Tag: charge (page 1 of 7)

The Case of the Incredible Disappearing Cancer Patients

Tracy Kolenchuk, ContributorIt’s been almost 20 years since I met my first disappearing patient — a nurse in her early 40s, let’s call her Kate. Kate was diagnosed with breast cancer. As a nurse, she had seen the results of breast cancer treatments. She was terrified, and determined. She was not heading for surgery, nor chemotherapy, nor radiation.But Kate worked in a hospital. She worked with the doctors who diagnosed her cancer, and she worked with [...]

View Article Here Read More

Big Pharma Charges Up to 10x More for Drugs in US than in Other Countries

Alex Pietrowski, StaffThere is one important factor which makes the United States (US) a very lucrative market for Big Pharma – inflated drug prices. Big pharma generates about $250 billion+ per year in sales of prescription drugs in the United States alone. This isn’t just because of the sheer amount of people in the US population who take prescription medications for some ailment or condition. What makes the US one of the most lucrative markets for Big Pharma is th [...]

View Article Here Read More

Most Western Scientific Medical Research is Fraudulent

Makia Freeman, ContributorInsiders & experts say that most medical reasearch is a fraud.Fraudulent scientific research is rife throughout the world due to the power of monetary influence wielded by Big Pharma, the giant cartel of multinational pharmaceutical corporations started over 100 years ago by the Rockefellers. This fraudulent scientific research is now so widespread and pervasive it is become an open secret. There is a long list of medical journal edit [...]

View Article Here Read More

The Unnecessary Cost of Cancer 

Dr. Eldon Dahl, Prevent DiseaseRecently, a 60 Minutes special about the cost of cancer drugs was rebroadcast. In the broadcast, cancer specialists from the Memorial Sloan Kettering Cancer Center were profiled for their stance against the exorbitant cost of cancer drugs. Dr. Leonard Saltz, one of the chief specialists at the hospital and a leading authority on colon cancer, stated, “We’re in a situation where a cancer diagnosis is one of the leadin [...]

View Article Here Read More

Cintamani

Cintamani is a sacred stone which came from Sirius star system. Millions of years ago, during a Galactic superwave, a planet orbiting Sirius A exploded. Its fragments traveled in all directions, some of them reaching Earth after long journey through in...

View Article Here Read More

US Government Admits Americans Have Been Overdosed on Fluoride

Dr. MercolaThe US government has finally admitted they’ve overdosed Americans on fluoride and, for first time since 1962, are lowering its recommended level of fluoride in drinking water.1,2,3About 40 percent of American teens have dental fluorosis,4 a condition referring to changes in the appearance of tooth enamel—from chalky-looking lines and splotches to dark staining and pitting—caused by long-term ingestion of fluoride during the time teeth are forming.In some areas, fluoro [...]

View Article Here Read More

The Class-Domination Theory of Power

by G. William DomhoffNOTE: WhoRulesAmerica.net is largely based on my book,Who Rules America?, first published in 1967 and now in its7th edition. This on-line document is presented as a summary of some of the main ideas in that book.Who has predominant power in the United States? The short answer, from 1776 to the present, is: Those who have the money -- or more specifically, who own income-producing land and businesses -- have the power. George Washington was one of the biggest landowner [...]

View Article Here Read More

8 Myths About Emotions That Are Holding Us Back

Excerpt from huffingtonpost.comAs a society, we don't talk much about emotions. Conversations tend to focus more on what we're doing or what we're thinking. In fact, most people find it easier to start sentences with, "I think..." instead of "I feel...

View Article Here Read More

Hypatia, Ancient Alexandria’s Great Female Scholar

An avowed paganist in a time of religious strife, Hypatia was also one of the first women to study math, astronomy and philosophy On the streets of Alexandria, Egypt, a mob led by Peter the Lector brutally murdered Hypatia, one of the last great thinkers of ancient Alexandria. (Mary Evans Picture Library / Alamy) By Sarah Zielinskismithsonian.com One day on the streets of Alexandria, Egypt, in the year 415 or 416, a mob of Christian zealots led by Peter the Lector accosted a wom [...]

View Article Here Read More

Rosetta Coming Closer to Comet 67P ~ Philae Lander Still Snoozing Away


Rosetta photo of Comet 67P/C-G.
March 9 Rosetta was 45 miles from Comet 67P/C-G when it photographed the comet’s head ringed with a halo of gas and dust. These jets extend from active areas of the comet’s surface and will become much more prominent over the next few months as the comet approaches the sun.


Excerpt from dailytimesgazette.com

Astronomers have been on a mission to tail a slow moving comet in the outer space. Their mission started early last 2014, and they are getting better observations than they thought they would.
The comet, Comet 67P, would take 12.4 hours to complete one rotation in the circular path it’s moving in. Controllers of Rosetta are noticing that the icy ball approximately a second every day before it completes a rotation. The flight director of Rosetta – Andrea Accomazzo, said that, “The gas jets coming out of the comet, are acting like thrusters and are slowing down the comet.”
During the Royal Aeronautical Society in London earlier this week, the European Space Agency officially revealed some juicy details on how their team learned to maneuver Rosetta to fly precisely around the massive astral body. Comet 67P is said to weigh 10-billion tons with 4-km size in width.

The controllers and navigators use the landmark-method on the comet to understand its rotation. The team is moving around the outer space relying only on the information provided by the model. Both the model and information guides them in accurately projecting the trajectory of the satellite in the best position.

As they were trying out the model, the ESA team noticed that the landmarks were not following the usual track at the expected time.
During September 2014, the team were determined and very convinced that comet’s rotation period lengthen by 33 milliseconds per day. At present, the comet is approaching the Sun. As it does, it releases great volumes of gas and dust as a result of the so-called Spin-Down effect; further lengthening the rotation period to a second per day.

Accomazzo clarified that Comet 67P is not going to slow down in a slow motion. But its current speed allows them achieve the great magnitude of accuracy in navigating the spacecraft around the comet.

Rosetta made significant observations of the comet last December and January as it moves like an orbit within 30 km distance from the comet. However, this movement is no longer going to happen because Rosetta has retreated from the comet as the gas and dust are being released.

But it does them well as Accomazzo said that, “The aerodynamic effects are now more and more important. The jets are getting stronger and stronger… To give you an idea, these gases come out of the comet for a few kilometers and are moving at 800 meters per second. We definitely have to take this into account. We are a big spacecraft with 64 square meter s of solar panels. We’re like a big sail.”

The trackers were confused during the recent weeks because they have mistaken the dust particles for stars. It was due to the fact that the dusts in the atmosphere were moving around the comet.

Now, Rosetta is using its propulsion system to move in a hyperbolic orbital rotation around Comet 67P. It approaches the comet no closer than 60 to 70 km. With the slowdown of the comet, the ESA team is planning to fly closer.

They were estimating a flight as close as 20 km to get a better look at the surface of the comet and find their lost landing probe, Philae. They lost contact with the robotic probe since November 12 due to lost battery power only days after it successfully landed on the comet.

The slowdown gives them an opportunity to search for Philae. As it moves closer to the Sun, lighting conditions are definitely better than their previous runs. The controllers are now calling onto Philae using radio shout outs.

Philae is solar powered so the team hopes that enough solar energy falls on the panels awaking the probe. But one problem still persist, “The problem is that even if Philae hears Rosetta, it has to have enough charge to turn on its radio transmitter.”

The flight director is quite doubtful if Philae will be awakening. Andrea suggested, “I put it at 50-50, but I will be the happiest person in the world if it happens,”

Their mission achieved great progress and observation of a comet. The team is wishing for better things as the 67P slow down leaving them with more advantage

View Article Here Read More

How Quantum Physics will change your life and amaze the world!

 Excerpt from educatinghumanity.com "Anyone not shocked by quantum mechanics has not yet understood it."Niels Bohr10 Ways Quantum Physics Will Change the WorldEver want to have a "life do over", teleport, time travel, have your computer wor...

View Article Here Read More

‘God Particle’ analogue spotted outside a supercollider: Scientists find Higgs mode in a superconductor


The God Particle, which is believed to be responsible for all the mass in the universe, was discovered in 2012 using a Cern's supercollider. In this image two high-energy photons collide. The yellow lines are the measured tracks of other particles produced in the collision, which helped lead to the discovery of the God particle
The God Particle, which is believed to be responsible for all the mass in the universe, was discovered in 2012 using a Cern's supercollider. In this image two high-energy photons collide. The yellow lines are the measured tracks of other particles produced in the collision, which helped lead to the discovery of the God particle.


Excerpt from dailymail.co.uk
  • God Particle is believed to be responsible for all the mass in the universe
  • Particle was discovered in 2012 using a Cern's supercollider in Geneva
  • uperconductor experiment suggests the particle could be detected without the huge amounts of energy used at by the Large Hadron Collider
  • LHC is due to come back online next month after an upgrade that has given it a big boost in energy

Scientists have discovered a simulated version of the elusive 'God particle' using superconductors.

The God Particle, which is believed to be responsible for all the mass in the universe, was discovered in 2012 using a Cern's supercollider.

The superconductor experiment suggests that the Higgs particle could be detected without the huge amounts of energy used at by the Large Hadron Collider. 
The results could help scientists better understand how this mysterious particle – also known as the Higgs boson – behaves in different conditions.

'Just as the Cern experiments revealed the existence of the Higgs boson in a high-energy accelerator environment, we have now revealed a Higgs boson analogue in superconductors,' said researcher Aviad Frydman from Bar-Ilan University.

Superconductors are a type of metal that, when cooled to low temperatures, allow electrons to pass through freely.

'The Higgs mode was never actually observed in superconductors because of technical difficulties - difficulties that we've managed to overcome,' Professor Frydman said.

The superconductor experiment suggests that the Higgs particle could be detected without the huge amounts of energy used at by the Large Hadron Collider (pictured)
The superconductor experiment suggests that the Higgs particle could be detected without the huge amounts of energy used at by the Large Hadron Collider (pictured)

WHAT IS THE GOD PARTICLE? 

The 'God Particle', also known as the Higgs boson, was a missing piece in the jigsaw for physicists in trying to understand how the universe works.

Scientists believe that a fraction of a second after the Big Bang that gave birth to the universe, an invisible energy field, called the Higgs field, formed.

This has been described as a kind of 'cosmic treacle' across the universe. 

As particles passed through it, they picked up mass, giving them size and shape and allowing them to form the atoms that make up you, everything around you and everything in the universe.

This was the theory proposed in 1964 by former grammar school boy Professor Higgs that has now been confirmed.

Without the Higgs field particles would simply whizz around space in the same way as light does.

A boson is a type of sub-atomic particle. Every energy field has a specific particle that governs its interaction with what's around it. 

To try to pin it down, scientists at the Large Hadron Collider near Geneva smashed together beams of protons – the 'hearts of atoms' – at close to the speed of light, recreating conditions that existed a fraction of a second after the Big Bang.

Although they would rapidly decay, they should have left a recognisable footprint. This footprint was found in 2012.

The main difficulty was that the superconducting material would decay into something known as particle-hole pairs.

Large amounts of energy – which are usually needed to excite the Higgs mode - tend to break apart the electron pairs that act as the material's charge.

Professor Frydman and his colleagues solved this problem by using ultra-thin superconducting films of Niobium Nitrite (NbN) and Indium Oxide (InO) as something known as the 'superconductor-insulator critical point.'

This is a state in which recent theory predicted the decay of the Higgs would no longer occur.

In this way, they could still excite a Higgs mode even at relatively low energies.

'The parallel phenomenon in superconductors occurs on a different energy scale entirely - just one-thousandth of a single electronvolt,' Professor Frydman added.

'What's exciting is to see how, even in these highly disparate systems, the same fundamental physics is at work.'

The different approach help solve one of the longstanding mysteries of fundamental physics.

The discovery of the Higgs boson verified the Standard Model, which predicted that particles gain mass by passing through a field that slows down their movement through the vacuum of space.

To try to pin it down, scientists at the Large Hadron Collider near Geneva smashed together beams of protons – the 'hearts of atoms' – at close to the speed of light, recreating conditions that existed a fraction of a second after the Big Bang.

Although they would rapidly decay, the also left a recognisable footprint.

Professor Higgs, 83, has been waiting since 1964 for science to catch up with his ideas about the Higgs boson
Professor Higgs, 83, has been waiting since 1964 for science to catch up with his ideas about the Higgs boson

According to Professor Frydman, observation of the Higgs mechanism in superconductors is significant because it reveals how a single type of physical process behaves under different energy conditions.

'Exciting the Higgs mode in a particle accelerator requires enormous energy levels - measured in giga-electronvolts, or 109 eV,' Professor Frydman says.

'The parallel phenomenon in superconductors occurs on a different energy scale entirely - just one-thousandth of a single electronvolt.

'What's exciting is to see how, even in these highly disparate systems, the same fundamental physics is at work.'

The LHC is due to come back online in March after an upgrade that has given it a big boost in energy.

'With this new energy level, the (collider) will open new horizons for physics and for future discoveries,' CERN Director General Rolf Heuer said in a statement.
'I'm looking forward to seeing what nature has in store for us.'

Cern's collider is buried in a 27-km (17-mile) tunnel straddling the Franco-Swiss border at the foot of the Jura mountains.

The LHC in Geneva will come back online in March after an upgrade that has given it a big boost in energy
The LHC in Geneva will come back online in March after an upgrade that has given it a big boost in energy

View Article Here Read More

Move Over Hubble, Meet the New High Powered Star Searcher


NASA'S James Webb Space Telescope


Excerpt from space.com


NASA's James Webb Space Telescope, scheduled for launch in 2018, will probe the cosmos to uncover the history of the universe from the Big Bang to alien planet formation and beyond.
Scientists are planning to use the infrared telescope to search for the first galaxies that formed at the beginning of the universe. The James Webb Space Telescope (JWST) will also have the ability to look through cosmic dust clouds to find newly forming planetary systems and seek out the chemical origins of life in the solar system.

The powerful $8.8 billion spacecraft is also expected to take amazing photos of celestial objects like its predecessor, the Hubble Space Telescope. 


Instruments on board

The JWST will come equipped with four science instruments.
  • Near-Infrared Camera (NIRCam) — Provided by the University of Arizona, this infrared camera will detect light from stars in nearby galaxies and stars within the Milky Way. It will also search for light from stars and galaxies that formed early in the universe's life. NIRCam will be outfitted with coronagraphs that can block a bright object's light, making dimmer objects near those stars (like planets) visible.
  • Near-Infrared Spectrograph (NIRSpec) — NIRSpec will observe 100 objects simultaneously, searching for the first galaxies that formed after the Big Bang. NIRSpec was provided by the European Space Agency with help from NASA's Goddard Space Flight Center.
  • Mid-Infrared Instrument (MIRI) — MIRI will produce amazing space photos of distant celestial objects, following in Hubble's tradition of astrophotography. The spectrograph that is a part of the instrument will allow scientists to gather more physical details about distant objects in the universe. MIRI will detect distant galaxies, faint comets, forming stars and objects in the Kuiper Belt. MIRI was built by the European Consortium with the European Space Agency and NASA's Jet Propulsion Laboratory.
  • Fine Guidance Sensor/Near InfraRed Imager and Slitless Spectrograph (FGS/NIRISS) — This Canadian Space Agency-built instrument is more like two instruments in one. The FGS component is responsible for keeping the JWST pointed in exactly the right direction during its science investigations. NIRISS will scope out the cosmos to find signatures of the first light in the universe and seek out and characterize alien planets.
The telescope will also sport a tennis court-size sunshield and a 21.3 foot (6.5 meter) mirror — the largest mirror ever launched into space. Those components will not fit into the rocket launching the JWST, so both will unfurl once the telescope is in space.

Infrared: Inside the huge space observatory that operates from a point in space four times further away than the moon.
NASA's James Webb Space Telescope is an $8.8 billion space observatory built to observe the infrared universe like never before. See how NASA's James Webb Space Telescope works in this Space.com infographic
James Webb the man

The JWST is named for former NASA chief James Webb. Webb took charge of the space agency from 1961 to 1968, retiring just a few months before NASA put the first man on the moon.

View Article Here Read More
Older posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑