Tag: bound (page 2 of 7)

New Development in the Controversy of the ‘Yeti’ Hair Samples — Here’s the Latest



 In this undated photo made available by Britain's Channel 4 television of Oxford University genetics professor Bryan Sykes posing with a prepared DNA sample taken from  hair  from a Himalayan animal.  DNA testing is taking a bite out of the Bigfoot legend. After scientists analyzed more than 30 hair samples reportedly left behind by Bigfoot and other related beasts like Yeti and almasty, they found all of them came from more mundane animals like bears, wolves, cows and raccoons. In 2012, researchers at Oxford University and the Lausanne Museum of Zoology issued an open call asking museums, scientists and Bigfoot aficionados to share any samples they thought were from the mythical ape-like creatures. (AP/ Channel 4)
In this undated photo made available by Britain’s Channel 4 television of Oxford University genetics professor Bryan Sykes posing with a prepared DNA sample taken from hair from a Himalayan animal.



Excerpt from theblaze.com

A new study that re-analyzed so-called “yeti” hair samples from previous research that had identified them as belonging to an “anomalous ursid” might have disappointing news for those who thought the findings last year meant a “bigfoot” of sorts was still out there. Yet, the author of the original findings stands by his claims.

Research published in the journal ZooKeys found that the hair samples said to be from Central Asia and the Himalayas belong to a known species in those regions.

“We have concluded that there is no reason to believe that the two samples came from anything other than brown bears,” the authors wrote in the study abstract.


After scientists analyzed more than 30 hair samples reportedly left behind by Bigfoot and other related beasts like Yeti, they found all of them came from more mundane animals like bears, wolves, cows and raccoons. Two samples were said to have been from an “anomalous ursid,” but new analysis suggests that the samples were from brown bears. (AP/Channel 4)
These authors used mitochondrial 12S rRNA sequencing on the same samples that Oxford University’s Bryan Sykes and his fellow authors used in their study published last year. The issue Eliecer Guiterrez, a postdoctoral researcher at the Smithsonian’s National Museum of Natural History, and his colleagues found with Sykes research was that his team used a fragment of DNA.

“We made this discovery that basically that fragment of DNA is not informative to tell apart two species of bears: the brown bear and [modern-day Alaskan] polar bear,” Gutierrez told Live Science.

At the time of his 2014 study, Sykes et al. wrote “[...] it is important to bear in mind that absence of evidence is not evidence of absence and this survey cannot refute the existence of anomalous primates, neither has it found any evidence in support. […] The techniques described here put an end to decades of ambiguity about species identification of anomalous primate samples and set a rigorous standard against which to judge any future claims.”

And Sykes still holds his ground, despite the more recent findings.
“What mattered most to us was that these two hairs were definitely not from unknown primates,” Sykes told Live Science in light of the recent research. “The explanation by Gutierrez and [Ronald] Pine might be right, or it might not be.”

To NBC News, Sykes said that Gutierrez’ findings are “entirely statistical.”

“The only way forward, as I have repeatedly said, is to find a living bear that matches the 12S RNA and study fresh material from it,” he continued. “Which involves getting off your butt, not an activity I usually associate with desk-bound molecular taxonomists.”

Daniel Loxton, an editor for Junior Skeptic, which is produced by the Skeptics Society, told Live Science that people will continue to believe in and seek out yetis, bigfoots and the like, because they are”fascinated by monsters, and they’re fascinated by mysteries in general.”

Blake Smith, in a blog post for the Skeptics Society laid out the whole saga involving Sykes research and the more recent analysis by Guiterrez. Smith ultimately concluded that he’s “still convinced that Yeti and Bigfoot are not to be found in the forests and mountains of the Earth, but in the minds of people.”

View Article Here Read More

Earth’s address within a massive supercluster of 100,000 galaxies ~ Video





Excerpt from cnet.com


Astronomers have mapped the Milky Way's position to the outskirts of a supercluster of galaxies, newly dubbed Laniakea, meaning "Immense Heaven".

The distribution of galaxies throughout the universe is not more-or-less even; instead, galaxies tend to cluster together, bound together by the pull of each other's gravity. These groups can be a variety of sizes. The Milky Way Galaxy, for instance, is part of what is called the Local Group, which contains upwards of 54 galaxies, covering a diameter of 10 megalight-years (10 million light-years).

Click to zoom

But this Local Group is just a small part of a much, much bigger structure, which researchers at the University of Hawai'i Mānoa have now mapped in detail. Coming in at over 100,000 galaxies, the massive supercluster has been given the name Laniakea -- "immense heaven" in Hawaiian.
The new 3D map was created by examining the positions and movements of the 8000 closest galaxies to the Milky Way. After calculating which galaxies were being pulled away from us and which were being pulled towards us -- accounting for the universe's expansion -- the team, led by astronomer R. Brent Tully, was able to map the paths of galactic migration -- and define the boundaries of Laniakea.

Traditionally, the borders of galactic superclusters have been difficult to map, but studying the gravitational force acting on our neighbouring galaxies has provided some important clues. All objects inside Laniakea are being slowly but surely drawn to a single point -- a force known as the Great Attractor, a gravitational anomaly with a mass tens of thousands of times the mass of the Milky Way.

Everything that is being pulled towards the Great Attractor is part of Laniakea -- although it's possible that Laniakea itself might in turn be part of a structure that is larger still.

"We probably need to measure to another factor of three in distance to explain our local motion," Tully said. "We might find that we have to come up with another name for something larger than we're a part of -- we're entertaining that as a real possibility."

The full paper, "The Laniakea supercluster of galaxies", can be read online in the journal Nature.

View Article Here Read More

Ancient ‘Blue’ Mars Lost an Entire Ocean to Space


Artist impression of Mars ocean

Excerpt from news.discovery.com

Mars was once a small, wet and blue world, but over the past 4 billion years, Mars dried up and became the red dust bowl we know today.

But how much water did Mars possess? According to research published in the journal Science, the Martian northern hemisphere was likely covered in an ocean, covering a region of the approximate area as Earth’s Atlantic Ocean, plunging, in some places, to 1.6 kilometers (1 mile) deep.

“Our study provides a solid estimate of how much water Mars once had, by determining how much water was lost to space,” said Geronimo Villanueva, of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and lead author of the new paper, in an ESO news release. “With this work, we can better understand the history of water on Mars.”

Over a 6-year period, Villanueva and his team used the ESO’s Very Large Telescope (in Chile) and instruments at the W. M. Keck Observatory and the NASA Infrared Telescope Facility (both on Mauna Kea in Hawaii) to study the distribution of water molecules in the Martian atmosphere. By building a comprehensive map of water distribution and seasonal changes, they were able to arrive at this startling conclusion.

It is becoming clear that, over the aeons, Mars lost the majority of its atmosphere to space. That also goes for its water. Though large quantities of water were likely frozen below the surface as the atmosphere thinned and cooled, the water contained in an ocean of this size must have gone elsewhere — it must have also been lost to space.

This artist’s impression shows how Mars may have looked about four billion years ago. The young planet Mars would have had enough water to cover its entire surface in a liquid layer about 140 meters deep, but it is more likely that the liquid would have pooled to form an ocean occupying almost half of Mars’s northern hemisphere. 
The water in Earth’s oceans contains molecules of H2O, the familiar oxygen atom bound with 2 hydrogen atoms, and, in smaller quantities, the not-so-familiar HDO molecule. HDO is a type of water molecule that contains 1 hydrogen atom, 1 oxygen atom and 1 deuterium atom. The deuterium atom is an isotope of hydrogen; whereas hydrogen consists of 1 proton and an electron, deuterium consists of 1 proton, 1 neutron and 1 electron. Therefore, due to the extra neutron the deuterium contains, HDO molecules are slightly heavier than the regular H2O molecules.

Also known as “semi-heavy water,” HDO is less susceptible to being evaporated away and being lost to space, so logic dictates that if water is boiled (or sublimated) away on Mars, the H2O molecules will be preferentially lost to space whereas a higher proportion of HDO will be left behind.

By using powerful ground-based observatories, the researchers were able to determine the distribution of HDO molecules and the H2O molecules and compare their ratios to liquid water that is found in its natural state.

Of particular interest is Mars’ north and south poles where icecaps containing water and carbon dioxide ice persist to modern times. The water those icecaps contain is thought to document the evolution of water since the red planet’s wet Noachian period (approximately 3.7 billion years ago) to today. It turns out that the water measured in these polar regions is enriched with HDO by a factor of 7 when compared with water in Earth’s oceans. This, according to the study, indicates that Mars has lost a volume of water 6.5 times larger than the water currently contained within the modern-day icecaps.

Therefore, the volume of Mars’ early ocean must have been at least 20 million cubic kilometers, writes the news release.

Taking into account the Martian global terrain, most of the water would have been concentrated around the northern plains, a region dominated by low-lying land. An ancient ocean, with this estimate volume of water, would have covered 19 percent of the Martian globe, a significant area considering the Atlantic Ocean covers 17 percent of the Earth’s surface.

“With Mars losing that much water, the planet was very likely wet for a longer period of time than previously thought, suggesting the planet might have been habitable for longer,” said Michael Mumma, also of NASA’s Goddard Space Flight Center.

This estimate is likely on the low-side as Mars is thought to contain significant quantities of water ice below its surface — a fact that surveys such as this can be useful for pinpointing exactly where the remaining water may be hiding.

Ulli Kaeufl, of the European Southern Observatory and co-author of the paper, added: “I am again overwhelmed by how much power there is in remote sensing on other planets using astronomical telescopes: we found an ancient ocean more than 100 million kilometers away!”
Source: ESO

View Article Here Read More

New data that fundamental physics constants underlie life-enabling universe

Excerpt from spacedaily.com For nearly half a century, theoretical physicists have made a series of discoveries that certain constants in fundamental physics seem extraordinarily fine-tuned to allow for the emergence of a life-enabling universe.Thi...

View Article Here Read More

The (Not So) Curious Case of Galaxy IC 335

This odd-looking galaxy has recently become famous in the media, not for what it has but for what is missing!Excerpt from huffingtonpost.comA recent Hubble image of this galaxy shows it to be a star-filled galaxy with a flat shape not unlike our own M...

View Article Here Read More

The Future of Technology in 2015?




Excerpt from
cnet.com


The year gone by brought us more robots, worries about artificial intelligence, and difficult lessons on space travel. The big question: where's it all taking us?

Every year, we capture a little bit more of the future -- and yet the future insists on staying ever out of reach.
Consider space travel. Humans have been traveling beyond the atmosphere for more than 50 years now -- but aside from a few overnights on the moon four decades ago, we have yet to venture beyond low Earth orbit.
Or robots. They help build our cars and clean our kitchen floors, but no one would mistake a Kuka or a Roomba for the replicants in "Blade Runner." Siri, Cortana and Alexa, meanwhile, are bringing some personality to the gadgets in our pockets and our houses. Still, that's a long way from HAL or that lad David from the movie "A.I. Artificial Intelligence."
Self-driving cars? Still in low gear, and carrying some bureaucratic baggage that prevents them from ditching certain technology of yesteryear, like steering wheels.
And even when these sci-fi things arrive, will we embrace them? A Pew study earlier this year found that Americans are decidedly undecided. Among the poll respondents, 48 percent said they would like to take a ride in a driverless car, but 50 percent would not. And only 3 percent said they would like to own one.
"Despite their general optimism about the long-term impact of technological change," Aaron Smith of the Pew Research Center wrote in the report, "Americans express significant reservations about some of these potentially short-term developments" such as US airspace being opened to personal drones, robot caregivers for the elderly or wearable or implantable computing devices that would feed them information.
Let's take a look at how much of the future we grasped in 2014 and what we could gain in 2015.

Space travel: 'Space flight is hard'

In 2014, earthlings scored an unprecedented achievement in space exploration when the European Space Agency landed a spacecraft on a speeding comet, with the potential to learn more about the origins of life. No, Bruce Willis wasn't aboard. Nobody was. But when the 220-pound Philae lander, carried to its destination by the Rosetta orbiter, touched down on comet 67P/Churyumov-Gerasimenko on November 12, some 300 million miles from Earth, the celebration was well-earned.
A shadow quickly fell on the jubilation, however. Philae could not stick its first landing, bouncing into a darker corner of the comet where its solar panels would not receive enough sunlight to charge the lander's batteries. After two days and just a handful of initial readings sent home, it shut down. For good? Backers have allowed for a ray of hope as the comet passes closer to the sun in 2015. "I think within the team there is no doubt that [Philae] will wake up," lead lander scientist Jean-Pierre Bibring said in December. "And the question is OK, in what shape? My suspicion is we'll be in good shape."
The trip for NASA's New Horizons spacecraft has been much longer: 3 billion miles, all the way to Pluto and the edge of the solar system. Almost nine years after it left Earth, New Horizons in early December came out of hibernation to begin its mission: to explore "a new class of planets we've never seen, in a place we've never been before," said project scientist Hal Weaver. In January, it will begin taking photos and readings of Pluto, and by mid-July, when it swoops closest to Pluto, it will have sent back detailed information about the dwarf planet and its moon, en route to even deeper space.


Also in December, NASA made a first test spaceflight of its Orion capsule on a quick morning jaunt out and back, to just over 3,600 miles above Earth (or approximately 15 times higher than the International Space Station). The distance was trivial compared to those those traveled by Rosetta and New Horizons, and crewed missions won't begin till 2021, but the ambitions are great -- in the 2030s, Orion is expected to carry humans to Mars.
In late March 2015, two humans will head to the ISS to take up residence for a full year, in what would be a record sleepover in orbit. "If a mission to Mars is going to take a three-year round trip," said NASA astronaut Scott Kelly, who will be joined in the effort by Russia's Mikhail Kornienko, "we need to know better how our body and our physiology performs over durations longer than what we've previously on the space station investigated, which is six months."
There were more sobering moments, too, in 2014. In October, Virgin Galactic's sleek, experimental SpaceShipTwo, designed to carry deep-pocketed tourists into space, crashed in the Mojave Desert during a test flight, killing one test pilot and injuring the other. Virgin founder Richard Branson had hoped his vessel would make its first commercial flight by the end of this year or in early 2015, and what comes next remains to be seen. Branson, though, expressed optimism: "Space flight is hard -- but worth it," he said in a blog post shortly after the crash, and in a press conference, he vowed "We'll learn from this, and move forward together." Virgin Galactic could begin testing its next spaceship as soon as early 2015.
The crash of SpaceShipTwo came just a few days after the explosion of an Orbital Sciences rocket lofting an unmanned spacecraft with supplies bound for the International Space Station. And in July, Elon Musk's SpaceX had suffered the loss of one of its Falcon 9 rockets during a test flight. Musk intoned, via Twitter, that "rockets are tricky..."
Still, it was on the whole a good year for SpaceX. In May, it unveiled its first manned spacecraft, the Dragon V2, intended for trips to and from the space station, and in September, it won a $2.6 billion contract from NASA to become one of the first private companies (the other being Boeing) to ferry astronauts to the ISS, beginning as early as 2017. Oh, and SpaceX also has plans to launch microsatellites to establish low-cost Internet service around the globe, saying in November to expect an announcement about that in two to three months -- that is, early in 2015.
One more thing to watch for next year: another launch of the super-secret X-37B space place to do whatever it does during its marathon trips into orbit. The third spaceflight of an X-37B -- a robotic vehicle that, at 29 feet in length, looks like a miniature space shuttle -- ended in October after an astonishing 22 months circling the Earth, conducting "on-orbit experiments."

Self-driving cars: Asleep at what wheel?

Spacecraft aren't the only vehicles capable of autonomous travel -- increasingly, cars are, too. Automakers are toiling toward self-driving cars, and Elon Musk -- whose name comes up again and again when we talk about the near horizon for sci-fi tech -- says we're less than a decade away from capturing that aspect of the future. In October, speaking in his guise as founder of Tesla Motors, Musk said: "Like maybe five or six years from now I think we'll be able to achieve true autonomous driving where you could literally get in the car, go to sleep and wake up at your destination." (He also allowed that we should tack on a few years after that before government regulators give that technology their blessing.)
Prototype, unbound: Google's ride of the future, as it looks today Google
That comment came as Musk unveiled a new autopilot feature -- characterizing it as a sort of super cruise control, rather than actual autonomy -- for Tesla's existing line of electric cars. Every Model S manufactured since late September includes new sensor hardware to enable those autopilot capabilities (such as adaptive cruise control, lane-keeping assistance and automated parking), to be followed by an over-the-air software update to enable those features.
Google has long been working on its own robo-cars, and until this year, that meant taking existing models -- a Prius here, a Lexus there -- and buckling on extraneous gear. Then in May, the tech titan took the wraps off a completely new prototype that it had built from scratch. (In December, it showed off the first fully functional prototype.) It looked rather like a cartoon car, but the real news was that there was no steering wheel, gas pedal or brake pedal -- no need for human controls when software and sensors are there to do the work.
Or not so fast. In August, California's Department of Motor Vehicles declared that Google's test vehicles will need those manual controls after all -- for safety's sake. The company agreed to comply with the state's rules, which went into effect in September, when it began testing the cars on private roads in October.
Regardless of who's making your future robo-car, the vehicle is going to have to be not just smart, but actually thoughtful. It's not enough for the car to know how far it is from nearby cars or what the road conditions are. The machine may well have to make no-win decisions, just as human drivers sometimes do in instantaneous, life-and-death emergencies. "The car is calculating a lot of consequences of its actions," Chris Gerdes, an associate professor of mechanical engineering, said at the Web Summit conference in Dublin, Ireland, in November. "Should it hit the person without a helmet? The larger car or the smaller car?"

Robots: Legging it out

So when do the robots finally become our overlords? Probably not in 2015, but there's sure to be more hand-wringing about both the machines and the artificial intelligence that could -- someday -- make them a match for homo sapiens. At the moment, the threat seems more mundane: when do we lose our jobs to a robot?
The inquisitive folks at Pew took that very topic to nearly 1,900 experts, including Vint Cerf, vice president at Google; Web guru Tim Bray; Justin Reich of Harvard University's Berkman Center for Internet & Society; and Jonathan Grudin, principal researcher at Microsoft. According to the resulting report, published in August, the group was almost evenly split -- 48 percent thought it likely that, by 2025, robots and digital agents will have displaced significant numbers of blue- and white-collar workers, perhaps even to the point of breakdowns in the social order, while 52 percent "have faith that human ingenuity will create new jobs, industries, and ways to make a living, just as it has been doing since the dawn of the Industrial Revolution."


Still, for all of the startling skills that robots have acquired so far, they're often not all there yet. Here's some of what we saw from the robot world in 2014:
Teamwork: Researchers at the École Polytechnique Fédérale De Lausanne in May showed off their "Roombots," cog-like robotic balls that can join forces to, say, help a table move across a room or change its height.
A sense of balance: We don't know if Boston Dynamics' humanoid Atlas is ready to trim bonsai trees, but it has learned this much from "The Karate Kid" (the original from the 1980s) -- it can stand on cinder blocks and hold its balance in a crane stance while moving its arms up and down.
Catlike jumps: MIT's cheetah-bot gets higher marks for locomotion. Fed a new algorithm, it can run across a lawn and bound like a cat. And quietly, too. "Our robot can be silent and as efficient as animals. The only things you hear are the feet hitting the ground," MIT's Sangbae Kim, a professor of mechanical engineering, told MIT News. "This is kind of a new paradigm where we're controlling force in a highly dynamic situation. Any legged robot should be able to do this in the future."
Sign language: Toshiba's humanoid Aiko Chihira communicated in Japanese sign language at the CEATEC show in October. Her rudimentary skills, limited for the moment to simple messages such as signed greetings, are expected to blossom by 2020 into areas such as speech synthesis and speech recognition.
Dance skills: Robotic pole dancers? Tobit Software brought a pair, controllable by an Android smartphone, to the Cebit trade show in Germany in March. More lifelike was the animatronic sculpture at a gallery in New York that same month -- but what was up with that witch mask?
Emotional ambition: Eventually, we'll all have humanoid companions -- at least, that's always been one school of thought on our robotic future. One early candidate for that honor could be Pepper, from Softbank and Aldebaran Robotics, which say the 4-foot-tall Pepper is the first robot to read emotions. This emo-bot is expected to go on sale in Japan in February.

Ray guns: Ship shape

Damn the photon torpedoes, and full speed ahead. That could be the motto for the US Navy, which in 2014 deployed a prototype laser weapon -- just one -- aboard a vessel in the Persian Gulf. Through some three months of testing, the device "locked on and destroyed the targets we designated with near-instantaneous lethality," Rear Adm. Matthew L. Klunder, chief of naval research, said in a statement. Those targets were rather modest -- small objects mounted aboard a speeding small boat, a diminutive Scan Eagle unmanned aerial vehicle, and so on -- but the point was made: the laser weapon, operated by a controller like those used for video games, held up well, even in adverse conditions.

Artificial intelligence: Danger, Will Robinson?

What happens when robots and other smart machines can not only do, but also think? Will they appreciate us for all our quirky human high and low points, and learn to live with us? Or do they take a hard look at a species that's run its course and either turn us into natural resources, "Matrix"-style, or rain down destruction?
laser-weapon-system-on-uss-ponce.jpg
When the machines take over, will they be packing laser weapons like this one the US Navy just tried out? John F. Williams/US Navy
As we look ahead to the reboot of the "Terminator" film franchise in 2015, we can't help but recall some of the dire thoughts about artificial intelligence from two people high in the tech pantheon, the very busy Musk and the theoretically inclined Stephen Hawking.
Musk himself more than once in 2014 invoked the likes of the "Terminator" movies and the "scary outcomes" that make them such thrilling popcorn fare. Except that he sees a potentially scary reality evolving. In an interview with CNBC in June, he spoke of his investment in AI-minded companies like Vicarious and Deep Mind, saying: "I like to just keep an eye on what's going on with artificial intelligence. I think there is potentially a dangerous outcome."
He has put his anxieties into some particularly colorful phrases. In August, for instance, Musk tweeted that AI is "potentially more dangerous than nukes." And in October, he said this at a symposium at MIT: "With artificial intelligence, we are summoning the demon. ... You know all those stories where there's the guy with the pentagram and the holy water and he's like... yeah, he's sure he can control the demon, [but] it doesn't work out."
Musk has a kindred spirit in Stephen Hawking. The physicist allowed in May that AI could be the "biggest event in human history," and not necessarily in a good way. A month later, he was telling John Oliver, on HBO's "Last Week Tonight," that "artificial intelligence could be a real danger in the not too distant future." How so? "It could design improvements to itself and outsmart us all."
But Google's Eric Schmidt, is having none of that pessimism. At a summit on innovation in December, the executive chairman of the far-thinking tech titan -- which in October teamed up with Oxford University to speed up research on artificial intelligence -- said that while our worries may be natural, "they're also misguided."

View Article Here Read More

Top 6 tips for using ordinary binoculars for stargazing




Excerpt from earthsky.org


Admit it.  You’ve probably got a pair of binoculars lying around your house somewhere. They may be perfect – that’s right, perfect – for beginning stargazing. Follow the links below to learn more about the best deal around for people who want to get acquainted with the night sky: a pair of ordinary binoculars.
1. Binoculars are a better place to start than telescopes
2. Start with a small, easy-to-use size
3. First, view the moon with binoculars.
4. Move on to viewing planets with binoculars.
5. Use your binoculars to explore inside our Milky Way.
6. Use your binoculars to peer beyond the Milky Way.

1. Binoculars are a better place to start than telescopes. The fact is that most people who think they want to buy a telescope would be better off using binoculars for a year or so instead.  That’s because first-time telescope users often find themselves completely confused – and ultimately put off – by the dual tasks of learning the use a complicated piece of equipment (the ‘scope) while at the same time learning to navigate an unknown realm (the night sky).
Beginning stargazers often find that an ordinary pair of binoculars – available from any discount store – can give them the experience they’re looking for.  After all, in astronomy, magnification and light-gathering power let you see more of what’s up there.  Even a moderate form of power, like those provided by a pair of 7×50 binoculars, reveals 7 times as much information as the unaided eye can see.

You also need to know where to look. Many people start with a planisphere as they begin their journey making friends with the stars. You can purchase a planisphere at the EarthSky store. Also consider our Astronomy Kit, which has a booklet on what you can see with your binoculars.

2. Start with a small, easy-to-use size.  Don’t buy a huge pair of binoculars to start with! Unless you mount them on a tripod, they’ll shake and make your view of the heavens shakey, too. The video above – from ExpertVillage – does a good job summing up what you want. And in case you don’t want to watch the video, the answer is that 7X50 binoculars are optimum for budding astronomers.  You can see a lot, and you can hold them steadily enough that jitters don’t spoil your view of the sky.  Plus they’re very useful for daylight pursuits, like birdwatching. If 7X50s are too big for you – or if you want binoculars for a child – try 7X35s.

February 24, 2014 moon with earthshine by Greg Diesel Landscape Photography.
February 24, 2014 moon with earthshine by Greg Diesel Landscape Photography.

3. First, view the moon with binoculars. When you start to stargaze, you’ll want to watch the phase of the moon carefully. If you want to see deep-sky objects inside our Milky Way galaxy – or outside the galaxy – you’ll want to avoid the moon. But the moon itself is a perfect target for beginning astronomers, armed with binoculars. Hint: the best time to observe the moon is in twilight. Then the glare of the moon is not so great, and you’ll see more detail.

You’ll want to start your moon-gazing when the moon is just past new – and visible as a waxing crescent in the western sky after sunset. At such times, you’ll have a beautiful view of earthshine on the moon.  This eerie glow on the moon’s darkened portion is really light reflected from Earth onto the moon’s surface.  Be sure to turn your binoculars on the moon at these times to enhance the view. 
Each month, as the moon goes through its regular phases, you can see the line of sunrise and sunset on the moon progress across the moon’s face. That’s just the line between light and dark on the moon. This line between the day and night sides of the moon is called the terminator line.  The best place to look at the moon from Earth – using your binoculars – is along the terminator line. The sun angle is very low in this twilight zone, just as the sun is low in our sky around earthly twilight.  So, along the terminator on the moon, lunar features cast long shadows in sharp relief.

You can also look in on the gray blotches on the moon called maria, named when early astronomers thought these lunar features were seas.  The maria are not seas, of course, and instead they’re now thought to have formed 3.5 billion years ago when asteroid-sized rocks hit the moon so hard that lava percolated up through cracks in the lunar crust and flooded the impact basins. These lava plains cooled and eventually formed the gray seas we see today.

The white highlands, nestled between the maria, are older terrain pockmarked by thousands of craters that formed over the eons. Some of the larger craters are visible in binoculars. One of them, Tycho, at the six o’clock position on the moon, emanates long swatches of white rays for hundreds of miles over the adjacent highlands. This is material kicked out during the Tycho impact 2.5 million years ago.

View Larger. Photo of Jupiter's moons by Carl Galloway. Thank you Carl! The four major moons of Jupiter - Io, Europa, Ganymede and Callisto - are easily seen through a low-powered telescope. Click here for a chart of Jupiter's moons
Photo of Jupiter’s moons by Earthsky Facebook friend Carl Galloway. Thank you Carl! The four major moons of Jupiter are called Io, Europa, Ganymede and Callisto. This is a telescopic view, but you can glimpse one, two or more moons through your binoculars, too.


4. Move on to viewing planets with binoculars. Here’s the deal about planets.  They move around, apart from the fixed stars.  They are wanderers, right?

You can use our EarthSky Tonight page to locate planets visible around now.  Notice if any planets are mentioned in the calendar on the Tonight page, and if so click on that day’s link.  On our Tonight page, we feature planets on days when they’re easily identifiable for some reason – for example, when a planet is near the moon.  So our Tonight page calendar can help you come to know the planets, and, as you’re learning to identify them, keep your binoculars very handy. Binoculars will enhance your view of a planet near the moon, for example, or two planets near each other in the twilight sky. They add a lot to the fun!

Below, you’ll find some more simple ideas on how to view planets with your binoculars.

Mercury and Venus. These are both inner planets.  They orbit the sun closer than Earth’s orbit.  And for that reason, both Mercury and Venus show phases as seen from Earth at certain times in their orbit – a few days before or after the planet passes between the sun and Earth.  At such times,  turn your binoculars on Mercury or Venus. Good optical quality helps here, but you should be able to see them in a crescent phase. Tip: Venus is so bright that its glare will overwhelm the view. Try looking in twilight instead of true darkness.

Mars. Mars – the Red Planet – really does look red, and using binoculars will intensify the color of this object (or of any colored star). Mars also moves rapidly in front of the stars, and it’s fun to aim your binoculars in its direction when it’s passing near another bright star or planet.

Jupiter. Now on to the real action!  Jupiter is a great binocular target, even for beginners.   If you are sure to hold your binoculars steadily as you peer at this bright planet,  you should see four bright points of light near it.  These are the Galilean Satellites – four moons gleaned through one of the first telescopes ever made, by the Italian astronomer Galileo. Note how their relative positions change from night to night as each moon moves around Jupiter in its own orbit.

Saturn.Although a small telescope is needed to see Saturn’s rings, you can use your binoculars to see Saturn’s beautiful golden color.  Experienced observers sometimes glimpse Saturn’s largest moon Titan with binoculars.  Also, good-quality high-powered binoculars – mounted on a tripod – will show you that Saturn is not round.  The rings give it an elliptical shape.

Uranus and Neptune. Some planets are squarely binocular and telescope targets. If you’re armed with a finder chart, two of them, Uranus and Neptune, are easy to spot in binoculars. Uranus might even look greenish, thanks to methane in the planet’s atmosphere. Once a year, Uranus is barely bright enough to glimpse with the unaided eye . . . use binoculars to find it first. Distant Neptune will always look like a star, even though it has an atmosphere practically identical to Uranus.

There are still other denizens of the solar system you can capture through binocs. Look for the occasional comet, which appears as a fuzzy blob of light. Then there are the asteroids – fully 12 of them can be followed with binoculars when they are at their brightest. Because an asteroid looks star-like, the secret to confirming its presence is to sketch a star field through which it’s passing. Do this over subsequent nights; the star that changes position relative to the others is our solar system interloper.

Milky Way Galaxy arching over a Joshua tree

Pleiades star cluster, also known as the Seven Sisters
Pleiades star cluster, also known as the Seven Sisters





5. Use your binoculars to explore inside our Milky Way.  Binoculars can introduce you to many members of our home galaxy. A good place to start is with star clusters that are close to Earth. They cover a larger area of the sky than other, more distant clusters usually glimpsed through a telescope.

Beginning each autumn and into the spring, look for a tiny dipper-like cluster of stars called the Pleiades.  The cluster – sometimes also called the Seven Sisters – is noticeable for being small yet distinctively dipper-like. While most people say they see only six stars here with the unaided eye, binoculars reveal many more stars, plus a dainty chain of stars extending off to one side. The Pleiades star cluster is looks big and distinctive because it’s relatively close – about 400 light years from Earth. This dipper-shaped cluster is a true cluster of stars in space.  Its members were born around the same time and are still bound by gravity.  These stars are very young, on the order of 20 million years old, in contrast to the roughly five billion years for our sun.

Stars in a cluster all formed from the same gas cloud. You can also see what the Pleiades might have like in a primordial state, by shifting your gaze to the prominent constellation Orion the Hunter. Look for Orion’s sword stars, just below his prominent belt stars. If the night is crisp and clear, and you’re away from urban streetlight glare, unaided eyes will show that the sword isn’t entirely composed of stars. Binoculars show a steady patch of glowing gas where, right at this moment, a star cluster is being born. It’s called the Orion Nebula. A summertime counterpart is the Lagoon Nebula, in Sagittarius the Archer.

With star factories like the Orion Nebula, we aren’t really seeing the young stars themselves. They are buried deep within the nebula, bathing the gas cloud with ultraviolet radiation and making it glow. In a few tens of thousands of years, stellar winds from these young, energetic stars will blow away their gaseous cocoons to reveal a newly minted star cluster.

Scan along the Milky Way to see still more sights that hint at our home galaxy’s complexity. First, there’s the Milky Way glow itself; just a casual glance through binoculars will reveal that it is still more stars we can’t resolve with our eyes . . . hundreds of thousands of them. Periodically, while scanning, you might sweep past what appears to be blob-like, black voids in the stellar sheen. These are dark, non-glowing pockets of gas and dust that we see silhouetted against the stellar backdrop. This is the stuff of future star and solar systems, just waiting around to coalesce into new suns.

Andromeda Galaxy from Chris Levitan Photography.
Andromeda Galaxy from Chris Levitan Photography.

Many people use the M- or W-shaped constellation Cassiopeia to find the Andromeda Galaxy.  See how the star Schedar points to the galaxy?  Click here to expand image.
Many people use the M- or W-shaped constellation Cassiopeia to find the Andromeda Galaxy. See how the star Schedar points to the galaxy?


6. Use your binoculars to view beyond the Milky Way.  Let’s leap out of our galaxy for the final stop in our binocular tour. Throughout fall and winter, she reigns high in the sky during northern hemisphere autumns and winters: Andromeda the Maiden. Centered in the star pattern is an oval patch of light, readily visible to the unaided eye away from urban lights. Binoculars will show it even better.

It’s a whole other galaxy like our own, shining across the vastness of intergalactic space. Light from the Andromeda Galaxy has traveled so far that it’s taken more than 2 million years to reach us.
Two smaller companions visible through binoculars on a dark, transparent night are the Andromeda Galaxy’s version of our Milky Way’s Magellanic Clouds. These small, orbiting, irregularly-shaped galaxies that will eventually be torn apart by their parent galaxy’s gravity.

Such sights, from lunar wastelands to the glow of a nearby island universe, are all within reach of a pair of handheld optics, really small telescopes in their own right: your binoculars.

John Shibley wrote the original draft of this article, years ago, and we’ve been expanding it and updating it ever since. Thanks, John!
Bottom line: For beginning stargazers, there’s no better tool than an ordinary pair of binoculars. This post tells you why, explains what size to get, and gives you a rundown on some of the coolest binoculars sights out there: the moon, the planets, inside the Milky Way, and beyond. Have fun!

View Article Here Read More

The New American Dream ~ The Case for Colonizing Mars




Excerpt from Ad Astra

by Robert Zubrin


Mars Is The New World

Among extraterrestrial bodies in our solar system, Mars is singular in that it possesses all the raw materials required to support not only life, but a new branch of human civilization. This uniqueness is illustrated most clearly if we contrast Mars with the Earth's Moon, the most frequently cited alternative location for extraterrestrial human colonization.

In contrast to the Moon, Mars is rich in carbon, nitrogen, hydrogen and oxygen, all in biologically readily accessible forms such as carbon dioxide gas, nitrogen gas, and water ice and permafrost. Carbon, nitrogen, and hydrogen are only present on the Moon in parts per million quantities, much like gold in seawater. Oxygen is abundant on the Moon, but only in tightly bound oxides such as silicon dioxide (SiO2), ferrous oxide (Fe2O3), magnesium oxide (MgO), and aluminum oxide (Al2O3), which require very high energy processes to reduce.

The Moon is also deficient in about half the metals of interest to industrial society (copper, for example), as well as many other elements of interest such as sulfur and phosphorus. Mars has every required element in abundance. Moreover, on Mars, as on Earth, hydrologic and volcanic processes have occurred that are likely to have consolidated various elements into local concentrations of high-grade mineral ore. Indeed, the geologic history of Mars has been compared to that of Africa, with very optimistic inferences as to its mineral wealth implied as a corollary. In contrast, the Moon has had virtually no history of water or volcanic action, with the result that it is basically composed of trash rocks with very little differentiation into ores that represent useful concentrations of anything interesting.

You can generate power on either the Moon or Mars with solar panels, and here the advantages of the Moon's clearer skies and closer proximity to the Sun than Mars roughly balances the disadvantage of large energy storage requirements created by the Moon's 28-day light-dark cycle. But if you wish to manufacture solar panels, so as to create a self-expanding power base, Mars holds an enormous advantage, as only Mars possesses the large supplies of carbon and hydrogen needed to produce the pure silicon required for producing photovoltaic panels and other electronics. In addition, Mars has the potential for wind-generated power while the Moon clearly does not. But both solar and wind offer relatively modest power potential — tens or at most hundreds of kilowatts here or there. To create a vibrant civilization you need a richer power base, and this Mars has both in the short and medium term in the form of its geothermal power resources, which offer potential for large numbers of locally created electricity generating stations in the 10 MW (10,000 kilowatt) class. In the long-term, Mars will enjoy a power-rich economy based upon exploitation of its large domestic resources of deuterium fuel for fusion reactors. Deuterium is five times more common on Mars than it is on Earth, and tens of thousands of times more common on Mars than on the Moon.

But the biggest problem with the Moon, as with all other airless planetary bodies and proposed artificial free-space colonies, is that sunlight is not available in a form useful for growing crops. A single acre of plants on Earth requires four megawatts of sunlight power, a square kilometer needs 1,000 MW. The entire world put together does not produce enough electrical power to illuminate the farms of the state of Rhode Island, that agricultural giant. Growing crops with electrically generated light is just economically hopeless. But you can't use natural sunlight on the Moon or any other airless body in space unless you put walls on the greenhouse thick enough to shield out solar flares, a requirement that enormously increases the expense of creating cropland. Even if you did that, it wouldn't do you any good on the Moon, because plants won't grow in a light/dark cycle lasting 28 days.

But on Mars there is an atmosphere thick enough to protect crops grown on the surface from solar flare. Therefore, thin-walled inflatable plastic greenhouses protected by unpressurized UV-resistant hard-plastic shield domes can be used to rapidly create cropland on the surface. Even without the problems of solar flares and month-long diurnal cycle, such simple greenhouses would be impractical on the Moon as they would create unbearably high temperatures. On Mars, in contrast, the strong greenhouse effect created by such domes would be precisely what is necessary to produce a temperate climate inside. Such domes up to 50 meters in diameter are light enough to be transported from Earth initially, and later on they can be manufactured on Mars out of indigenous materials. Because all the resources to make plastics exist on Mars, networks of such 50- to 100-meter domes could be rapidly manufactured and deployed, opening up large areas of the surface to both shirtsleeve human habitation and agriculture. That's just the beginning, because it will eventually be possible for humans to substantially thicken Mars' atmosphere by forcing the regolith to outgas its contents through a deliberate program of artificially induced global warming. Once that has been accomplished, the habitation domes could be virtually any size, as they would not have to sustain a pressure differential between their interior and exterior. In fact, once that has been done, it will be possible to raise specially bred crops outside the domes.

The point to be made is that unlike colonists on any known extraterrestrial body, Martian colonists will be able to live on the surface, not in tunnels, and move about freely and grow crops in the light of day. Mars is a place where humans can live and multiply to large numbers, supporting themselves with products of every description made out of indigenous materials. Mars is thus a place where an actual civilization, not just a mining or scientific outpost, can be developed. And significantly for interplanetary commerce, Mars and Earth are the only two locations in the solar system where humans will be able to grow crops for export.

Interplanetary Commerce

Mars is the best target for colonization in the solar system because it has by far the greatest potential for self-sufficiency. Nevertheless, even with optimistic extrapolation of robotic manufacturing techniques, Mars will not have the division of labor required to make it fully self-sufficient until its population numbers in the millions. Thus, for decades and perhaps longer, it will be necessary, and forever desirable, for Mars to be able to import specialized manufactured goods from Earth. These goods can be fairly limited in mass, as only small portions (by weight) of even very high-tech goods are actually complex. Nevertheless, these smaller sophisticated items will have to be paid for, and the high costs of Earth-launch and interplanetary transport will greatly increase their price. What can Mars possibly export back to Earth in return?
It is this question that has caused many to incorrectly deem Mars colonization intractable, or at least inferior in prospect to the Moon.

For example, much has been made of the fact that the Moon has indigenous supplies of helium-3, an isotope not found on Earth and which could be of considerable value as a fuel for second generation thermonuclear fusion reactors. Mars has no known helium-3 resources. On the other hand, because of its complex geologic history, Mars may have concentrated mineral ores, with much greater concentrations of precious metal ores readily available than is currently the case on Earth — because the terrestrial ores have been heavily scavenged by humans for the past 5,000 years. If concentrated supplies of metals of equal or greater value than silver (such as germanium, hafnium, lanthanum, cerium, rhenium, samarium, gallium, gadolinium, gold, palladium, iridium, rubidium, platinum, rhodium, europium, and a host of others) were available on Mars, they could potentially be transported back to Earth for a substantial profit. Reusable Mars-surface based single-stage-to-orbit vehicles would haul cargoes to Mars orbit for transportation to Earth via either cheap expendable chemical stages manufactured on Mars or reusable cycling solar or magnetic sail-powered interplanetary spacecraft. The existence of such Martian precious metal ores, however, is still hypothetical.

But there is one commercial resource that is known to exist ubiquitously on Mars in large amount — deuterium. Deuterium, the heavy isotope of hydrogen, occurs as 166 out of every million hydrogen atoms on Earth, but comprises 833 out of every million hydrogen atoms on Mars. Deuterium is the key fuel not only for both first and second generation fusion reactors, but it is also an essential material needed by the nuclear power industry today. Even with cheap power, deuterium is very expensive; its current market value on Earth is about $10,000 per kilogram, roughly fifty times as valuable as silver or 70% as valuable as gold. This is in today's pre-fusion economy. Once fusion reactors go into widespread use deuterium prices will increase. All the in-situ chemical processes required to produce the fuel, oxygen, and plastics necessary to run a Mars settlement require water electrolysis as an intermediate step. As a by product of these operations, millions, perhaps billions, of dollars worth of deuterium will be produced.

Ideas may be another possible export for Martian colonists. Just as the labor shortage prevalent in colonial and nineteenth century America drove the creation of "Yankee ingenuity's" flood of inventions, so the conditions of extreme labor shortage combined with a technological culture that shuns impractical legislative constraints against innovation will tend to drive Martian ingenuity to produce wave after wave of invention in energy production, automation and robotics, biotechnology, and other areas. These inventions, licensed on Earth, could finance Mars even as they revolutionize and advance terrestrial living standards as forcefully as nineteenth century American invention changed Europe and ultimately the rest of the world as well.

Inventions produced as a matter of necessity by a practical intellectual culture stressed by frontier conditions can make Mars rich, but invention and direct export to Earth are not the only ways that Martians will be able to make a fortune. The other route is via trade to the asteroid belt, the band of small, mineral-rich bodies lying between the orbits of Mars and Jupiter. There are about 5,000 asteroids known today, of which about 98% are in the "Main Belt" lying between Mars and Jupiter, with an average distance from the Sun of about 2.7 astronomical units, or AU. (The Earth is 1.0 AU from the Sun.) Of the remaining two percent known as the near-Earth asteroids, about 90% orbit closer to Mars than to the Earth. Collectively, these asteroids represent an enormous stockpile of mineral wealth in the form of platinum group and other valuable metals.


Historical Analogies

The primary analogy I wish to draw is that Mars is to the new age of exploration as North America was to the last. The Earth's Moon, close to the metropolitan planet but impoverished in resources, compares to Greenland. Other destinations, such as the Main Belt asteroids, may be rich in potential future exports to Earth but lack the preconditions for the creation of a fully developed indigenous society; these compare to the West Indies. Only Mars has the full set of resources required to develop a native civilization, and only Mars is a viable target for true colonization. Like America in its relationship to Britain and the West Indies, Mars has a positional advantage that will allow it to participate in a useful way to support extractive activities on behalf of Earth in the asteroid belt and elsewhere.

But despite the shortsighted calculations of eighteenth-century European statesmen and financiers, the true value of America never was as a logistical support base for West Indies sugar and spice trade, inland fur trade, or as a potential market for manufactured goods. The true value of America was as the future home for a new branch of human civilization, one that as a combined result of its humanistic antecedents and its frontier conditions was able to develop into the most powerful engine for human progress and economic growth the world had ever seen. The wealth of America was in fact that she could support people, and that the right kind of people chose to go to her. People create wealth. People are wealth and power. Every feature of Frontier American life that acted to create a practical can-do culture of innovating people will apply to Mars a hundred-fold.

Mars is a harsher place than any on Earth. But provided one can survive the regimen, it is the toughest schools that are the best. The Martians shall do well.



Robert Zubrin is former Chairman of the National Space Society, President of the Mars Society, and author of The Case For Mars: The Plan to Settle the Red Planet and Why We Must.

View Article Here Read More

Homeless Stars? Well, Galaxy-less Stars Anyway ~ Greg Giles


Lonesome Stars
Time-lapse photograph of the CIBER rocket launch, taken from NASA’s Wallops Flight Facility in Virginia

In Friday’s issue of the journal Science, conclusions from the Cosmic Infrared Background Experiment or CIBER, suggest that as many as half of all stars in our universe may lie outside the home of galaxies. Not visible through Earth-bound telescopes due to their faint glow, these lone stars may be the points that connect galaxies together in a far spanning web of light.   

These 'homeless' stars are believed by astronomers to have been evicted by their galaxies by mergers and collisions.

NASA program scientist Michael Garcia said this dim glow between galaxies is as bright as all the known galaxies combined, and is redefining previous understandings of galactic structure. Instead of being defined by sharpened borders, galaxies may span further outward, thinning like a morning mist over a darkened pond.  
Greg Giles



Read more here: http://www.bellinghamherald.com/2014/11/06/3958751/half-of-all-stars-may-lie-outside.html?sp=/99/101/235/#storylink=cpy

View Article Here Read More

Richard Branson Promises His Family Will Be First Galactic Spaceship Customers

Space adventure for the people, albeit very wealthy people, pioneer Richard Branson is not about to back down from his space tourism program. Photo AAPRichard Branson, putting his money where his mouth is, or at least the welfare of his family and hi...

View Article Here Read More

Branson vows to find out cause of spacecraft crash




Excerpt from
sfgate.com 

MOJAVE, Calif. (AP) — Billionaire Virgin Galactic founder Richard Branson vowed Saturday to find out what caused the crash of his prototype space tourism craft that killed one of two test pilots, adding that while he remains committed to civilian space travel "we are not going to push on blindly."

In grim remarks at the Mojave Air and Space Port, where the craft known as SpaceShipTwo was under development, Branson gave no details of Friday's accident and deferred to the National Transportation Safety Board, whose team had just arrived.


"We are determined to find out what went wrong," he said, asserting that safety has always been the top priority of the program that envisions taking wealthy tourists six at a time to the edge of space for a brief experience of weightlessness and a view of Earth below.

"Yesterday, we fell short," he said. "We'll now comprehensively assess the results of the crash and are determined to learn from this and move forward."

He also criticized early speculation about crash causes. "To be honest, I find it slightly irresponsible that people who know nothing about what they're saying can be saying things before the NTSB makes their comments."

The pilot killed in the test flight was identified Saturday as Michael Tyner Alsbury, 39, of nearby Tehachapi. The surviving pilot is Peter Siebold, 43, who parachuted to safety and was hospitalized.
Both worked for Scaled Composites, the company developing the spaceship for Virgin Galactic. Scaled Composite said Alsbury was the co-pilot for the test flight. Siebold, who was piloting SpaceShipTwo, "is alert and talking with his family and doctors," the company said in a statement.

More than a dozen investigators in a range of specialties were forming teams to examine the crash site, collect data and interview witnesses, NTSB Acting Chairman Christopher A. Hart told a press conference at Mojave Air and Space Port.

"This will be the first time we have been in the lead of a space launch (accident) that involved persons onboard," said Hart, noting that the NTSB did participate in investigations of the Challenger and Columbia space shuttle disasters.

Virgin Galactic — owned by Branson's Virgin Group and Aabar Investments PJS of Abu Dhabi — plans to fly passengers to altitudes more than 62 miles above Earth. The company sells seats on each prospective journey for $250,000.

The company says that "future astronauts," as it calls customers, include Stephen Hawking, Justin Bieber, Ashton Kutcher and Russell Brand. The company reports receiving $90 million from about 700 prospective passengers.

On Saturday, Branson said none of that money has been spent and that anyone who wanted a refund could get it. However, he said, no one has asked, and instead someone signed up on the day of the accident in a show of support.


Friday's flight marked the 55th for SpaceShipTwo, which was intended to be the first of a fleet of craft. This was only the fourth flight to include a brief rocket firing. The rocket fires after the spacecraft is released from the underside of a larger carrying plane. During other flights, the craft either was not released from its mother ship or functioned as a glider after release.

The NTSB investigators were expected to head to an area about 20 miles from the Mojave airfield where debris from SpaceShipTwo fell over a wide area of uninhabited desert Friday morning. The spacecraft broke up after being released from a carrier aircraft at high altitude, according to Ken Brown, a photographer who witnessed the accident.

Friday's accident was the second this week involving private space flight. On Tuesday, an unmanned commercial supply rocket bound for the International Space Station exploded moments after liftoff in Virginia.

SpaceShipTwo is based on aerospace design maverick Burt Rutan's award-winning SpaceShipOne prototype, which became the first privately financed manned rocket to reach space in 2004. Three people died in a blast at the Mojave Air and Space Port in 2007 while testing a rocket motor for SpaceShipTwo.

View Article Here Read More

Our Milky Way strips nearby galaxies of star-forming hydrogen


 Artist's impression of the Milky Way. Its hot halo appears to be stripping away the star-forming atomic hydrogen from its companion dwarf spheroidal galaxies.  Image credit: NRAO/AUI/NSF
Artist’s impression of the Milky Way. Its hot halo appears to be stripping away the star-forming atomic hydrogen from its companion dwarf spheroidal galaxies. Image credit: NRAO/AUI/NSF

Excerpt from
earthsky.org

Astronomers have discovered that our nearest galactic neighbors are devoid of star-forming gas, and that our Milky Way is to blame.

New observations by large radio telescopes reveal that within a well-defined boundary around our galaxy, dwarf galaxies are completely devoid of hydrogen gas. Beyond this point, dwarf galaxies are teeming with star-forming material. 

The Milky Way galaxy is actually the largest member of a compact clutch of galaxies that are bound together by gravity. Swarming around our home galaxy is a menagerie of smaller dwarf galaxies, the smallest of which are the relatively nearby dwarf spheroidals, which may be the leftover building blocks of galaxy formation.

Further out are a number of similarly sized and slightly misshaped dwarf irregular galaxies, which are not gravitationally bound to the Milky Way and may be relative newcomers to our galactic neighborhood.

Kristine Spekkens is an assistant professor at the Royal Military College of Canada and lead author on a paper published in the Astrophysical Journal Letters. She said:
"Astronomers wondered if, after billions of years of interaction, the nearby dwarf spheroidal galaxies have all the same star-forming ‘stuff’ that we find in more distant dwarf galaxies."

Previous studies have shown that the more distant dwarf irregular galaxies have large reservoirs of neutral hydrogen gas, the fuel for star formation. These past observations, however, were not sensitive enough to rule out the presence of this gas in the smallest dwarf spheroidal galaxies. 

Spekkens said:
"What we found is that there is a clear break, a point near our home galaxy where dwarf galaxies are completely devoid of any traces of neutral atomic hydrogen."
 Bottom line: New observations by large radio telescopes reveal that within a well-defined boundary around our galaxy, dwarf galaxies are completely devoid of star-making hydrogen gas. Astronomers say our Milky Way is to blame.

Known Milky Way satellite galaxies.  Click here for more about this diagram.
Neighboring galaxies to our own Milky Way (Descriptions below)
 

NAME DISTANCE (kpc) DISCOVERY PAPER
Canes Major 7.2Martin et al. 2004, A dwarf galaxy remnant in Canis Major: the fossil of an in-plane accretion on to the Milky Way
Segue 317 Belokurov et al. 2010, Big Fish, Little Fish: Two New Ultra-Faint Satellites of the Milky Way
Segue 123 Belokurov et al. 2007, Cats and Dogs, Hair and A Hero: A Quintet of New Milky Way Companions
Sagittarius24Ibata, Gilmore & Irwin, 1994, A dwarf satellite galaxy in Sagittarius 1995, Sagittarius: the nearest dwarf galaxy
Segue 234.7 Belokurov et al. 2009, The discovery of Segue 2: a prototype of the population of satellitesof satellites
Bootes II 43 Walsh, Jerjen & Willman, 2007, A Pair of Bootes: A New Milky Way Satellite
Coma 44 Belokurov et al. 2007, Cats and Dogs, Hair and A Hero: A Quintet of New Milky Way Companions
Willman 1 (SDSSJ1049+5103) 45Willman et al. 2005, A New Milky Way Companion: Unusual Globular Cluster or Extreme Dwarf Satellite?
Bootes III 46Grillmair 2009, Four New Stellar Debris Streams in the Galactic Halo
LMC 50.8-
SMC 59.7-
Bootes 60 Belokurov et al. 2006, A Faint New Milky Way Satellite in Bootes
Ursa Minor 66A.G. Wilson of the Lowell Observatory in 1955, Sculptor-Type Systems in the Local Group of Galaxies
Sculptor (Scl) 79discovered in 1938 by Harlow Shapley, A Stellar System of a New Type
Draco 82 A.G. Wilson of the Lowell Observatory in 1955, Sculptor-Type Systems in the Local Group of Galaxies
Sextans 89 Mike Irwin, M.T. Bridgeland, P.S. Bunclark and R.G. McMahon, 1990 A new satellite galaxy of the Milky Way in the constellation of Sextans
Ursa Major (UMa) 100Willman et al. 2005, A New Milky Way Dwarf Galaxy in Ursa Major
Carina 103Cannon, R. D., Hawarden, T. G., & Tritton, S. B., 1977, A new Sculptor-type dwarf elliptical galaxy in Carina
Hercules 140 Belokurov et al. 2007, Cats and Dogs, Hair and A Hero: A Quintet of New Milky Way Companions
Fornax 140discovered in 1938 by Harlow Shapley, described in "Two Stellar Systems of a New Kind", Nature, Vol. 142, p. 715
Canes Venatici II 150 Sakamoto & Hasegawa 2006, Discovery of a Faint Old Stellar System at 150 kpc
Leo IV 160 Belokurov et al. 2007, Cats and Dogs, Hair and A Hero: A Quintet of New Milky Way Companions
Pisces II 182 Belokurov et al. 2010, Big Fish, Little Fish: Two New Ultra-Faint Satellites of The Milky Way
Leo II (Leo B) 208 Robert G. Harrington and Albert George Wilson, 1950, Two New Stellar Systems in Leo
Canes Venatici 220Zucker et al. 2006 A New Milky Way Dwarf Satellite in Canes Venatici
Leo I 254 Robert G. Harrington and Albert George Wilson, 1950, Two New Stellar Systems in Leo

View Article Here Read More

India’s Mars mission a step closer to success with engine test

India's Polar Satellite Launch Vehicle (PSLV-C25), carrying the Mars orbiter, blasts off from the Satish Dhawan Space Centre in Sriharikota, about 100 km (62 miles) north of the southern Indian city of Chennai November 5, 2013. REUTERS/B...

View Article Here Read More
Older posts Newer posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑