Tag: caught (page 2 of 5)

Recent Disappearances & Strangeness in the Bermuda Triangle

Excerpt from paranormal.lovetoknow.com By Michelle Radcliff The Bermuda Triangle is an area of mostly open ocean located between Bermuda, Miami, Florida and San Juan, Puerto Rico. The unexplained disappearances of hundreds of ships and air...

View Article Here Read More

Birth of the Nibiru Legend? Astronomers Say Alien Star System Buzzed Our Sun

Scholz's star - shown in this artist's impression - is currently 20 light-years away. But it once came much closerExcerpt from bbc.comAn alien star passed through our Solar System just 70,000 years ago, astronomers have discovered.  No othe...

View Article Here Read More

Why science is so hard to believe?

 
In the recent movie “Interstellar,” set in a futuristic, downtrodden America where NASA has been forced into hiding, school textbooks say the Apollo moon landings were faked.


Excerpt from 


There’s a scene in Stanley Kubrick’s comic masterpiece “Dr. Strangelove” in which Jack D. Ripper, an American general who’s gone rogue and ordered a nuclear attack on the Soviet Union, unspools his paranoid worldview — and the explanation for why he drinks “only distilled water, or rainwater, and only pure grain alcohol” — to Lionel Mandrake, a dizzy-with-anxiety group captain in the Royal Air Force.
Ripper: “Have you ever heard of a thing called fluoridation? Fluoridation of water?”
Mandrake: “Ah, yes, I have heard of that, Jack. Yes, yes.”Ripper: “Well, do you know what it is?”
Mandrake: “No. No, I don’t know what it is, no.”
Ripper: “Do you realize that fluoridation is the most monstrously conceived and dangerous communist plot we have ever had to face?” 

The movie came out in 1964, by which time the health benefits of fluoridation had been thoroughly established and anti-fluoridation conspiracy theories could be the stuff of comedy. Yet half a century later, fluoridation continues to incite fear and paranoia. In 2013, citizens in Portland, Ore., one of only a few major American cities that don’t fluoridate, blocked a plan by local officials to do so. Opponents didn’t like the idea of the government adding “chemicals” to their water. They claimed that fluoride could be harmful to human health.

Actually fluoride is a natural mineral that, in the weak concentrations used in public drinking-water systems, hardens tooth enamel and prevents tooth decay — a cheap and safe way to improve dental health for everyone, rich or poor, conscientious brushers or not. That’s the scientific and medical consensus.
To which some people in Portland, echoing anti-fluoridation activists around the world, reply: We don’t believe you.
We live in an age when all manner of scientific knowledge — from the safety of fluoride and vaccines to the reality of climate change — faces organized and often furious opposition. Empowered by their own sources of information and their own interpretations of research, doubters have declared war on the consensus of experts. There are so many of these controversies these days, you’d think a diabolical agency had put something in the water to make people argumentative.
Science doubt has become a pop-culture meme. In the recent movie “Interstellar,” set in a futuristic, downtrodden America where NASA has been forced into hiding, school textbooks say the Apollo moon landings were faked.


The debate about mandated vaccinations has the political world talking. A spike in measles cases nationwide has President Obama, lawmakers and even potential 2016 candidates weighing in on the vaccine controversy. (Pamela Kirkland/The Washington Post)
In a sense this is not surprising. Our lives are permeated by science and technology as never before. For many of us this new world is wondrous, comfortable and rich in rewards — but also more complicated and sometimes unnerving. We now face risks we can’t easily analyze.
We’re asked to accept, for example, that it’s safe to eat food containing genetically modified organisms (GMOs) because, the experts point out, there’s no evidence that it isn’t and no reason to believe that altering genes precisely in a lab is more dangerous than altering them wholesale through traditional breeding. But to some people, the very idea of transferring genes between species conjures up mad scientists running amok — and so, two centuries after Mary Shelley wrote “Frankenstein,” they talk about Frankenfood.
The world crackles with real and imaginary hazards, and distinguishing the former from the latter isn’t easy. Should we be afraid that the Ebola virus, which is spread only by direct contact with bodily fluids, will mutate into an airborne super-plague? The scientific consensus says that’s extremely unlikely: No virus has ever been observed to completely change its mode of transmission in humans, and there’s zero evidence that the latest strain of Ebola is any different. But Google “airborne Ebola” and you’ll enter a dystopia where this virus has almost supernatural powers, including the power to kill us all.
In this bewildering world we have to decide what to believe and how to act on that. In principle, that’s what science is for. “Science is not a body of facts,” says geophysicist Marcia McNutt, who once headed the U.S. Geological Survey and is now editor of Science, the prestigious journal. “Science is a method for deciding whether what we choose to believe has a basis in the laws of nature or not.”
The scientific method leads us to truths that are less than self-evident, often mind-blowing and sometimes hard to swallow. In the early 17th century, when Galileo claimed that the Earth spins on its axis and orbits the sun, he wasn’t just rejecting church doctrine. He was asking people to believe something that defied common sense — because it sure looks like the sun’s going around the Earth, and you can’t feel the Earth spinning. Galileo was put on trial and forced to recant. Two centuries later, Charles Darwin escaped that fate. But his idea that all life on Earth evolved from a primordial ancestor and that we humans are distant cousins of apes, whales and even deep-sea mollusks is still a big ask for a lot of people.
Even when we intellectually accept these precepts of science, we subconsciously cling to our intuitions — what researchers call our naive beliefs. A study by Andrew Shtulman of Occidental College showed that even students with an advanced science education had a hitch in their mental gait when asked to affirm or deny that humans are descended from sea animals and that the Earth goes around the sun. Both truths are counterintuitive. The students, even those who correctly marked “true,” were slower to answer those questions than questions about whether humans are descended from tree-dwelling creatures (also true but easier to grasp) and whether the moon goes around the Earth (also true but intuitive).
Shtulman’s research indicates that as we become scientifically literate, we repress our naive beliefs but never eliminate them entirely. They nest in our brains, chirping at us as we try to make sense of the world.
Most of us do that by relying on personal experience and anecdotes, on stories rather than statistics. We might get a prostate-specific antigen test, even though it’s no longer generally recommended, because it caught a close friend’s cancer — and we pay less attention to statistical evidence, painstakingly compiled through multiple studies, showing that the test rarely saves lives but triggers many unnecessary surgeries. Or we hear about a cluster of cancer cases in a town with a hazardous-waste dump, and we assume that pollution caused the cancers. Of course, just because two things happened together doesn’t mean one caused the other, and just because events are clustered doesn’t mean they’re not random. Yet we have trouble digesting randomness; our brains crave pattern and meaning.
Even for scientists, the scientific method is a hard discipline. They, too, are vulnerable to confirmation bias — the tendency to look for and see only evidence that confirms what they already believe. But unlike the rest of us, they submit their ideas to formal peer review before publishing them. Once the results are published, if they’re important enough, other scientists will try to reproduce them — and, being congenitally skeptical and competitive, will be very happy to announce that they don’t hold up. Scientific results are always provisional, susceptible to being overturned by some future experiment or observation. Scientists rarely proclaim an absolute truth or an absolute certainty. Uncertainty is inevitable at the frontiers of knowledge.
That provisional quality of science is another thing a lot of people have trouble with. To some climate-change skeptics, for example, the fact that a few scientists in the 1970s were worried (quite reasonably, it seemed at the time) about the possibility of a coming ice age is enough to discredit what is now the consensus of the world’s scientists: The planet’s surface temperature has risen by about 1.5 degrees Fahrenheit in the past 130 years, and human actions, including the burning of fossil fuels, are extremely likely to have been the dominant cause since the mid-20th century.
It’s clear that organizations funded in part by the fossil-fuel industry have deliberately tried to undermine the public’s understanding of the scientific consensus by promoting a few skeptics. The news media gives abundant attention to such mavericks, naysayers, professional controversialists and table thumpers. The media would also have you believe that science is full of shocking discoveries made by lone geniuses. Not so. The (boring) truth is that science usually advances incrementally, through the steady accretion of data and insights gathered by many people over many years. So it has with the consensus on climate change. That’s not about to go poof with the next thermometer reading.
But industry PR, however misleading, isn’t enough to explain why so many people reject the scientific consensus on global warming.
The “science communication problem,” as it’s blandly called by the scientists who study it, has yielded abundant new research into how people decide what to believe — and why they so often don’t accept the expert consensus. It’s not that they can’t grasp it, according to Dan Kahan of Yale University. In one study he asked 1,540 Americans, a representative sample, to rate the threat of climate change on a scale of zero to 10. Then he correlated that with the subjects’ science literacy. He found that higher literacy was associated with stronger views — at both ends of the spectrum. Science literacy promoted polarization on climate, not consensus. According to Kahan, that’s because people tend to use scientific knowledge to reinforce their worldviews.
Americans fall into two basic camps, Kahan says. Those with a more “egalitarian” and “communitarian” mind-set are generally suspicious of industry and apt to think it’s up to something dangerous that calls for government regulation; they’re likely to see the risks of climate change. In contrast, people with a “hierarchical” and “individualistic” mind-set respect leaders of industry and don’t like government interfering in their affairs; they’re apt to reject warnings about climate change, because they know what accepting them could lead to — some kind of tax or regulation to limit emissions.
In the United States, climate change has become a litmus test that identifies you as belonging to one or the other of these two antagonistic tribes. When we argue about it, Kahan says, we’re actually arguing about who we are, what our crowd is. We’re thinking: People like us believe this. People like that do not believe this.
Science appeals to our rational brain, but our beliefs are motivated largely by emotion, and the biggest motivation is remaining tight with our peers. “We’re all in high school. We’ve never left high school,” says Marcia McNutt. “People still have a need to fit in, and that need to fit in is so strong that local values and local opinions are always trumping science. And they will continue to trump science, especially when there is no clear downside to ignoring science.”
Meanwhile the Internet makes it easier than ever for science doubters to find their own information and experts. Gone are the days when a small number of powerful institutions — elite universities, encyclopedias and major news organizations — served as gatekeepers of scientific information. The Internet has democratized it, which is a good thing. But along with cable TV, the Web has also made it possible to live in a “filter bubble” that lets in only the information with which you already agree.
How to penetrate the bubble? How to convert science skeptics? Throwing more facts at them doesn’t help. Liz Neeley, who helps train scientists to be better communicators at an organization called Compass, says people need to hear from believers they can trust, who share their fundamental values. She has personal experience with this. Her father is a climate-change skeptic and gets most of his information on the issue from conservative media. In exasperation she finally confronted him: “Do you believe them or me?” She told him she believes the scientists who research climate change and knows many of them personally. “If you think I’m wrong,” she said, “then you’re telling me that you don’t trust me.” Her father’s stance on the issue softened. But it wasn’t the facts that did it.
If you’re a rationalist, there’s something a little dispiriting about all this. In Kahan’s descriptions of how we decide what to believe, what we decide sometimes sounds almost incidental. Those of us in the science-communication business are as tribal as anyone else, he told me. We believe in scientific ideas not because we have truly evaluated all the evidence but because we feel an affinity for the scientific community. When I mentioned to Kahan that I fully accept evolution, he said: “Believing in evolution is just a description about you. It’s not an account of how you reason.”
Maybe — except that evolution is real. Biology is incomprehensible without it. There aren’t really two sides to all these issues. Climate change is happening. Vaccines save lives. Being right does matter — and the science tribe has a long track record of getting things right in the end. Modern society is built on things it got right.
Doubting science also has consequences, as seen in recent weeks with the measles outbreak that began in California. The people who believe that vaccines cause autism — often well educated and affluent, by the way — are undermining “herd immunity” to such diseases as whooping cough and measles. The anti-vaccine movement has been going strong since a prestigious British medical journal, the Lancet, published a study in 1998 linking a common vaccine to autism. The journal later retracted the study, which was thoroughly discredited. But the notion of a vaccine-autism connection has been endorsed by celebrities and reinforced through the usual Internet filters. (Anti-vaccine activist and actress Jenny McCarthy famously said on “The Oprah Winfrey Show,” “The University of Google is where I got my degree from.”)
In the climate debate, the consequences of doubt are likely to be global and enduring. Climate-change skeptics in the United States have achieved their fundamental goal of halting legislative action to combat global warming. They haven’t had to win the debate on the merits; they’ve merely had to fog the room enough to keep laws governing greenhouse gas emissions from being enacted.
Some environmental activists want scientists to emerge from their ivory towers and get more involved in the policy battles. Any scientist going that route needs to do so carefully, says Liz Neeley. “That line between science communication and advocacy is very hard to step back from,” she says. In the debate over climate change, the central allegation of the skeptics is that the science saying it’s real and a serious threat is politically tinged, driven by environmental activism and not hard data. That’s not true, and it slanders honest scientists. But the claim becomes more likely to be seen as plausible if scientists go beyond their professional expertise and begin advocating specific policies.
It’s their very detachment, what you might call the cold-bloodedness of science, that makes science the killer app. It’s the way science tells us the truth rather than what we’d like the truth to be. Scientists can be as dogmatic as anyone else — but their dogma is always wilting in the hot glare of new research. In science it’s not a sin to change your mind when the evidence demands it. For some people, the tribe is more important than the truth; for the best scientists, the truth is more important than the tribe.

View Article Here Read More

Watch This ‘Celestial Visitor’ Turn Into a Massive Fireball Over Pennsylvania


That was more than a regular old shooting star — that was a meteor that illuminated the whole sky.
A giant space rock fired up the firmament Tuesday night near Pittsburgh, and NASA caught the whole thing on camera.



Excerpt from theblaze.com

Using a network of 15 specialized cameras around the country, NASA tracks fireball events throughout the U.S.

NASA estimated the size of Tuesday’s meteor to be roughly 500 pounds and said the rock blew up as it traveled some 45,000 miles per hour through the atmosphere.

For a meteor’s-eye-view of the event, check out NASA’s Facebook post below:

“This celestial visitor had an orbit that took it out to the main asteroid belt between Mars and Jupiter,” read part of NASA’s Facebook post on the meteor. “[I]t came a mightly long way to a fiery end in the predawn Pennsylvania sky.”

The massive rock broke up into tiny fragments in the atmosphere, but NASA said some of those fragments may be near Kittaning, Pennsylvania.


Click to zoom

View Article Here Read More

New prehistoric human discovered in Taiwan



human jaw fossil found in Taiwan
“Penghu 1,” the newly discovered human with large teeth, is another piece of critical evidence suggesting that other humans besides Homo sapiens lived in Asia from 200,000 to 10,000 years ago.


Excerpt from sciencerecorder.com


Paleontologists have identified the first known prehistoric human specimen from Taiwan, which may have been part of a species that lived alongside modern humans until as recently as 10,000 years ago.
“Penghu 1,” the newly discovered human with large teeth, is another piece of critical evidence suggesting that other humans besides Homo sapiens lived in Asia from 200,000 to 10,000 years ago.
Among the species that lived in Europe within that period were Neanderthals, Denisovans and Homo floresiensis The Penghu 1, which has been described in the most recent issue of Nature Communications, has added to that sizable list of humans that may have lived with and interbred with modern humans.

“The available evidence at least does not exclude the possibility that they survived until the appearance of Homo sapiens in the region, and it is tempting to speculate about their possible contact,” said the study’s co-author Yousuke Kaifu, an associate professor in the Department of Biological Sciences at The University of Tokyo, to Discovery News.
Kaifu, along with the paper’s lead author Chun-Hsiang Chang, and their team have studied the new human’s remains, primarily a jawbone that still contains big teeth. The jawbone was found by fishermen off the Taiwanese coast in the Penghu Channel. They then sold it to a local antique shop where it was found and bought by the collector Kun-Yu Tsai, who donated his collection to the National Museum of Natural Science in Taiwan. It then caught the eye of Chang, who works at the museum as a geologist.
Chang and his team now believe that the Penghu 1 could suggest a new species of human or at least a distinct regional group of Homo erectus. He suspects that the jawbone belonged to an elderly adult due to the worn state of the teeth. Unlike Homo floresiensis, the Penghu 1 grew to adult stature and lived on the Asian mainland.
“The associated faunal remains suggest that the area was a relatively open, wet woodland,” said Kaifu. “This is because of the presence of large-bodied mammals, such as elephants (Stegodon), horses and bear, but the fauna also included animals that prefer marshlands in a hot and humid climate, such as water buffaloes.”
All of these aspects would seem very attractive to modern humans, as well as the prehistoric humans they co-existed with. Although Penghu 1 is clearly not a modern human, its jaw bears many similarities to Homo erectus. Very little is known about human evolution in Asia, so this is a considerably welcome discovery, as fossils from much earlier periods discovered in China have offered valuable insights into what a Cretaceous ecosystem looked like. There are also many similarities between Penghu 1 and the Peking Man remains from Zhoukoudian, China, although the former appears to be much more primitive. It has also been compared to the archaic Homo heidelbergensis and also Denisovan remains.

View Article Here Read More

Mysterious radio signal from space caught live for first time




Excerpt from foxnews.com

Astronomers in Australia have picked up an “alien” radio signal from space for the first time as it occurred. The signal, or radio “burst”, was discovered on May 15, 2014, though it’s just being reported by the Monthly Notices of the Royal Astronomical Society. “The burst was identified within 10 seconds of its occurrence,” said Emily Petroff, a doctoral student from Melbourne’s Swinburne University of Technology. “The importance of the discovery was recognized very quickly and we were all working very excitedly to contact other astronomers and telescopes around the world to look at the location of the burst.”
Emerging from an unknown source, these bursts are bright flashes of radio waves that emit as much energy in a few milliseconds as the sun does in 24 hours.  “The first fast radio burst was discovered in 2007,” Petroff tells FoxNews.com, “and up until our discovery there were 8 more found in old or archival data.” While researchers use telescopes in Hawaii, India, Germany, Chile, California, and the California Islands to search for bursts, it is the CSIRO Parkes radio telescope in Eastern Australia that is the first to catch one as its happening.
The cause of these mysterious signals remains unknown, with possible theories ranging from black holes to alien communication. However, UFO hunters shouldn’t get too excited. According to Petroff, “We're confident that they're coming from natural sources, that is to say it's probably not aliens, but we haven't solved the case completely. The two most promising theories at the moment are that these bursts could be produced either by a star producing a highly energetic flare, or from a neutron star collapsing to make a black hole. Both of these things would be from sources in far-away galaxies just reaching us from billions of light years away.”
Catching the bursts as they happen is key to finding the source, and though Petroff’s team scrambled upon making their discovery, they didn’t move fast enough to find the afterglow and pin down the cause. “Finding one in real-time has been the goal for a while because we would then be able to act on it and mobilize other telescopes to look that way,” Petroff says. “We did this in the case of this real-time discovery, but we didn't get on the target until about eight hours later with other telescopes, at which time nothing was found.” However, they were able to eliminate a few possible causes, such as gamma-ray bursts from exploding stars and supernovae. Also, the team was able to determine that the source had been near an object with a sizeable magnetic field from the way the wavelengths were polarized.
While the source of the fast radio burst remains a mystery, the team remains hopeful that they can learn from their mistakes and one day solve the case. “All we can do is learn from our experience with this discovery and create a more efficient system for next time,” Petroff says. “We still spend a large amount of time looking for fast radio bursts with the Parkes telescope and the next time we are in the right place at just the right time, we'll be able to act faster than ever before and hopefully solve the mystery once and for all!”

View Article Here Read More

Massive Light Show Over Russian Urals Stuns Locals, Scientists





Excerpt
rt.com

An extraordinary bright orange flash has lit up the sky in Russia’s Sverdlovsk region in the Urals. While locals captured the massive ‘blast’ on numerous cameras, both scientists and emergency services still struggle to explain the unusual event.

Dark evening skies in the town of Rezh in Sverdlovsk region near Russia's Ekaterinburg turned bright orange for some ten seconds on November 14, with the event being caught on several cameras by the locals.

A driver filmed the massive flash with his dashcam, later posting the video on YouTube, with more people commenting they’ve seen it too. Teenagers in the town of Rezh also filmed the phenomenon with a mobile phone.

Theories of what might have caused the “blast” appeared both on social and traditional media, with a new meteorite or military exercise in the region being among the top guesses. Regional emergency services said no accidents in connection with the event had been recorded. No sound of explosion has been reported either.

According to E1.ru, the emergency officials suggested the military were behind the flash, as they might have had a scheduled explosive ordnance disposal procedure. The city administration has also said such ammunition disposal might have taken place, while the military themselves denied they were behind the mystery. 

A fireball caused by an asteroid’s collision with the Earth's atmosphere is among other presumed reasons for the burning sky.


Another astronoma, Vadim Krushinsky, doubted his colleague's theory, saying the color of the flash does not support the asteroid speculation. The shade of light depends on the body’s temperature, and flashes caused by bolides are usually whiter, he explained to Ekburg.tv. The observatory engineer suggested his own theory, saying a space rocket launch might have been the cause.



Click to zoom

A path of launches from the Plesetsk cosmodrome lies above the area, Krushinsky said. But, according to Russian Federal Space Agency's website, the latest launch from the Plesetsk cosmodrome happened on October 29, with the next one planned for November 24.

People in the Urals witnessed a space ‘invasion’ event a year and a half ago, when the famous Chelyabinsk meteorite hit the region. A massive fireball explosion in February 2013 injured over a thousand people with shattered glass mostly, and damaged many residential and industrial buildings.

View Article Here Read More

Rosetta mission: Philae lander bounces twice, lands on side ~ Cliff face blocking solar power


How Esa scientists believe Philae has landed on the comet – on its side
How Esa scientists believe Philae has landed on the comet – on its side. Photograph: European Space Agency/Reuters


Excerpt from
theguardian.com


Rosetta mission controllers must decide whether to risk making lander hop from shadow of cliff blocking sunlight to its solar panels.


The robotic lander that touched down on a comet on Wednesday came to rest on its side in the shadow of a cliff, according to the first data beamed home from the probe.

Pictures from cameras on board the European Space Agency’s Philae lander show the machine with one foot in the sky and lodged against a high cliff face that is blocking sunlight to its solar panels.
The precarious resting place means mission controllers are faced with some tough decisions over whether to try and nudge the spacecraft into a sunnier spot. If successful, that would allow Philae to fully recharge its batteries and do more science on the comet, but any sudden move could risk toppling the lander over, or worse, knock it off the comet completely.

The washing machine-sized lander was released by its Rosetta mother ship at 0835am GMT on Wednesday morning and touched down at a perfect spot on the comet’s surface. But when anchoring harpoons failed to fire, the probe bounced back off into space. So weak is the gravitational pull of the comet that Philae soared 1km into the sky and did not come down again until two hours later. “We made quite a leap,” said Stephan Ulamec, the Philae lander manager.

In the time it took the probe to land for the second time, the comet had rotated, bringing more treacherous terrain underneath. The spacecraft bounced a second time and finally came to a standstill on its side at what may be the rim of an enormous crater.

“We bounced twice and stopped in a place we’ve not entirely located,” said Jean-Pierre Bibring, Philae’s lead scientist. Teams of scientists are now trying to work out where the probe is. What mission controllers do know is that they are not where they hoped to be. “We are exactly below a cliff, so we are in a shadow permanently,” Bibring added.

With most of Philae in the dark, the lander will receive only a fraction of the solar energy that Esa had hoped for. The spacecraft needs six or seven hours of sunlight a day but is expected to receive just one and a half. Though it can operate for 60 hours on primary batteries, the probe must then switch to its main batteries which need to be recharged through its solar arrays. If Philae’s batteries run out it will go into a hibernation mode until they have more power.

The spacecraft was designed with landing gear that could hop the probe around, but from its awkward position on its side the option is considered too risky.

Though caught in a tight spot, the Philae lander’s systems appear to be working well. The Rosetta spacecraft picked up the lander’s signal on Thursday morning and received the first images and more instrument data from the surface of the comet.

One of Philae’s major scientific goals is to analyse the comet for organic molecules. To do that, the lander must get samples from the comet into several different instruments, named Ptolemy, Cosac and Civa. There are two ways to do this: sniffing and drilling. Sniffing involves opening the instruments to allow molecules from the surface to drift inside. The instruments are already doing this and returning data.

Panoramic view around the point of Philae's final touchdown on the surface of comet 67P, taken when Rosetta was about 18km from centre of comet. Parts of Philae's landing gear can be seen in this picture.
Panoramic view around the point of Philae’s final touchdown on the surface of comet 67P, taken when Rosetta was about 18km from centre of comet. Parts of Philae’s landing gear can be seen in this picture.Photograph: European Space Agency/AFP/Getty Images

Drilling is much riskier because it could make the lander topple over... Pushing down into the surface will push the lander off again. “We don’t want to start drilling and end the mission,” said Bibring.
But the team has decided to operate another moving instrument, named Mupus, on Thursday evening. This could cause Philae to shift, but calculations show that it would be in a direction that could improve the amount of sunlight falling on the probe. A change in angle of only a few degrees could help. A new panoramic image will be taken after the Mupus deployment to see if there has been any movement.

Meanwhile, the Rosetta orbiter team will continue to try to pinpoint Philae’s position.

View Article Here Read More

Why France has a team of UFO hunters

A drawing from the files at the French UFO departmentExcerpt from BBCBy Chris Bockman Thousands of UFO sightings are reported every year but not many countries are willing to spend money investigating them - there is just one dedicated state-run tea...

View Article Here Read More

Is this the origins of the Anunnaki story? ~ Neanderthals & humans first mated 50,000 years ago, DNA reveals


Early European
Universal human: This reconstruction is of a different modern human from Romania 43,000 years ago. But it gives some clues to what the Siberian man may have looked like. This population was not long out of Africa and genetically midway between Europeans and Asians
Excerpt from bbc.com
The genome sequence from a thigh bone found in Siberia shows the first episode of mixing occurred between 50,000 and 60,000 years ago.

The male hunter is one of the earliest modern humans discovered in Eurasia.

The study in Nature journal also supports the finding that our species emerged from Africa some 60,000 years ago, before spreading around the world.

The analysis raises the possibility that the human line first emerged millions of years earlier than current estimates.

"We seem to have caught evolution red handed”
Prof Svante Paabo Max-Plack Institute
The work of Prof Svante Paabo, from the Max Planck Institute in Leipzig, Germany, is rewriting the story of humanity. Prof Paabo and his colleagues have pioneered methods to extract DNA from ancient human remains and read its genetic code. From this sequence, Prof Paabo has been able to decipher an increasingly detailed story of modern humans as they spread across the globe.

"The amazing thing is that we have a good genome of a 45,000 year old person who was close to the ancestor of all present-day humans outside Africa," Prof Paabo told BBC News. 

Prof Paabo has analysed DNA from part of a leg bone of a man that lived in Western Siberia around 45,000 years ago. This is a key moment at the cross roads of the world, when modern humans were on the cusp of an expansion into Europe and Asia.


Thigh bone

Prof Paabo Svante has unlocked the secrets contained in this femur from one of the earliest humans discovered out of Africa.
The key finding was that the man had large, unshuffled chunks of DNA from a now extinct species of human, Neanderthals who evolved outside of Africa. 

"Our analysis shows that modern humans had already interbred with Neanderthals then and we can determine when that first happened much more precisely than we could before." 

Prof Paabo and his team published research in 2010 which showed that all non-African humans today have Neanderthal DNA. But that genetic material has been broken into much smaller chunks over the generations. 

By extrapolating the size of DNA chunks backwards, Prof Paabo and his colleagues were able to calculate when the first interbreeding with Neanderthals occurred. His study shows that it was between 50,000 and 60,000 years ago.

According to Prof Chris Stringer of the Natural History Museum in London, this early interbreeding might indicate when the ancestors of people living outside of Africa today made their first steps out of the continent in which our species evolved more than 150,000 years ago.

Prof Stringer was among those who believed that the first exit by modern humans from Africa that give rise to people outside of Africa today might have happened earlier, possibly 100,000 years ago. The evidence from Prof Paabo's research is persuading him that it was now much later.


River Irtysh

Crossroads for humanity: the river Irtysh in Western Siberia where the bone was found. 


Prof Paabo also compared the DNA of the man living 45,000 years ago with those living today. He found that the man was genetically midway between Europeans and Asians - indicating he lived close to the time before our species separated into different racial groups.

Prof Paabo was also able to estimate the rate at which human DNA has changed or mutated over the millennia. He found that it was slower than the rate suggested by fossil evidence and similar to what has been observed in families. 

"We have caught evolution red handed!" Prof Paabo said gleefully.
This raises the possibility that the very first species of the human line separated from apes 10 or 11 million years ago - rather than the five or six million years ago that genetic evidence had previously suggested. 

But he stressed in his research paper that much more analysis was needed before re-dating the emergence of the human line.

"We caution that (mutation) rates may have changed over time and may differ between human populations," he said.

View Article Here Read More

U.S. Creates Largest Protected Area in the World ~ 3X Larger than California


Photo of fish swimming in the Palmyra Atoll.
A school of fish swims under the water around Palmyra Atoll, in an area of the Pacific that is already part of a marine sanctuary.
Photograph by Randy Olson, National Geographic



By Brian Clark Howard




NEW YORK—The Obama administration announced Thursday that it will create the largest marine reserve in the world by expanding an existing monument around U.S.-controlled islands and atolls in the central Pacific.


The Pacific Remote Islands Marine National Monument will now be nearly 490,000 square miles, nearly three times the size of California and six times larger than its previous size. Commercial fishing, dumping, and mining will be prohibited in the reserve, but recreational fishing will be allowed with permits, and boaters may visit the area.


The protected area that Secretary of State John Kerry announced this morning is actually smaller than the 782,000 square miles that the president initially considered. But environmentalists, preservationists, and conservation groups that had pushed for the expansion called President Barack Obama's designation a historic victory in their efforts to limit the impact of fishing, drilling, and other activities that threaten some of the world's most species-rich waters.

Map of the pacific remote islands.
MAGGIE SMITH, NG STAFF. SOURCES: U.S. FISH AND WILDLIFE SERVICE; USGS; MARINE CONSERVATION INSTITUTE


"What has happened is extraordinary. It is history making. There is a lot of reason we should be celebrating right now," said Elliott Norse, founder and chief scientist of the Seattle-based Marine Conservation Institute.


Enric Sala, an ocean scientist and National Geographic Explorer-in-Residence, called the newly expanded monument "a great example of marine protection."


During the past several years, Sala and National Geographic's Pristine Seas project—which aims to explore, survey, and protect several of the last wild places in the world's oceans—have been key players in expeditions to the region that helped to put a spotlight on its biodiversity. Sala also met with White House officials to make the scientific case for expanding the Pacific Remote Islands monument. 


Photo of a sea anemone providing cover for a transparent shrimp in Kingman Reef, Pacific Ocean.
Tentacles of a sea anemone provide cover for a transparent shrimp in Kingman Reef, which is part of the existing marine sanctuary. Photograph by Brian Skerry, National Geographic Creative


In announcing the expansion of protected marine areas, Kerry said, “We’re committed to protecting more of the world's ocean. Today, one to three percent of the ocean is protected, that's it. That's why President Obama will sign a proclamation today that will create one of the largest maritime protected areas in the world. It will be protected in perpetuity.”

Michael Boots, chairman of the White House's Council on Environmental Quality, made clear that by expanding protected areas, the administration sought to balance the need to preserve a range of marine species with concerns from the fishing industry, which had warned about the economic impact of curtailing deep-sea fishing areas.

"We thought [the monument decision] was a good way to balance what the science was telling us was important to protect and the needs of those who use the area," Boots said.


The administration said in a statement late Wednesday that "expanding the monument will more fully protect the deep coral reefs, seamounts, and marine ecosystems unique to this part of the world, which are also among the most vulnerable areas to the impacts of climate change and ocean acidification."


In June, when he first announced his intent to expand the monument, Obama said, "I'm using my authority as president to protect some of our nation's most pristine marine monuments, just like we do on land."


The June announcement was followed by a public comment period and further analysis by the White House, officials said. Thousands of people submitted comments, with many conservation groups and scientists offering their support. Some fishing and cannery groups, as well as a few members of the U.S. Congress opposed the expansion, citing the potential a loss of commercial fishing grounds. 


Norse said that the newly protected areas will safeguard endangered seabirds and other key species, including five endangered sea turtle species (such as loggerheads and leatherbacks), sooty terns and other terns, silky sharks and oceanic whitetip sharks, beaked whales, manta rays, red-tailed tropic birds, and deep-sea corals.

The expanded monument will help ensure that "there are some places that are as pristine as possible for as long as possible," Norse said. "I think a hundred years from now, people will be praising Barack Obama for having the vision to protect the Pacific remote islands."


"A Big Step"


Obama's Democratic administration is building on a national monument that was first created by his predecessor, Republican President George W. Bush, suggesting that "ocean protection may be one of the last bipartisan issues" in the politically divided United States, says David Helvarg, the author of several books on the ocean and the founder of the advocacy group Blue Frontier Campaign.

Democratic and Republican presidents going all the way back to Teddy Roosevelt, a Republican who served from 1901 to 1909, have used the 1906 Antiquities Act to designate national monuments. The law requires simply that an area be unique and considered worthy of protection for future generations. This is the 12th time Obama has used his authority under the Antiquities Act to protect environmental areas.

The area being protected by the administration will expand the protected areas from 50 miles offshore to 200 miles offshore around three areas—Wake Island, Johnston Atoll, and Jarvis Island—the maximum reach of the United States’ exclusive economic zone. The current 50-mile offshore protections around the Howland and Baker islands, and Kingman Reef and Palmyra Atoll, will not change.


"Although 71 percent of our planet is covered with saltwater, we have protected much more of the land than the ocean," Helvarg said. But the newly expanded monument is a big step in the right direction, he added.

Enforcing fishing bans in the monument will be a big challenge, Kerry acknowledged. "Agreements won't matter if no one is enforcing them," he said. "It's going to take training and resources."
Kerry said one measure that could help deter illegal fishing in the region, as well as around the world, would be to implement the Port State Measures Agreement, an international treaty that requires member nations to prevent illegally caught fish from entering the market. Eleven nations or parties have ratified the agreement, but a total of 25 must sign before the treaty will take effect.

"Our goal is to get this done this year," Kerry said.


Meanwhile, efforts to preserve more biologically diverse waters continue.


This week, National Geographic Society announced that it is dramatically expanding its campaign to help protect marine areas, with a goal of persuading governments to officially safeguard more than 770,000 square miles.


The plan, announced by former President Bill Clinton, includes programs that target the Seychelles—an archipelago in the Indian Ocean—northern Greenland, and South America's Patagonia region. The program builds on National Geographic's Pristine Seas project, which has financed ten scientific expeditions to remote areas of ocean around the world, including in the South Pacific and off Africa, Russia, and South America.

View Article Here Read More

10 Signs That You’re Fully Awake

A great article from www.pakalertpress.comIsn’t it obvious that there is a significant global awakening happening? Just as the Mayans predicted so many years ago, the apocalypse would become apparent in 2012. But many misinterpret the apocalypse to be the end of the world, when in fact it actually means an “un-covering, a revelation of something hidden.”As many continue to argue the accuracy of the Mayan calendar, it can no longer be argued that a great many people are finally [...]

View Article Here Read More

Spinning the Web of Life

by Julian RoseContributor, ZenGardner.comSpiders do it. Take a look – oh what an amazing creation! Working their way out from the first circle; filling-in every loop of the circuit; spinning on the outward pull; determined, full of intention, guided by Divine. So my friends, why can’t we?Look at that final creation on the garden gate on a misty October morning – wow – what a stunner! Stay looking and what do you see? A little universe spun into being, oh so de [...]

View Article Here Read More
Older posts Newer posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑