Tag: call (page 4 of 36)

Physicists: Black holes don’t erase information




Excerpt from earthsky.org
Since 1975, when Hawking showed that black holes evaporate from our universe, physicists have tried to explain what happens to a black hole’s information.

What happens to the information that goes into a black hole? Is it irretrievably lost? Does it gradually or suddenly leak out? Is it stored somehow? Physicists have puzzled for decades over what they call the information loss paradox in black holes. A new study by physicists at University at Buffalo – published in March, 2015 in the journal in Physical Review Letters – shows that information going into a black hole is not lost at all.

Instead, these researchers say, it’s possible for an observer standing outside of a black hole to recover information about what lies within.

Dejan Stojkovic, associate professor of physics at the University at Buffalo, did the research with his student Anshul Saini as co-author. Stojkovic said in a statement:
According to our work, information isn’t lost once it enters a black hole. It doesn’t just disappear.
What sort of information are we talking about? In principle, any information drawn into a black hole has an unknown future, according to modern physics. That information could include, for example, the characteristics of the object that formed the black hole to begin with, and characteristics of all matter and energy drawn inside.

Stojkovic says his research “marks a significant step” toward solving the information loss paradox, a problem that has plagued physics for almost 40 years, since Stephen Hawking first proposed that black holes could radiate energy and evaporate over time, disappearing from the universe and taking their information with them. 

Disappearing information is a problem for physicists because it’s a violation of quantum mechanics, which states that information must be conserved.
According to modern physics, any information about an astronaut entering a black hole - for example, height, weight, hair color - may be lost.  Likewise, information about he object that formed the hole, or any matter and energy entering the hole, may be lost.  This notion violates quantum mechanics, which is why it's known as the 'black hole information paradox.


According to modern physics, any information related to an astronaut entering a black hole – for example, height, weight, hair color – may be lost. This notion is known as the ‘information loss paradox’ of black holes because it violates quantum mechanics. Artist’s concept via Nature.

Stojkovic says that physicists – even those who believed information was not lost in black holes – have struggled to show mathematically how the information is preserved. He says his new paper presents explicit calculations demonstrating how it can be preserved. His statement from University at Buffalo explained:
In the 1970s, [Stephen] Hawking proposed that black holes were capable of radiating particles, and that the energy lost through this process would cause the black holes to shrink and eventually disappear. Hawking further concluded that the particles emitted by a black hole would provide no clues about what lay inside, meaning that any information held within a black hole would be completely lost once the entity evaporated.

Though Hawking later said he was wrong and that information could escape from black holes, the subject of whether and how it’s possible to recover information from a black hole has remained a topic of debate.

Stojkovic and Saini’s new paper helps to clarify the story.
Instead of looking only at the particles a black hole emits, the study also takes into account the subtle interactions between the particles. By doing so, the research finds that it is possible for an observer standing outside of a black hole to recover information about what lies within.
Interactions between particles can range from gravitational attraction to the exchange of mediators like photons between particles. Such “correlations” have long been known to exist, but many scientists discounted them as unimportant in the past.
Stojkovic added:
These correlations were often ignored in related calculations since they were thought to be small and not capable of making a significant difference.
Our explicit calculations show that though the correlations start off very small, they grow in time and become large enough to change the outcome.
Artist's impression of a black hole, via Icarus
Artist’s impression of a black hole, via Icarus

Bottom line: Since 1975, when Stephen Hawking and Jacob Bekenstein showed that black holes should slowly radiate away energy and ultimately disappear from the universe, physicists have tried to explain what happens to information inside a black hole. Dejan Stojkovic and Anshul Saini, both of University at Buffalo, just published a new study that contains specific calculations showing that information within a black hole is not lost.

View Article Here Read More

How Quantum Physics will change your life and amaze the world!

 Excerpt from educatinghumanity.com "Anyone not shocked by quantum mechanics has not yet understood it."Niels Bohr10 Ways Quantum Physics Will Change the WorldEver want to have a "life do over", teleport, time travel, have your computer wor...

View Article Here Read More

Minnesota Twins Provide Intriguing Evidence of Incarnate Road Map


The Jim's.jpg
Minnesota Twins (not the baseball team) James & James, whose similar stories defy chance and coincidence.

Excerpt from people.com 
May 7th, 1979

One of science's so far uncrackable mysteries is the comparative impact of heredity vs. environment. An obvious experimental method would be to raise identical twins separately, but that could hardly be done with humans. So for the last 10 years University of Minnesota psychologist Thomas Bouchard, 41, has been studying twins under less than ideal, lab-controlled conditions—until, eureka, he ran into the stuff of social scientists' dreams. Identical twin males, who had been separated by adoption at three weeks, suddenly rediscovered each other in Ohio at age 39.

Within two weeks after reading about them in the press, Dr. Bouchard had the twins in his Minneapolis lab for tests. At the outset of his investigation the psychologist said, "I think there are going to be all kinds of differences that will surprise even the twins." But what was immediately apparent were eerie similarities that left even Bouchard "flabbergasted."

Curiously, both had been christened James by their adoptive parents, the Jess Lewises of Lima and the Ernest Springers of Piqua, 40 miles away. As schoolboys, both enjoyed math and carpentry—but hated spelling. Both pursued similar adult occupations: Lewis is a security guard at a steel mill, and Springer was a deputy sheriff (though he is now a clerk for a power company). Both married women named Linda, only to divorce and remarry—each a woman named Betty. Both have sons: James Alan Lewis and James Allan Springer.

The two men shared one other fact in common. As Jim Springer put it, "I always felt an emptiness." Neither the Springers nor the Lewises ever met the 15-year-old (unwed) mother of their sons, and both couples were told that their adoptive child had a twin who died at birth. Then one day, when Jim Lewis was 16 months old, his mother visited the Miami County courthouse to settle the adoption paperwork, and an official remarked offhandedly, "They named the other little boy 'Jim' too."

For 37 years that hint tugged at Mrs. Lewis, who occasionally urged her son to find out if it was true. Finally, last Thanksgiving, he agreed to search—though he says he doesn't know why. Jim Lewis wrote the probate court, which had a record of the adoption, and contacted the Springer parents in Piqua. "I came home one day," Lewis recounts, "and had this message to call 'Jim Springer.' " When he phoned Springer, Lewis blurted out: "Are you my brother?" "Yup," Springer replied. Four days later, last Feb. 9, Lewis drove to meet his twin for an emotional reunion.

Dr. Bouchard offered expenses and a small honorarium to get them to Minneapolis for a week of extensive physical and psychological tests. He wanted to begin as soon as possible to preclude their reminiscing together too long and thus "contaminating" the evidence. Though not the first such separated twins—the records show 19 previous sets in the U.S. among some 75 worldwide—Lewis and Springer were believed to have been apart by far the longest.

The detailed results of Bouchard's textbook case will be revealed to the twins themselves, but to protect their privacy will be buried among other data in the professor's book on differential psychology now in progress. There has been one development that may leave the twins still puzzling over heredity and environment. On Feb. 28 Jim Lewis, having divorced his second wife, Betty, married a woman named Sandy Jacobs. Betty and Jim Springer were present, with Jim serving as his newfound brother's best man.

View Article Here Read More

Chances of Exoplanet Life ‘Impossible’? Or ‘100 percent’?


Kepler’s Exoplanets: A map of the locations of exoplanets, of various masses, in the Kepler field of view. 1,235 candidates are plotted (NASA/Wendy Stenzel)


 news.discovery.com 

Just in case you haven’t heard, our galaxy appears to be teeming with small worlds, many of which are Earth-sized candidate exoplanets and dozens appear to be orbiting their parent stars in their “habitable zones.”

Before Wednesday’s Kepler announcement, we knew of just over 500 exoplanets orbiting stars in the Milky Way. Now the space telescope has added another 1,235 candidates to the tally — what a difference 24 hours makes.

Although this is very exciting, the key thing to remember is that we are talking about exoplanet candidates, which means Kepler has detected 1,235 exoplanet signals, but more work needs to be done (i.e. more observing time) to refine their orbits, masses and, critically, to find out whether they actually exist.

But, statistically speaking, a pattern is forming. Kepler has opened our eyes to the fact our galaxy is brimming with small worlds — some candidates approaching Mars-sized dimensions!

Earth-Brand™ Life

Before Kepler, plenty of Jupiter-sized worlds could be seen, but with its precision eye for spotting the tiniest of fluctuations of star brightness (as a small exoplanet passes between Kepler and the star), the space telescope has found that smaller exoplanets outnumber the larger gas giants.

Needless to say, all this talk of “Earth-sized” worlds (and the much-hyped “Earth-like” misnomer) has added fuel to the extraterrestrial life question: If there’s a preponderance of small exoplanets — some of which orbit within the “sweet-spot” of the habitable zones of their parent stars — could life as we know it (or Earth-Brand™ Life as I like to call it) also be thriving there?
Before I answer that question, let’s turn back the clock to Sept. 29, 2010, when, in the wake of the discovery of the exoplanet Gliese 581 g, Steven Vogt, professor of astronomy and astrophysics at University of California Santa Cruz, told Discovery News: “Personally, given the ubiquity and propensity of life to flourish wherever it can, I would say that the chances for life on [Gliese 581 g] are 100 percent. I have almost no doubt about it.”

Impossible? Or 100 Percent?

As it turns out, Gliese 581 g may not actually exist — an excellent example of the progress of science scrutinizing a candidate exoplanet in complex data sets as my Discovery News colleague Nicole Gugliucci discusses in “Gliese 581g and the Nature of Science” — but why was Vogt so certain that there was life on Gliese 581 g? Was he “wrong” to air this opinion?

Going to the opposite end of the spectrum, Howard Smith, an astrophysicist at Harvard University, made the headlines earlier this year when he announced, rather pessimistically, that aliens will unlikely exist on the extrasolar planets we are currently detecting.
“We have found that most other planets and solar systems are wildly different from our own. They are very hostile to life as we know it,” Smith told the UK’s Telegraph.

Smith made comparisons between our own solar system with the interesting HD 10180 system, located 127 light-years away. HD 10180 was famous for a short time as being the biggest star system beyond our own, containing five exoplanets (it has since been trumped by Kepler-11, a star system containing six exoplanets as showcased in Wednesday’s Kepler announcement).

One of HD 10180′s worlds is thought to be around 1.4 Earth-masses, making it the smallest detected exoplanet before yesterday. Alas, as Smith notes, that is where the similarities end; the “Earth-sized” world orbiting HD 10180 is too close to its star, meaning it is a roasted exoplanet where any atmosphere is blasted into space by the star’s powerful radiation and stellar winds.
The Harvard scientist even dismissed the future Kepler announcement, pointing out that upcoming reports of habitable exoplanets would be few and far between. “Extrasolar systems are far more diverse than we expected, and that means very few are likely to support life,” he said.

Both Right and Wrong

So what can we learn about the disparity between Vogt and Smith’s opinions about the potential for life on exoplanets, regardless of how “Earth-like” they may seem?

Critically, both points of view concern Earth-Brand™ Life (i.e. us and the life we know and understand). As we have no experience of any other kind of life (although the recent eruption of interest over arsenic-based life is hotly debated), it is only Earth-like life we can realistically discuss.

We could do a Stephen Hawking and say that all kinds of life is possible anywhere in the cosmos, but this is pure speculation. Science only has life on Earth to work with, so (practically speaking) it’s pointless to say a strange kind of alien lifeform could live on an exoplanet where the surface is molten rock and constantly bathed in extreme stellar radiation.

If we take Hawking’s word for it, Vogt was completely justified for being so certain about life existing on Gliese 581 g. What’s more, there’s no way we could prove he’s wrong!

But if you set the very tight limits on where we could find Earth-like life, we are suddenly left with very few exoplanet candidates that fit the bill. Also, just because an Earth-sized planet might be found in the habitable zone of its star, doesn’t mean it’s actually habitable. There are many more factors to consider. So, in this case, Smith’s pessimism is well placed.

Regardless, exoplanet science is in its infancy and the uncertainty with the “is there life?” question is a symptom of being on the “raggedy edge of science,” as Nicole would say. We simply do not know what it takes to make a world habitable for any kind of life (apart from Earth), but it is all too tempting to speculate as to whether a race of extraterrestrials, living on one of Kepler’s worlds, is pondering these same questions.

View Article Here Read More

Bird Thought To Be Extinct Resurfaces In Myanmar

Jerdon's BabblerExcerpt from techtimes.comJerdon's Babbler is a species of bird that was believed to be extinct until this species unexpectedly resurfaced in Myanmar. This brown and white bird is roughly the size of a house sparrow.The bird was last ...

View Article Here Read More

Archaeologists find two lost cities deep in Honduras jungle


Archaeologists in Honduras have found dozens of artifacts at a site where they believe twin cities stood. Photograph: Dave Yoder/National Geographic
Archaeologists in Honduras have found dozens of artifacts at a site where they believe twin cities stood. Photograph: Dave Yoder/National Geographic
Excerpt from theguardian.com


Archaeological team say they have set foot in a place untouched by humans for at least 600 years in a site that may be the ‘lost city of the monkey god’

Archaeologists have discovered two lost cities in the deep jungle of Honduras, emerging from the forest with evidence of a pyramid, plazas and artifacts that include the effigy of a half-human, half-jaguar spirit.
The team of specialists in archaeology and other fields, escorted by three British bushwhacking guides and a detail of Honduran special forces, explored on foot a remote valley of La Mosquitia where an aerial survey had found signs of ruins in 2012.
Chris Fisher, the lead US archaeologist on the team, told the Guardian that the expedition – co-coordinated by the film-makers Bill Benenson and Steve Elkins, Honduras and National Geographic (which first reported the story on its site) – had by all appearances set foot in a place that had gone untouched by humans for at least 600 years.
“Even the animals acted as if they’ve never seen people,” Fisher said. “Spider monkeys are all over place, and they’d follow us around and throw food at us and hoot and holler and do their thing.”
“To be treated not as a predator but as another primate in their space was for me the most amazing thing about this whole trip,” he said.
Fisher and the team arrived by helicopter to “groundtruth” the data revealed by surveying technology called Lidar, which projects a grid of infrared beams powerful enough to break through the dense forest canopy.
The dense jungle of Honduras. Photograph: Dave Yoder/National Geographic
The dense jungle of Honduras.Photograph: Dave Yoder/National Geographic
That data showed a human-created landscape, Fisher said of sister cities not only with houses, plazas and structures, but also features “much like an English garden, with orchards and house gardens, fields of crops, and roads and paths.”
In the rainforest valley, they said they found stone structural foundations of two cities that mirrored people’s thinking of the Maya region, though these were not Mayan people. The area dates between 1000AD and 1400AD, and while very little is known without excavation of the site and surrounding region, Fisher said it was likely that European diseases had at least in part contributed to the culture’s disappearance.
The expedition also found and documented 52 artifacts that Virgilio Paredes, head of Honduras’s national anthropology and history institute, said indicated a civilisation distinct from the Mayans. Those artifacts included a bowl with an intricate carvings and semi-buried stone sculptures, including several that merged human and animal characteristics.
The cache of artifacts – “very beautiful, very fantastic,” in Fisher’s words – may have been a burial offering, he said, noting the effigies of spirit animals such as vultures and serpents.
Fisher said that while an archaeologist would likely not call these cities evidence of a lost civilisation, he would call it evidence of a culture or society. “Is it lost? Well, we don’t know anything about it,” he said.
The exploratory team did not have a permit to excavate and hopes to do so on a future expedition. “That’s the problem with archaeology is it takes a long time to get things done, another decade if we work intensively there, but then we’ll know a little more,” Fisher said.
Advertisement
“This wasn’t like some crazy colonial expedition of the last century,” he added.
Despite the abundance of monkeys, far too little is known of the site still to tie it to the “lost city of the monkey god” that one such expedition claimed to have discovered. In about 1940, the eccentric journalist Theodore Morde set off into the Honduran jungle in search of the legendary “white city” that Spanish conquistadors had heard tales of in the centuries before.
He broke out of the brush months later with hundreds of artifacts and extravagant stories of how ancient people worshipped their simian deity. According to Douglas Preston, the writer National Geographic sent along with its own expedition: “He refused to divulge the location out of fear, he said, that the site would be looted. He later committed suicide and his site – if it existed at all – was never identified.”
Fisher emphasised that archaeologists know extraordinarily little about the region’s ancient societies relative to the Maya civilisation, and that it would take more research and excavation. He said that although some academics might find it distasteful, expeditions financed through private means – in this case the film-makers Benenson and Elkins – would become increasingly commonplace as funding from universities and grants lessened.
Fisher also suggested that the Lidar infrared technology used to find the site would soon be as commonplace as radiocarbon dating: “People just have to get through this ‘gee-whiz’ phase and start thinking about what we can do with it.”
Paredes and Fisher also said that the pristine, densely-wooded site was dangerously close to land being deforested for beef farms that sell to fast-food chains. Global demand has driven Honduras’s beef industry, Fisher said, something that he found worrying.
“I keep thinking of those monkeys looking at me not having seen people before. To lose all this over a burger, it’s a really hard pill to swallow.”

View Article Here Read More

What happens to your body when you give up sugar?





Excerpt from independent.co.uk
By Jordan Gaines Lewis


In neuroscience, food is something we call a “natural reward.” In order for us to survive as a species, things like eating, having sex and nurturing others must be pleasurable to the brain so that these behaviours are reinforced and repeated.
Evolution has resulted in the mesolimbic pathway, a brain system that deciphers these natural rewards for us. When we do something pleasurable, a bundle of neurons called the ventral tegmental area uses the neurotransmitter dopamine to signal to a part of the brain called the nucleus accumbens. The connection between the nucleus accumbens and our prefrontal cortex dictates our motor movement, such as deciding whether or not to taking another bite of that delicious chocolate cake. The prefrontal cortex also activates hormones that tell our body: “Hey, this cake is really good. And I’m going to remember that for the future.”
Not all foods are equally rewarding, of course. Most of us prefer sweets over sour and bitter foods because, evolutionarily, our mesolimbic pathway reinforces that sweet things provide a healthy source of carbohydrates for our bodies. When our ancestors went scavenging for berries, for example, sour meant “not yet ripe,” while bitter meant “alert – poison!”
Fruit is one thing, but modern diets have taken on a life of their own. A decade ago, it was estimated that the average American consumed 22 teaspoons of added sugar per day, amounting to an extra 350 calories; it may well have risen since then. A few months ago, one expert suggested that the average Briton consumes 238 teaspoons of sugar each week.
Today, with convenience more important than ever in our food selections, it’s almost impossible to come across processed and prepared foods that don’t have added sugars for flavour, preservation, or both.
These added sugars are sneaky – and unbeknown to many of us, we’ve become hooked. In ways that drugs of abuse – such as nicotine, cocaine and heroin – hijack the brain’s reward pathway and make users dependent, increasing neuro-chemical and behavioural evidence suggests that sugar is addictive in the same way, too.

Sugar addiction is real

Anyone who knows me also knows that I have a huge sweet tooth. I always have. My friend and fellow graduate student Andrew is equally afflicted, and living in Hershey, Pennsylvania – the “Chocolate Capital of the World” – doesn’t help either of us. But Andrew is braver than I am. Last year, he gave up sweets for Lent. “The first few days are a little rough,” Andrew told me. “It almost feels like you’re detoxing from drugs. I found myself eating a lot of carbs to compensate for the lack of sugar.”
There are four major components of addiction: bingeing, withdrawal, craving, and cross-sensitisation (the notion that one addictive substance predisposes someone to becoming addicted to another). All of these components have been observed in animal models of addiction – for sugar, as well as drugs of abuse.
A typical experiment goes like this: rats are deprived of food for 12 hours each day, then given 12 hours of access to a sugary solution and regular chow. After a month of following this daily pattern, rats display behaviours similar to those on drugs of abuse. They’ll binge on the sugar solution in a short period of time, much more than their regular food. They also show signs of anxiety and depression during the food deprivation period. Many sugar-treated rats who are later exposed to drugs, such as cocaine and opiates, demonstrate dependent behaviours towards the drugs compared to rats who did not consume sugar beforehand.
Like drugs, sugar spikes dopamine release in the nucleus accumbens. Over the long term, regular sugar consumption actually changes the gene expression and availability of dopamine receptors in both the midbrain and frontal cortex. Specifically, sugar increases the concentration of a type of excitatory receptor called D1, but decreases another receptor type called D2, which is inhibitory. Regular sugar consumption also inhibits the action of the dopamine transporter, a protein which pumps dopamine out of the synapse and back into the neuron after firing.
In short, this means that repeated access to sugar over time leads to prolonged dopamine signalling, greater excitation of the brain’s reward pathways and a need for even more sugar to activate all of the midbrain dopamine receptors like before. The brain becomes tolerant to sugar – and more is needed to attain the same “sugar high.”

Sugar withdrawal is also real

Although these studies were conducted in rodents, it’s not far-fetched to say that the same primitive processes are occurring in the human brain, too. “The cravings never stopped, [but that was] probably psychological,” Andrew told me. “But it got easier after the first week or so.”
In a 2002 study by Carlo Colantuoni and colleagues of Princeton University, rats who had undergone a typical sugar dependence protocol then underwent “sugar withdrawal.” This was facilitated by either food deprivation or treatment with naloxone, a drug used for treating opiate addiction which binds to receptors in the brain’s reward system. Both withdrawal methods led to physical problems, including teeth chattering, paw tremors, and head shaking. Naloxone treatment also appeared to make the rats more anxious, as they spent less time on an elevated apparatus that lacked walls on either side.
Similar withdrawal experiments by others also report behaviour similar to depression in tasks such as the forced swim test. Rats in sugar withdrawal are more likely to show passive behaviours (like floating) than active behaviours (like trying to escape) when placed in water, suggesting feelings of helplessness.
A new study published by Victor Mangabeira and colleagues in this month’s Physiology & Behavior reports that sugar withdrawal is also linked to impulsive behaviour. Initially, rats were trained to receive water by pushing a lever. After training, the animals returned to their home cages and had access to a sugar solution and water, or just water alone. After 30 days, when rats were again given the opportunity to press a lever for water, those who had become dependent on sugar pressed the lever significantly more times than control animals, suggesting impulsive behaviour.
These are extreme experiments, of course. We humans aren’t depriving ourselves of food for 12 hours and then allowing ourselves to binge on soda and doughnuts at the end of the day. But these rodent studies certainly give us insight into the neuro-chemical underpinnings of sugar dependence, withdrawal, and behaviour.
Through decades of diet programmes and best-selling books, we’ve toyed with the notion of “sugar addiction” for a long time. There are accounts of those in “sugar withdrawal” describing food cravings, which can trigger relapse and impulsive eating. There are also countless articles and books about the boundless energy and new-found happiness in those who have sworn off sugar for good. But despite the ubiquity of sugar in our diets, the notion of sugar addiction is still a rather taboo topic.
Are you still motivated to give up sugar? You might wonder how long it will take until you’re free of cravings and side-effects, but there’s no answer – everyone is different and no human studies have been done on this. But after 40 days, it’s clear that Andrew had overcome the worst, likely even reversing some of his altered dopamine signalling. “I remember eating my first sweet and thinking it was too sweet,” he said. “I had to rebuild my tolerance.”
And as regulars of a local bakery in Hershey – I can assure you, readers, that he has done just that.
Jordan Gaines Lewis is a Neuroscience Doctoral Candidate at Penn State College of Medicine

View Article Here Read More

Recent Disappearances & Strangeness in the Bermuda Triangle

Excerpt from paranormal.lovetoknow.com By Michelle Radcliff The Bermuda Triangle is an area of mostly open ocean located between Bermuda, Miami, Florida and San Juan, Puerto Rico. The unexplained disappearances of hundreds of ships and air...

View Article Here Read More

Rare doomed planet with extreme seasons discovered


Kepler432b.jpg
Illustration provided by the University of Heidelberg of the orbit of Kepler-432b (inner, red) in comparison to the orbit of Mercury around the Sun (outer, orange). The red dot in the middle indicates the position of the star around which the planet is orbiting. The size of the star is shown to scale, while the size of the planet has been magnified ten times for illustration purposes. (Graphic: Dr. Sabine Reffert)


Excerpt from foxnews.com/science


A rare planet has been discovered, and it doesn’t seem like a stop anyone would want to make on an intergalactic cruise. Found by two research teams independently of each other, Kepler-432b is extreme in its mass, density, and weather. Roughly the same size of Jupiter, the planet is also doomed- in 200 million years it will be consumed by its sun. “Kepler-432b is definitively a rarity among exoplanets around giant stars: it is a close-in gas-giant planet orbiting a star whose radius is 'quickly' increasing,” Davide Gandolfi, from the Landessternwarte Koenigstuhl (part of the Centre for Astronomy of the University of Heidelberg), told FoxNews.com. “The orbit of the planet has a radius of about 45 million kilometers [28 million miles] (as a reference point, the Earth-Sun distance is about 150 million kilometers [93.2 Million miles]), while most of the planets known to orbit giant stars have wider orbits. The stellar radius is already 3 million kilometers [almost 2 million miles] (i.e., about 4 times the Sun radius) and in less than 200 million years it will be large enough for the star to swallow up its planet.”

Gandolfi, a member of one of the research groups who discovered the rare planet, explains that much like Jupiter, Kepler-432b is a gas-giant celestial body composed mostly of hydrogen and helium, and is most likely to have a dense core that accounts for 6 percent or less of the planet’s mass. “The planet has a mass six times that of Jupiter, but is about the same size!” he says. “This means that it is not one of the largest planets yet discovered: it is one of the most massive!” The planet’s orbit brings it extremely close to its host star on some occasions, and very far away at others, which creates extreme seasonal changes. In its year - which lasts 52 Earth days - winters can get a little chilly and summers a bit balmy, to say the least. According to Gandolfi, “The highly eccentric orbit brings Kepler-432b at ‘only’ 24 million kilometers [15 million miles] from its host star, before taking it to about three times as far away. This creates large temperature excursions over the course of the planet year, which is of only 52 Earth days. During the winter season, the temperature on Kepler-432b drops down to 500 degrees Celsius [932 degrees Fahrenheit], whereas in summer it can goes up to nearly 1000 degrees Celsius [1832 degrees Fahrenheit].”

Then again, if you are crazy enough to visit Kepler-432b, you’d better do it fast. As stated before, its host star is set to swallow the planet whole in 200 million years, making the celestial body a rare find. “The paucity of close-in planets around giant stars is likely to be due to the fact that these planets have been already swallowed up by their host stars,” Gandolfi says. “Kepler-432b has been discovered ‘just in time before dinner!” The host star, which is red and possesses 1.35 times the mass of our sun, has partly exhausted the nuclear fuel in its core, and is slowly expanding, eventually growing large enough to swallow Kepler-432b. According to Gandolfi, this is a natural progression for all stars. “Stars first generate nuclear energy in their core via the fusion of Hydrogen into Helium,” he explained. “At this stage, their radii basically do not change much. This is because the outward thermal pressure produced by the nuclear fusion in the core is balanced by the inward pressure of gravitational collapse from the overlying layers. In other words, the nuclear power is the star pillar! Our Sun is currently ‘burning’ hydrogen in its core (please note that I used quotes: ‘burning’ does not mean a chemical reaction- we are talking about nuclear fusion reaction). However, this equilibrium between the two pressures does not last forever. Helium is heavier than hydrogen and tends to sink. The stellar core of the Kepler-432b's host star is currently depleted of hydrogen and it is mainly made of inert helium. The star generates thermal energy in a shell around the core through the nuclear fusion of hydrogen into helium. As a result of this, the star expands and cools down. This is why we call it ‘red giant’- the reddish color comes from the fact that the external layers of the atmosphere of the star are cooling down because they expand.”

Both research teams (the other was from the Max Planck Institute for Astronomy in Heidelberg) used Calar Alto Observatory’s 7.2- foot telescope in Andalucia, Spain. The planet was also studied by Landessternwarte Koenigstuhl researchers using the 8.5-foot Nordic Optical Telescope on La Palma, which is located in Spain’s Canary Islands.

View Article Here Read More

What Would It Be Like to Live on Mercury?


Mercury With Subtle Colors
Mercury's extreme temperatures and lack of an atmosphere would make it very difficult, if not impossible, for people to live on the planet. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington


Excerpt from  space.com
By Joseph Castro, Space.com Contributor


Have you ever wondered what it might be like to homestead on Mars or walk on the moons of Saturn? So did we. This is the first in Space.com's 12-part series on what it might be like to live on or near planets in our solar system, and beyond. Check back each week for the next space destination.
With its extreme temperature fluctuations, Mercury is not likely a planet that humans would ever want to colonize. But if we had the technology to survive on the planet closest to the sun, what would it be like to live there?

To date, only two spacecraft have visited Mercury. The first, Mariner 10, conducted a series of Mercury flybys in 1974, but the spacecraft only saw the lit half of the planet. NASA's MESSENGER spacecraft, on the other hand, conducted flybys and then entered Mercury's orbit — in March of 2013, images from the spacecraft allowed scientists to completely map the planet for the first time.



MESSENGER photos of Mercury show that the planet has water ice at its poles, which sit in permanent darkness. Mining this ice would be a good way to live off the land, but setting up bases at the poles might not be a good idea, said David Blewett, a participating scientist with the Messenger program.

"The polar regions would give you some respite from the strength of the sun on Mercury," Blewett told Space.com. "But, of course, it's really cold in those permanently shadowed areas where the ice is, and that presents its own challenge."

A better option, he said, would probably be to set up a home base not far from one of the ice caps, perhaps on a crater rim, and have a water mining operation at the pole.

Still, dealing with extreme temperatures on Mercury would likely be unavoidable: Daytime temperatures on the planet can reach 800 degrees Fahrenheit (430 degrees Celsius), while nighttime temperatures can drop down to minus 290 degrees Fahrenheit (minus 180 degrees Celsius).

Scientists once believed Mercury was tidally locked with the sun, meaning that one side of the planet always faces the sun because it takes the same amount of time to rotate around its axis as it does to revolve around the star. But we now know that Mercury's day lasts almost 59 Earth days and its year stretches for about 88 Earth days.

Interestingly, the sun has an odd path through the planet's sky over the course of Mercury's long day, because of the interaction between Mercury's spin rate and its highly elliptical orbit around the sun.

"It [the sun] rises in the east and moves across the sky, and then it pauses and moves backwards just a tad. It then resumes its motion towards the west and sunset," said Blewett, adding that the sun appears 2.5 times larger in Mercury's sky than it does in Earth's sky.

And during the day, Mercury's sky would appear black, not blue, because the planet has virtually no atmosphere to scatter the sun's light. "Here on Earth at sea level, the molecules of air are colliding billions of times per second," Blewett said. "But on Mercury, the atmosphere, or 'exosphere,' is so very rarefied that the atoms essentially never collide with other exosphere atoms." This lack of atmosphere also means that the stars wouldn't twinkle at night.



Without an atmosphere, Mercury doesn't have any weather; so while living on the planet, you wouldn't have to worry about devastating storms. And since the planet has no bodies of liquid water or active volcanoes, you'd be safe from tsunamis and eruptions.

But Mercury isn't devoid of natural disasters. "The surface is exposed to impacts of all sizes," Blewett said. It also may suffer from earthquakes due to compressive forces that are shrinking the planet (unlike Earth, Mercury doesn't have tectonic activity).

Mercury is about two-fifths the size of Earth, with a similar gravity to Mars, or about 38 percent of Earth's gravity. This means that you could jump three times as high on Mercury, and heavy objects would be easier to pick up, Blewett said. However, everything would still have the same mass and inertia, so you could be knocked over if someone threw a heavy object at you, he added.

Finally, you can forget about a smooth Skype call home: It takes at least 5 minutes for signals from Mercury to reach Earth, and vice versa.

View Article Here Read More

Astronomers search for missing brown dwarf star



Excerpt from sciencerecorder.com





Armed with one of the largest telescopes in the world, the aptly named Very Large Telescope at the ESO Observatory in Chile, astronomers are conducting a search for what they once were certain had to be a brown dwarf star. The only problem is that now the star seems to have vanished without evidence.

What happened? Brown dwarfs, compared to their better known red dwarf counterparts are significantly cooler, dimmer objects which at a glance bear more resemblance to planets than to other stars.

Although they release heat and bear a chemical composition similar to that of the sun, astronomers tend to refer to them as “failed stars,” since they are too small to set off any thermonuclear reactions within their cores. This particular vanishing dwarf was thought to be part of a double-star system, the V471 Tauri, located within the Taurus constellation, only 163 light years from Earth. Within this system, the stars orbit each other in 12 hour intervals, which causes the brightness to diminish every six hours, when one star crosses directly in front of the other. 



However, the timing of this eclipse never happened at an entirely predictable pace, leading the researchers to suspect that a brown dwarf’s gravitational pull was pushing on the stars and causing the lapse – it’s the only thing consistent with the minimal lapsing patterns. With the use of a new powerful camera called SPHERE, they set out to plot out the location of the brown dwarf, but found nothing where they predicted it would be. 

“This is how science works,” said Adam Hardy, the study’s lead author who remains undaunted by the road ahead. The new study was published this week by the journal, Astrophysical Journal Letters. “Observations with new technology can either confirm or, as in this case, disprove earlier ideas.”
Perhaps most intriguing is that while a brown dwarf appears to be hiding from them, the cluster it waxes influence over is among the brightest and largest of deep-sky objects visible in the evening sky.
The binary star system is found in what astronomers call the Hyades cluster, named for the nymphs of Greek mythology who are responsible for the rain.

View Article Here Read More

Why science is so hard to believe?

 
In the recent movie “Interstellar,” set in a futuristic, downtrodden America where NASA has been forced into hiding, school textbooks say the Apollo moon landings were faked.


Excerpt from 


There’s a scene in Stanley Kubrick’s comic masterpiece “Dr. Strangelove” in which Jack D. Ripper, an American general who’s gone rogue and ordered a nuclear attack on the Soviet Union, unspools his paranoid worldview — and the explanation for why he drinks “only distilled water, or rainwater, and only pure grain alcohol” — to Lionel Mandrake, a dizzy-with-anxiety group captain in the Royal Air Force.
Ripper: “Have you ever heard of a thing called fluoridation? Fluoridation of water?”
Mandrake: “Ah, yes, I have heard of that, Jack. Yes, yes.”Ripper: “Well, do you know what it is?”
Mandrake: “No. No, I don’t know what it is, no.”
Ripper: “Do you realize that fluoridation is the most monstrously conceived and dangerous communist plot we have ever had to face?” 

The movie came out in 1964, by which time the health benefits of fluoridation had been thoroughly established and anti-fluoridation conspiracy theories could be the stuff of comedy. Yet half a century later, fluoridation continues to incite fear and paranoia. In 2013, citizens in Portland, Ore., one of only a few major American cities that don’t fluoridate, blocked a plan by local officials to do so. Opponents didn’t like the idea of the government adding “chemicals” to their water. They claimed that fluoride could be harmful to human health.

Actually fluoride is a natural mineral that, in the weak concentrations used in public drinking-water systems, hardens tooth enamel and prevents tooth decay — a cheap and safe way to improve dental health for everyone, rich or poor, conscientious brushers or not. That’s the scientific and medical consensus.
To which some people in Portland, echoing anti-fluoridation activists around the world, reply: We don’t believe you.
We live in an age when all manner of scientific knowledge — from the safety of fluoride and vaccines to the reality of climate change — faces organized and often furious opposition. Empowered by their own sources of information and their own interpretations of research, doubters have declared war on the consensus of experts. There are so many of these controversies these days, you’d think a diabolical agency had put something in the water to make people argumentative.
Science doubt has become a pop-culture meme. In the recent movie “Interstellar,” set in a futuristic, downtrodden America where NASA has been forced into hiding, school textbooks say the Apollo moon landings were faked.


The debate about mandated vaccinations has the political world talking. A spike in measles cases nationwide has President Obama, lawmakers and even potential 2016 candidates weighing in on the vaccine controversy. (Pamela Kirkland/The Washington Post)
In a sense this is not surprising. Our lives are permeated by science and technology as never before. For many of us this new world is wondrous, comfortable and rich in rewards — but also more complicated and sometimes unnerving. We now face risks we can’t easily analyze.
We’re asked to accept, for example, that it’s safe to eat food containing genetically modified organisms (GMOs) because, the experts point out, there’s no evidence that it isn’t and no reason to believe that altering genes precisely in a lab is more dangerous than altering them wholesale through traditional breeding. But to some people, the very idea of transferring genes between species conjures up mad scientists running amok — and so, two centuries after Mary Shelley wrote “Frankenstein,” they talk about Frankenfood.
The world crackles with real and imaginary hazards, and distinguishing the former from the latter isn’t easy. Should we be afraid that the Ebola virus, which is spread only by direct contact with bodily fluids, will mutate into an airborne super-plague? The scientific consensus says that’s extremely unlikely: No virus has ever been observed to completely change its mode of transmission in humans, and there’s zero evidence that the latest strain of Ebola is any different. But Google “airborne Ebola” and you’ll enter a dystopia where this virus has almost supernatural powers, including the power to kill us all.
In this bewildering world we have to decide what to believe and how to act on that. In principle, that’s what science is for. “Science is not a body of facts,” says geophysicist Marcia McNutt, who once headed the U.S. Geological Survey and is now editor of Science, the prestigious journal. “Science is a method for deciding whether what we choose to believe has a basis in the laws of nature or not.”
The scientific method leads us to truths that are less than self-evident, often mind-blowing and sometimes hard to swallow. In the early 17th century, when Galileo claimed that the Earth spins on its axis and orbits the sun, he wasn’t just rejecting church doctrine. He was asking people to believe something that defied common sense — because it sure looks like the sun’s going around the Earth, and you can’t feel the Earth spinning. Galileo was put on trial and forced to recant. Two centuries later, Charles Darwin escaped that fate. But his idea that all life on Earth evolved from a primordial ancestor and that we humans are distant cousins of apes, whales and even deep-sea mollusks is still a big ask for a lot of people.
Even when we intellectually accept these precepts of science, we subconsciously cling to our intuitions — what researchers call our naive beliefs. A study by Andrew Shtulman of Occidental College showed that even students with an advanced science education had a hitch in their mental gait when asked to affirm or deny that humans are descended from sea animals and that the Earth goes around the sun. Both truths are counterintuitive. The students, even those who correctly marked “true,” were slower to answer those questions than questions about whether humans are descended from tree-dwelling creatures (also true but easier to grasp) and whether the moon goes around the Earth (also true but intuitive).
Shtulman’s research indicates that as we become scientifically literate, we repress our naive beliefs but never eliminate them entirely. They nest in our brains, chirping at us as we try to make sense of the world.
Most of us do that by relying on personal experience and anecdotes, on stories rather than statistics. We might get a prostate-specific antigen test, even though it’s no longer generally recommended, because it caught a close friend’s cancer — and we pay less attention to statistical evidence, painstakingly compiled through multiple studies, showing that the test rarely saves lives but triggers many unnecessary surgeries. Or we hear about a cluster of cancer cases in a town with a hazardous-waste dump, and we assume that pollution caused the cancers. Of course, just because two things happened together doesn’t mean one caused the other, and just because events are clustered doesn’t mean they’re not random. Yet we have trouble digesting randomness; our brains crave pattern and meaning.
Even for scientists, the scientific method is a hard discipline. They, too, are vulnerable to confirmation bias — the tendency to look for and see only evidence that confirms what they already believe. But unlike the rest of us, they submit their ideas to formal peer review before publishing them. Once the results are published, if they’re important enough, other scientists will try to reproduce them — and, being congenitally skeptical and competitive, will be very happy to announce that they don’t hold up. Scientific results are always provisional, susceptible to being overturned by some future experiment or observation. Scientists rarely proclaim an absolute truth or an absolute certainty. Uncertainty is inevitable at the frontiers of knowledge.
That provisional quality of science is another thing a lot of people have trouble with. To some climate-change skeptics, for example, the fact that a few scientists in the 1970s were worried (quite reasonably, it seemed at the time) about the possibility of a coming ice age is enough to discredit what is now the consensus of the world’s scientists: The planet’s surface temperature has risen by about 1.5 degrees Fahrenheit in the past 130 years, and human actions, including the burning of fossil fuels, are extremely likely to have been the dominant cause since the mid-20th century.
It’s clear that organizations funded in part by the fossil-fuel industry have deliberately tried to undermine the public’s understanding of the scientific consensus by promoting a few skeptics. The news media gives abundant attention to such mavericks, naysayers, professional controversialists and table thumpers. The media would also have you believe that science is full of shocking discoveries made by lone geniuses. Not so. The (boring) truth is that science usually advances incrementally, through the steady accretion of data and insights gathered by many people over many years. So it has with the consensus on climate change. That’s not about to go poof with the next thermometer reading.
But industry PR, however misleading, isn’t enough to explain why so many people reject the scientific consensus on global warming.
The “science communication problem,” as it’s blandly called by the scientists who study it, has yielded abundant new research into how people decide what to believe — and why they so often don’t accept the expert consensus. It’s not that they can’t grasp it, according to Dan Kahan of Yale University. In one study he asked 1,540 Americans, a representative sample, to rate the threat of climate change on a scale of zero to 10. Then he correlated that with the subjects’ science literacy. He found that higher literacy was associated with stronger views — at both ends of the spectrum. Science literacy promoted polarization on climate, not consensus. According to Kahan, that’s because people tend to use scientific knowledge to reinforce their worldviews.
Americans fall into two basic camps, Kahan says. Those with a more “egalitarian” and “communitarian” mind-set are generally suspicious of industry and apt to think it’s up to something dangerous that calls for government regulation; they’re likely to see the risks of climate change. In contrast, people with a “hierarchical” and “individualistic” mind-set respect leaders of industry and don’t like government interfering in their affairs; they’re apt to reject warnings about climate change, because they know what accepting them could lead to — some kind of tax or regulation to limit emissions.
In the United States, climate change has become a litmus test that identifies you as belonging to one or the other of these two antagonistic tribes. When we argue about it, Kahan says, we’re actually arguing about who we are, what our crowd is. We’re thinking: People like us believe this. People like that do not believe this.
Science appeals to our rational brain, but our beliefs are motivated largely by emotion, and the biggest motivation is remaining tight with our peers. “We’re all in high school. We’ve never left high school,” says Marcia McNutt. “People still have a need to fit in, and that need to fit in is so strong that local values and local opinions are always trumping science. And they will continue to trump science, especially when there is no clear downside to ignoring science.”
Meanwhile the Internet makes it easier than ever for science doubters to find their own information and experts. Gone are the days when a small number of powerful institutions — elite universities, encyclopedias and major news organizations — served as gatekeepers of scientific information. The Internet has democratized it, which is a good thing. But along with cable TV, the Web has also made it possible to live in a “filter bubble” that lets in only the information with which you already agree.
How to penetrate the bubble? How to convert science skeptics? Throwing more facts at them doesn’t help. Liz Neeley, who helps train scientists to be better communicators at an organization called Compass, says people need to hear from believers they can trust, who share their fundamental values. She has personal experience with this. Her father is a climate-change skeptic and gets most of his information on the issue from conservative media. In exasperation she finally confronted him: “Do you believe them or me?” She told him she believes the scientists who research climate change and knows many of them personally. “If you think I’m wrong,” she said, “then you’re telling me that you don’t trust me.” Her father’s stance on the issue softened. But it wasn’t the facts that did it.
If you’re a rationalist, there’s something a little dispiriting about all this. In Kahan’s descriptions of how we decide what to believe, what we decide sometimes sounds almost incidental. Those of us in the science-communication business are as tribal as anyone else, he told me. We believe in scientific ideas not because we have truly evaluated all the evidence but because we feel an affinity for the scientific community. When I mentioned to Kahan that I fully accept evolution, he said: “Believing in evolution is just a description about you. It’s not an account of how you reason.”
Maybe — except that evolution is real. Biology is incomprehensible without it. There aren’t really two sides to all these issues. Climate change is happening. Vaccines save lives. Being right does matter — and the science tribe has a long track record of getting things right in the end. Modern society is built on things it got right.
Doubting science also has consequences, as seen in recent weeks with the measles outbreak that began in California. The people who believe that vaccines cause autism — often well educated and affluent, by the way — are undermining “herd immunity” to such diseases as whooping cough and measles. The anti-vaccine movement has been going strong since a prestigious British medical journal, the Lancet, published a study in 1998 linking a common vaccine to autism. The journal later retracted the study, which was thoroughly discredited. But the notion of a vaccine-autism connection has been endorsed by celebrities and reinforced through the usual Internet filters. (Anti-vaccine activist and actress Jenny McCarthy famously said on “The Oprah Winfrey Show,” “The University of Google is where I got my degree from.”)
In the climate debate, the consequences of doubt are likely to be global and enduring. Climate-change skeptics in the United States have achieved their fundamental goal of halting legislative action to combat global warming. They haven’t had to win the debate on the merits; they’ve merely had to fog the room enough to keep laws governing greenhouse gas emissions from being enacted.
Some environmental activists want scientists to emerge from their ivory towers and get more involved in the policy battles. Any scientist going that route needs to do so carefully, says Liz Neeley. “That line between science communication and advocacy is very hard to step back from,” she says. In the debate over climate change, the central allegation of the skeptics is that the science saying it’s real and a serious threat is politically tinged, driven by environmental activism and not hard data. That’s not true, and it slanders honest scientists. But the claim becomes more likely to be seen as plausible if scientists go beyond their professional expertise and begin advocating specific policies.
It’s their very detachment, what you might call the cold-bloodedness of science, that makes science the killer app. It’s the way science tells us the truth rather than what we’d like the truth to be. Scientists can be as dogmatic as anyone else — but their dogma is always wilting in the hot glare of new research. In science it’s not a sin to change your mind when the evidence demands it. For some people, the tribe is more important than the truth; for the best scientists, the truth is more important than the tribe.

View Article Here Read More

ALMA uncovers stellar nurseries in the Sculptor Galaxy, 11.5 million light years from home



ALMA uncovers stellar nurseries in the Sculptor Galaxy, 11.5 million light years from home
The Sculptor Galaxy


Excerpt from sciencerecorder.com

Starburst galaxies are named for their ability to convert gasses rapidly into new stars, at an accelerated speed that can sometimes be 1,000 times more rapid than your average spiral galaxy, such as the Milky Way. Why the disparity? In order to further investigate the reason that some galaxies seem to “burst” into being, whereas others take the better part of a few billion years, an international team of astronomers analyzed a cluster of star-forming gas clouds in the heart of NGC 253 – the Sculptor Galaxy, with the aid of the Atacama Large Millimeter/submillimeter Array (ALMA). The Sculptor Galaxy is among starburst galaxies closest to the Milky Way.

“All stars form in dense clouds of dust and gas,” said Adam Leroy, in an interview with Astronomy magazine. Leroy is an astronomer at Ohio State University in Columbus. “Until now, however, scientists struggled to see exactly what was going on inside starburst galaxies that distinguished them from other star-forming regions.”

Therefore, Leroy and his colleagues turn to the ALMA which is capable of examining star changing structures even in systems as distant as Sculptor. Already, they have successfully charted distribution and movement of various molecules within several clouds located at the Sculptor Galaxy’s core.


Because NGC 253, which is disk-shaped, is in the stages of a very intense starburst and located approximately 11.5 million light-years from home, it is the perfect target for study. ALMA picks it up with remarkable precision and resolution, so much so that the team was able to isolate and identify ten different stellar ‘nurseries,’ in which stars were in the process of forming. To appreciate the magnitude of this feat, it would have been impossible with previous telescopes, which blurred the regions together into one glow. 

“There is a class of galaxies and parts of galaxies, we call them starbursts, where we know that gas is just plain better at forming stars,” said Leroy. “To understand why, we took one of the nearest such regions and pulled it apart — layer by layer — to see what makes the gas in these places so much more efficient at star formation.”


More importantly, they recognized the distribution of several 40 millimeter-wavelength “signatures,” that given off by various molecules at the center of Sculptor Galaxy, signaling that a number of conditions were responsible for the development of these stars. This accounts for the diversity of the states of different stars corresponding to where they are found in star-forming clouds. One important compound, all too familiar and unwelcome on Earth, carbon monoxide (CO), correlates with massive envelopes of gases that are less dense within the stellar nurseries. Others, such as hydrogen cyanide (HCN), were present in the more dense reaches of active star formation. The rarer the molecules, for example, H13CN and H13CO+, suggest regions that are even denser.


Indeed, when the data was compared, researchers found that the gas clouds of the Sculptor Galaxy were ten times denser than those found in spiral galaxies, suggesting that because the clouds are so tightly packed, they can form star clusters much more rapidly than the Milky Way. At the same time, they give us further insight as to how stars are born, showing us the physical changes along the way, allowing astronomers a working model to compare with our own galaxy. 


“These differences have wide-ranging implications for how galaxies grow and evolve,” concluded Leroy. “What we would ultimately like to know is whether a starburst like Sculptor produces not just more stars, but different types of stars than a galaxy like the Milky Way. ALMA is bringing us much closer to that goal.”

View Article Here Read More
Older posts Newer posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑