground down by the large fees charged.

When Mr. Price looked into it for her, he realized he could do it more cheaply and efficiently with better customer service.

The entrepreneurial spirit was omnipresent where he grew up in rural southwestern Idaho, where his family lived 30 miles from the closest grocery store and he was home-schooled until the age of 12. When one of Mr. Price’s four brothers started a make-your-own baseball card business, 9-year-old Dan went on a local radio station to make a pitch: “Hi. I’m Dan Price. I’d like to tell you about my brother’s business, Personality Plus.”

His father, Ron Price, is a consultant and motivational speaker who has written his own book on business leadership.

Dan Price came close to closing up shop himself in 2008 when the recession sent two of his biggest clients into bankruptcy, eliminating 20 percent of his revenue in the space of two weeks. He said the firm managed to struggle through without layoffs or raising prices. His staff, most of them young, stuck with him.

Aryn Higgins at work at Gravity Payments in Seattle. She and her co-workers are going to receive significant pay raises. Credit Matthew Ryan Williams for The New York Times

Mr. Price said he wasn’t seeking to score political points with his plan. From his friends, he heard stories of how tough it was to make ends meet even on salaries that were still well-above the federal minimum of $7.25 an hour.

“They were walking me through the math of making 40 grand a year,” he said, then describing a surprise rent increase or nagging credit card debt.

“I hear that every single week,” he added. “That just eats at me inside.”

Mr. Price said he wanted to do something to address the issue of inequality, although his proposal “made me really nervous” because he wanted to do it without raising prices for his customers or cutting back on service.

Of all the social issues that he felt he was in a position to do something about as a business leader, “that one seemed like a more worthy issue to go after.”

He said he planned to keep his own salary low until the company earned back the profit it had before the new wage scale went into effect.

Hayley Vogt, a 24-year-old communications coordinator at Gravity who earns $45,000, said, “I’m completely blown away right now.” She said she has worried about covering rent increases and a recent emergency room bill.

“Everyone is talking about this $15 minimum wage in Seattle and it’s nice to work someplace where someone is actually doing something about it and not just talking about it,” she said.

The happiness research behind Mr. Price’s announcement on Monday came from Angus Deaton and Daniel Kahneman, a Nobel Prize-winning psychologist. They found that what they called emotional well-being — defined as “the emotional quality of an individual’s everyday experience, the frequency and intensity of experiences of joy, stress, sadness, anger, and affection that make one’s life pleasant or unpleasant” — rises with income, but only to a point. And that point turns out to be about $75,000 a year.

Of course, money above that level brings pleasures — there’s no denying the delights of a Caribbean cruise or a pair of diamond earrings — but no further gains on the emotional well-being scale.
As Mr. Kahneman has explained it, income above the threshold doesn’t buy happiness, but a lack of money can deprive you of it.
Phillip Akhavan, 29, earns $43,000 working on the company’s merchant relations team. “My jaw just dropped,” he said. “This is going to make a difference to everyone around me.”

At that moment, no Princeton researchers were needed to figure out he was feeling very happy.

View Article Here Read More

Frustrated magnets showing features of Hall Effect stun Princeton University researchers


Frustrated-Magnets



Excerpt from worldtechtoday.com

A group of researchers at the Princeton University has found that frustrated magnets, inspite of not possessing any magnetic feature at low temperatures, do exhibit features of Hall Effect. ‘Frustrated’ magnets are so called because of their inability of getting a long range magnetic order inspite of a huge exchange between the spins of their elementary particles.

The Hall Effect suggests that when magnetic field is applied to electric current carried by charged particles present in a conductor, it causes magnet to bend to the other side of semi-conductor. They are of great interest in physics and material science. Appreciating that frustrated magnets are capable of producing Hall Effect could hold the key to future advances in computing and the creation of devices such as quantum computers.

“To talk about the Hall Effect for neutral particles is an oxymoron, a crazy idea,” said N. Phuan Ong, one of the authors of the study and Eugene Higgins Professor of Physics at Princeton.

Inspite of that, he together with his colleague, Princeton’s Russell Wellman Moore Professor of Chemistry as well as their graduate students Max Hirschberger and Jason Krizan witnessed this unusual behavior in frustrated magnets.

“All of us were very surprised because we work and play in the classical, non-quantum world. Quantum behavior can seem very strange, and this is one example where something that shouldn’t happen is in reality there. It really exists,” said Ong in a statement.
The researchers wanted to find out the reason underlying “discontent” nature of Hall Effect.

In this particular case, the team led by Ong and Moore studied pyrochlores, a class of magnets ‘which should have orderly “spins” at very low temperature, but have been found to have spins that point in random directions, thus rendering them with magnetic frustration properties.’ They attached small electrodes to both sides of crystals and later passed heat through them using microheaters at extremely low temperatures.

The outcome of the experiment, states Ong, stunned the entire team.

View Article Here Read More

NASA’s Plan to Give the Moon a Moon


arm-capture_0




Excerpt from wired.com

It sounds almost like a late ’90s sci-fi flick: NASA sends a spacecraft to an asteroid, plucks a boulder off its surface with a robotic claw, and brings it back in orbit around the moon. Then, brave astronaut heroes go and study the space rock up close—and bring samples back to Earth.
Except it’s not a movie: That’s the real-life idea for the Asteroid Redirect Mission, which NASA announced today. Other than simply being an awesome space version of the claw arcade game (you know you really wanted that stuffed Pikachu), the mission will let NASA test technology and practice techniques needed for going to Mars.
The mission, which will cost up to $1.25 billion, is slated to launch in December 2020. It will take about two years to reach the asteroid (the most likely candidate is a quarter-mile-wide rock called 2008 EV5). The spacecraft will spend up to 400 days there, looking for a good boulder. After picking one—maybe around 13 feet in diameter—it will bring the rock over to the moon. In 2025, astronauts will fly NASA’s still-to-be-built Orion to dock with the asteroid-carrying spacecraft and study the rock up close.
Although the mission would certainly give scientists an up-close opportunity to look at an asteroid, its main purpose is as a testing ground for a Mars mission. The spacecraft will test a solar electronic propulsion system, which uses the power from solar panels to pump out charged particles to provide thrust. It’s slower than conventional rockets, but a lot more efficient. You can’t lug a lot of rocket fuel to Mars.
Overall, the mission gives NASA a chance at practicing precise navigation and maneuvering techniques that they’ll need to master for a Mars mission. Such a trip will also require a lot more cargo, so grabbing and maneuvering a big space rock is good practice. Entering lunar orbit and docking with another spacecraft would also be helpful, as the orbit might be a place for a deep-space habitat, a rendezvous point for astronauts to pick up cargo or stop on their way to Mars.
And—you knew this part was coming, Armageddon fans—the mission might teach NASA something about preventing an asteroid from striking Earth. After grabbing the boulder, the spacecraft will orbit the asteroid. With the added heft from the rock, the spacecraft’s extra gravity would nudge the asteroid, creating a slight change in trajectory that NASA could measure from Earth. “We’re not talking about a large deflection here,” says Robert Lightfoot, an associate administrator at NASA. But the idea is that a similar technique could push a threatening asteroid off a collision course with Earth.
NASA chose this mission concept over one that would’ve bagged an entire asteroid. In that plan, the spacecraft would’ve captured the space rock by enclosing it in a giant, flexible container. The claw concept won out because its rendezvous and soft-landing on the asteroid will allow NASA to test and practice more capabilities in preparation for a Mars mission, Lightfoot says. The claw would’ve also given more chances at grabbing a space rock, whereas it was all or nothing with the bag idea. “It’s a one-shot deal,” he says. “It is what it is when we get there.” But the claw concept offers some choices. “I’ve got three to five opportunities to pull one of the boulders off,” he says. Not bad odds. Better than winning that Pikachu

View Article Here Read More

Scientist Claims to Discover Sounds of Stars






Excerpt from clapway.com

If you can remember your primary school’s astronomy classes, the surface of a star is a very volatile place with tons of chemical reactions and extreme motions, and with immense gravitational pull. Generally a place you would not want to be. But researchers are now saying that if you were to orbit a star, it may be possible, with the right equipment, to hear what a star is saying! Or Singing?
Would you want to hear the sounds of stars?

The sound, unfortunately, is so high pitched that no mammal, not even a dolphin or bat, would be able to hear it, and couldn’t be heard anyway because space is a vacuum and there is no air medium for the sound to travel in.

With a frequency of nearly one trillion hertz, the sound was not only unexpected, but six million times higher than what any mammal can hear. But the researchers have developed a method to hear what they poetically refer to as “singing” or a star’s “song.”

Britain’s University of York’s researchers of hydrodynamics – the study of fluids in motion – fired a laser beam at the plasma in the laboratory and found that within a trillionth of a second, the plasma quickly moved from high-density to low-density areas.Plasma is a state of matter that makes up most things in the known universe and a few things on earth like lightning strikes and neon signs. It is basically a gas that has been charged with enough energy to loose the electrons from the atoms holding them together.

The spot where the low-density and high-density areas meet led to what the University researchers called a “traffic jam,” and resulted in an apparent sound wave, allowing us to know the sounds of stars.

Though this was achieved in the laboratory, scientists have yet to try to hear the sounds of a real star.

Dr. Pasley, a scientist from the Tata Institute of Fundamental Research in Mumbai, India, , said: “One of the few locations in nature where we believe this effect would occur is at the surface of stars. When they are accumulating new material stars could generate sound in a very similar manner to that which we observed in the laboratory–so the stars might be singing–but since sound cannot propagate through the vacuum of space, no-one can hear them.”

The technique used to observe the sound waves in the laboratory sort of works like a police speed camera, allowing scientists to accurately measure how the fluid would sound at the point of being struck by the laser at very minute timescales. The research was published in Physical Review Letters.

Perhaps in the future we might be able to listen in on the sounds of stars instead of just viewing it, and hear what they have to say!

View Article Here Read More

If the Moon Landings Were Real, Then Why is NASA Stumped by This?

Buck Rogers, Staff WriterWaking TimesDuring the cold war era the Soviet Union and the United States were locked in an arms and technology race, each nation wanting to prove their dominance over the other, each striving to be the next reigning superpower in a world still shattered by the second world war. The Soviet’s took the lead when in April of 1961, cosmonaut Yuri Gagarin successfully orbited the earth and returned home safely. In May, president John F. Kennedy ma [...]

View Article Here Read More

Powerful solar storm sparks stunning aurora around the world ~ Images of the Northern Lights 2015

Excerpt from cnn.com  A severe solar storm created a stunning display of light in the night sky over parts of the United States, Europe, Australia and New Zealand early Wednesday morning, spotted by those lucky enough to be awake in the wee h...

View Article Here Read More

Confirmed: Jupiter’s moon Ganymede has a salt water ocean

GanymedeExcerpt from latimes.comAstronomers have found the most conclusive evidence yet that a large watery ocean lies beneath the surface of Jupiter's moon Ganymede.Scientists have suspected for decades that a subterranean ocean ...

View Article Here Read More

Let There Be Light! Photo Shows Light As Wave And Particle For First Time


Light as a particle and a wave


Excerpt from escapistmagazine.com

According to quantum mechanics light acts as both a particle and a wave, but now we can finally see what that looks like.

Quantum mechanics is an incredibly complex field for a simple reason: So much of what it studies can be two different things at the exact same time. Light is a great example since it behaves like both a particle and a wave, but only appears in one state during experiments. Mathematically speaking, we have to treat light as both ways for the universe to make sense but actually confirming it visually has been impossible. Or at least that was the case until scientists from Switzerland's École polytechnique fédérale de Lausanne developed their own unique photography method.
The image was created by shooting a pulse of laser light at a metallic nanowire to make its charged particles vibrate. Next the scientists fired a stream of electrons past the wire holding the trapped light. When the two collided, it created an energy exchange that could be photographed from the electron microscope.

So what does this mean when looking at the photograph? When the photons and electrons collide, they either slow down or speed up, which creates a visualization of a light wave. At the same time the speed change appears as a quanta - packets of energy - transferred between the electrons and photons as particles. In other words, it's the first case of observing light particles and waves simultaneously.

"This experiment demonstrates that, for the first time ever, we can film quantum mechanics - and its paradoxical nature - directly," research leader Fabrizio Carbone explained. This has enormous implications not only for quantum research, but also quantum-based technologies still in development. "Being able to image and control quantum phenomena at the nanometer scale like this opens up a new route towards quantum computing," he continued.

The experiment results were posted in today's Nature Communications, which will help other scientists build on this research with further studies. After all, it's not like we've unlocked all of light's secrets yet - we can barely even tell what color a dress is sometimes.

View Article Here Read More
Older posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑