Tag: base (page 3 of 21)

Elon Musk drops space plans into Seattle’s lap




Excerpt from seattletimes.com

Elon Musk thought three major trends would drive the future: the Internet, the quest for sustainable energy and space exploration. He’s got skin in all three games.

Of all the newcomers we’ve seen here lately, one of the more interesting is Elon Musk.

The famous entrepreneur isn’t going to live here, at least not yet. But earlier this month he did announce plans to bulk up an engineering center near Seattle for his SpaceX venture. The invitation-only event was held in the shadow of the Space Needle.
If the plan happens, SpaceX would join Planetary Resources and Blue Origin in a budding Puget Sound space hub. With talent from Boeing, the aerospace cluster and University of Washington, this offers fascinating potential for the region’s future.

Elon Musk sounds like the name of a character from a novel that would invariably include the sentence, “he had not yet decided whether to use his powers for good or for evil.”

He is said to have been the inspiration for the character Tony Stark, played by Robert Downey Jr. in the “Iron Man” movies. He’s also been compared to Steve Jobs and even Thomas Edison.

The real Musk seems like a nice-enough chap, at least based on his ubiquitous appearances in TED talks and other venues.

Even the semidishy essay in Marie Claire magazine by his first wife, Justine, is mostly about the challenge to the marriage as Musk became very rich, very young, started running with a celebrity crowd and exhibited the monomaniacal behavior common to the entrepreneurial tribe.

A native of South Africa, Musk emigrated to Canada and finally to the United States, where he received degrees from the University of Pennsylvania’s prestigious Wharton School. He left Stanford’s Ph.D. program in applied physics after two days to start a business.
In 1995, he co-founded Zip2, an early Internet venture for newspapers. Four years later, he co-founded what would become PayPal. With money from eBay’s acquisition of PayPal, he started SpaceX. He also invested in Tesla Motors, the electric-car company, eventually becoming chief executive. Then there’s Solar City, a major provider of solar-power systems.

Musk has said that early on he sensed three major trends would drive the future: the Internet, the quest for sustainable energy and space exploration. He’s got skin in all three games.

At age 43, Musk is seven years younger than Jeff Bezos and more than 15 years younger than Bill Gates.

His achievements haven’t come without controversy. Tesla played off several states against each other for a battery factory. Nevada, desperate to diversify its low-wage economy, won, if you can call it that.

The price tag was $1.4 billion in incentives and whether it ever pays off for the state is a big question. A Fortune magazine investigation showed Musk not merely as a visionary but also a master manipulator with a shaky deal. Musk, no shrinking violet, fired back on his blog.

SpaceX is a combination of the practical and the hyperambitious, some would say dreamy.

On the practical side, the company is one of those chosen by the U.S. government to resupply the International Space Station. Musk also hopes to put 4,000 satellites in low-Earth orbit to provide inexpensive Internet access worldwide.

The satellite venture will be based here, with no financial incentives from the state.

But he also wants to make space travel less expensive, generate “a lot of money” through SpaceX, and eventually establish a Mars colony.

“SpaceX, or some combination of companies and governments, needs to make progress in the direction of making life multiplanetary, of establishing a base on another planet, on Mars — being the only realistic option — and then building that base up until we’re a true multiplanet species,” he said during a TED presentation.

It’s heady stuff. And attractive enough to lead Google and Fidelity Investments to commit $1 billion to SpaceX.

Also, in contrast with the “rent-seeking” and financial plays of so many of the superwealthy, Musk actually wants to create jobs and solve practical problems.

If there’s a cautionary note, it is that market forces alone can’t address many of our most serious challenges. Indeed, in some cases they make them worse.

Worsening income inequality is the work of the hidden hand, unfettered by antitrust regulation, progressive taxation, unions and protections against race-to-the-bottom globalization.

If the hidden costs of spewing more carbon into the atmosphere are not priced in, we have today’s market failure exacerbating climate change. Electric cars won’t fix that as long as the distortions favoring fossil fuels remain.

So a broken, compromised government that’s cutting research dollars and failing to invest in education and forward-leaning infrastructure is a major impediment.

The United States did not reach the moon because of a clever billionaire, but through a national endeavor to serve the public good. I know, that’s “so 20th century.” 

Also, as Northwestern University economist Robert Gordon might argue, visionaries such as Thomas Edison grabbed relatively low-hanging fruit, with electrification creating huge numbers of jobs. 

Merely recovering the lost demand of the Great Recession has proved difficult. Another electrificationlike revolution that lifts all boats seems improbable.

I’m not sure that’s true. But it will take more than Iron Man to rescue the many Americans still suffering.

View Article Here Read More

130,000 Air Force UFO Files Land on Internet

130,000 Air Force UFO Files Land on Internet

Excerpt from cnn.com It's enough to make Mulder and Scully seethe with envy.Nearly 130,000 pages of declassified Air Force files on UFO investigations and sightings are now available in one place online.Declassified government records about UFOs ...

View Article Here Read More

The Kinross Air Force Base Incident ~ Did a jet disappear while chasing a UFO?


A Northrop F-89C Scorpion, like the one flown by Moncla and Wilson. (credit: Flight Collection)


Excerpt from ufoevidence.org
On the evening of 23 November 1953, an Air Force radar controller became alerted to an "unidentified target" over Lake Superior, and an F-89C Scorpion jet was scrambled from Kinross AFB. Radar controllers watched as the F-89 closed in on the UFO, and then sat stunned in amazement as the two blips merged on the screen, and the UFO left. The F-89 and it’s two man crew, pilot Felix Moncla and radar operator Robert Wilson, were never found, even after a thorough search of the area.


Press article, regarding the incident, in the Wisconsin State Journal (Madison, WI), Nov. 25, 1953.

1st Lt. Felix E. "Gene" Moncla, Jr., pilot of the F89C Scorpion jet. Moncla was accompanied by radar operator Robert Wilson in the rear seat.

"The Disappearance of Lt. Felix Moncla"

The channel that connects Lake Superior with the other Great Lakes flows through the Soo Locks near Saulte Ste. Marie, Michigan. On one side of the channel is the U.S., and on the other side is Canada. The fact that this area is on a U.S. national border makes it a restricted airspace. As such, it was monitored by the Air Defense Command in 1953.

On the evening of 23 November 1953, an Air Defense Command Ground Intercept radar controller at Truax AFB became alerted to an "unidentified target" over Soo Locks. He sounded the alert, and an F-89C Scorpion jet was scrambled from nearby Kinross Field. The jet was piloted by 1st Lieutenant Felix Moncla, Jr., with 2nd Lieutenant Robert Wilson in the rear seat as radar operator.

Ground Control vectored the jet toward the target, noting that the target changed course as the F-89 approached it at over 500 mph. Lt. Wilson had problems tracking the target on his onboard radar, so ground control continued to direct the jet to the target. For thirty minutes, the jet pursued the radar blip and began to close the gap as the UFO accelerated out over Lake Superior.

As Ground Control watched, the gap between the two blips on the radar screen grew smaller and smaller until the two blips became one blip. Ground Control thought that Moncla had flown over the target and that the two blips would separate again as he moved past it.

That didn't happen. Suddenly, the single blip flashed off the screen and the radar screen was clear of any return at all.

Frantically, Ground Control tried to contact the F-89 by radio. There was no response. Marking the last radar position, Ground Control dispatched an emergency message to Search and Rescue. That last sighting was about seventy miles off Keweenaw Point in upper Michigan, at an altitude of 8,000 feet, approximately 160 miles northwest of Soo Locks.

After an all night air/sea rescue search, not a trace of the plane or the men was ever found. No debris, no oil slick, nothing was ever found.

Officials at Norton Air Force Base Flying Safety Division issued a statement that "the pilot probably suffered from vertigo and crashed into the lake." However, this was merely speculation and was based on hearsay reports that Moncla was prone to vertigo.

The Air Force explained the unknown radar target at first as a Canadian DC-3, then later as a RCAF jet. Canadian officials responded that there were no Canadian aircraft in the airspace over the lake at any time during the chase. The Air Force finally stated that the F-89 had exploded at high altitude, ignoring the fact that this would have left a lot of debris on the lake surface.

NICAP investigators found that mentions of Moncla's mission - chasing an unidentified target - had been obliterated from official records. Project Bluebook files simply listed the case as an "accident."

Off the record, those that were present in the Ground Control radar room that day have expressed other opinions. They think that whatever the F-89 was chasing directly caused the disappearance of the jet...

View Article Here Read More

Philae comet lander eludes discovery

Artist's conceptionExcerpt from bbc.comEfforts to find Europe's lost comet lander, Philae, have come up blank. The most recent imaging search by the overflying Rosetta "mothership" can find no trace of the probe. Philae touched down on 67...

View Article Here Read More

Strange rock containing 30,000 diamonds baffles scientists


Strange rock containing 30,000 diamonds baffles scientists
© Getty Images Strange rock containing 30,000 diamonds baffles scientists

msn.com

When Russian miners pulled a strange red and green stone out of the ground, they immediately knew it was different to the thousands of tons of ore they process every day. 

In fact, what workers at Alrosa 's Udachnaya diamond mine had unearthed was a 30mm rock that contained 30,000 diamonds - a conentration 1m times higher than normal. 

However, despite the rare find the company donated the rock to the Russian Academy of Sciences, as the diamonds are so small that they cannot be used as gems. 

After scanning the rock with X-rays, scientists found that the diamonds inside measure just 1mm and are octahedral in shape - similar to two pyramids stuck together at the base. The red and green colouring comes from larger crystals of garnet, olivine and pyroxene. 

"The exciting thing for me is there are 30,000 itty-bitty, perfect octahedrons, and not one big diamond," said Larry Taylor, a geologist at the University of Tennessee, who presented the findings at the American Geophysical Union 's annual meeting. "It's like they formed instantaneously. This rock is a strange one indeed."

Scientists are excited at the finding as they hope it will shed further light on how diamonds are made. They know diamonds are crystals of pure carbon that form under crushing pressures and intense heat, mostly formed in the Earth's mantle, the layer beneath the crust or surface layer, at a depth of about 150km. However, certain processes in their creation remain a mystery. 

"The [chemical] reactions in which diamonds occur still remain an enigma," Mr Taylor told Live Science, which first reported the story. 

View Article Here Read More

SpaceX Will Try to Land Rocket on Floating Ocean Platform

 Excerpt from space.com  SpaceX will apparently attempt something truly epic during next week's cargo launch to the International Space Station. During the Dec. 16 launch from Florida's Cape Canaveral Air Force Station, which will send ...

View Article Here Read More

Albert Einstein Letter Concerning Haters & How To Deal With Them





Excerpt from inquisitr.com

Albert Einstein is a man that has been seen not only as a genius, but as someone that knew how to have a good time and just enjoy life. Sure, he’s also been known as a man that’s far ahead of his time, but no-one may have ever realized just how far his brilliance reached.

The man actually wrote a letter to Marie Curie back on November 23, 1911, that advised her how to deal with haters and can even be used as a way to deal with Internet trolls.

Yes, a full 80 years before the Internet was even invented.
The Guardian revealed that a treasure trove of Einstein’s old letters were released, and they all show his genius and wit. One of them was the true gem though, and it was a letter to Curie, who was a rising science phenomenon at the time. He simply let her know that haters gonna hate and she need not bother with them.
“Highly esteemed Mrs. Curie,
“Do not laugh at me for writing you without having anything sensible to say. But I am so enraged by the base manner in which the public is presently daring to concern itself with you that I absolutely must give vent to this feeling. However, I am convinced that you consistently despise this rabble, whether it obsequiously lavishes respect on you or whether it attempts to satiate its lust for sensationalism!

“I am impelled to tell you how much I have come to admire your intellect, your drive, and your honesty, and that I consider myself lucky to have made your personal acquaintance in Brussels. Anyone who does not number among these reptiles is certainly happy, now as before, that we have such personages among us as you, and Langevin too, real people with whom one feels privileged to be in contact. If the rabble continues to occupy itself with you, then simply don’t read that hogwash, but rather leave it to the reptile for whom it has been fabricated.
“With most amicable regards to you, Langevin, and Perrin, yours very truly,
A. Einstein”
To the untrained eye, it may seem just like a very sweet letter from Albert Einstein to Marie Curie on how to keep moving forward in life and ignore those that criticize her. In reality, the letter can be applied to today’s world and ward off trolls.

Curie had her application to the French Academy of Sciences denied, and it was rumored that it happened because she was Jewish. Others said it was due to her possibly having an affair with physicist Paul Langevin, a married man.

According to Pop Sugar, Einstein even added a small P.S. to the letter that may then go over the heads of everyone.
“P.S. I have determined the statistical law of motion of the diatomic molecule in Planck’s radiation field by means of a comical witticism, naturally under the constraint that the structure’s motion follows the laws of standard mechanics. My hope that this law is valid in reality is very small, though.”

View Article Here Read More

Is a trip to the moon in the making?





Excerpt from bostonglobe.com

Decades after that first small step, space thinkers are finally getting serious about our nearest neighbor By Kevin Hartnett

This week, the European Space Agency made headlines with the first successful landing of a spacecraft on a comet, 317 million miles from Earth. It was an upbeat moment after two American crashes: the unmanned private rocket that exploded on its way to resupply the International Space Station, and the Virgin Galactic spaceplane that crashed in the Mojave Desert, killing a pilot and raising questions about whether individual businesses are up to the task of operating in space.  During this same period, there was one other piece of space news, one far less widely reported in the United States: On Nov. 1, China successfully returned a moon probe to Earth. That mission follows China’s landing of the Yutu moon rover late last year, and its announcement that it will conduct a sample-return mission to the moon in 2017.  With NASA and the Europeans focused on robot exploration of distant targets, a moon landing might not seem like a big deal: We’ve been there, and other countries are just catching up. But in recent years, interest in the moon has begun to percolate again, both in the United States and abroad—and it’s catalyzing a surprisingly diverse set of plans for how our nearby satellite will contribute to our space future.  China, India, and Japan have all completed lunar missions in the last decade, and have more in mind. Both China and Japan want to build unmanned bases in the early part of the next decade as a prelude to returning a human to the moon. In the United States, meanwhile, entrepreneurs are hatching plans for lunar commerce; one company even promises to ferry freight for paying customers to the moon as early as next year. Scientists are hatching more far-out ideas to mine hydrogen from the poles and build colonies deep in sky-lit lunar caves.  This rush of activity has been spurred in part by the Google Lunar X Prize, a $20 million award, expiring in 2015, for the first private team to land a working rover on the moon and prove it by sending back video. It is also driven by a certain understanding: If we really want to launch expeditions deeper into space, our first goal should be to travel safely to the moon—and maybe even figure out how to live there.
Entrepreneurial visions of opening the moon to commerce can seem fanciful, especially in light of the Virgin Galactic and Orbital Sciences crashes, which remind us how far we are from having a truly functional space economy. They also face an uncertain legal environment—in a sense, space belongs to everyone and to no one—whose boundaries will be tested as soon as missions start to succeed. Still, as these plans take shape, they’re a reminder that leaping blindly is sometimes a necessary step in opening any new frontier.
“All I can say is if lunar commerce is foolish,” said Columbia University astrophysicist Arlin Crotts in an e-mail, “there are a lot of industrious and dedicated fools out there!”

At its height, the Apollo program accounted for more than 4 percent of the federal budget. Today, with a mothballed shuttle and a downscaled space station, it can seem almost imaginary that humans actually walked on the moon and came back—and that we did it in the age of adding machines and rotary phones.

“In five years, we jumped into the middle of the 21st century,” says Roger Handberg, a political scientist who studies space policy at the University of Central Florida, speaking of the Apollo program. “No one thought that 40 years later we’d be in a situation where the International Space Station is the height of our ambition.”

An image of Earth and the moon created from photos by Mariner 10, launched in 1973.
NASA/JPL/Northwestern University
An image of Earth and the moon created from photos by Mariner 10, launched in 1973.
Without a clear goal and a geopolitical rivalry to drive it, the space program had to compete with a lot of other national priorities. The dramatic moon shot became an outlier in the longer, slower story of building scientific achievements.

Now, as those achievements accumulate, the moon is coming back into the picture. For a variety of reasons, it’s pretty much guaranteed to play a central role in any meaningful excursions we take into space. It’s the nearest planetary body to our own—238,900 miles away, which the Apollo voyages covered in three days. It has low gravity, which makes it relatively easy to get onto and off of the lunar surface, and it has no atmosphere, which allows telescopes a clearer view into deep space.
The moon itself also still holds some scientific mysteries. A 2007 report on the future of lunar exploration from the National Academies called the moon a place of “profound scientific value,” pointing out that it’s a unique place to study how planets formed, including ours. The surface of the moon is incredibly stable—no tectonic plates, no active volcanoes, no wind, no rain—which means that the loose rock, or regolith, on the moon’s surface looks the way the surface of the earth might have looked billions of years ago.

NASA still launches regular orbital missions to the moon, but its focus is on more distant points. (In a 2010 speech, President Obama brushed off the moon, saying, “We’ve been there before.”) For emerging space powers, though, the moon is still the trophy destination that it was for the United States and the Soviet Union in the 1960s. In 2008 an Indian probe relayed the best evidence yet that there’s water on the moon, locked in ice deep in craters at the lunar poles. China landed a rover on the surface of the moon in December 2013, though it soon malfunctioned. Despite that setback, China plans a sample-return mission in 2017, which would be the first since a Soviet capsule brought back 6 ounces of lunar soil in 1976.

The moon has also drawn the attention of space-minded entrepreneurs. One of the most obvious opportunities is to deliver scientific instruments for government agencies and universities. This is an attractive, ready clientele in theory, explains Paul Spudis, a scientist at the Lunar and Planetary Institute in Houston, though there’s a hitch: “The basic problem with that as a market,” he says, “is scientists never have money of their own.”

One company aspiring to the delivery role is Astrobotic, a startup of young Carnegie Mellon engineers based in Pittsburgh, which is currently positioning itself to be “FedEx to the moon,” says John Thornton, the company’s CEO. Astrobotic has signed a contract with SpaceX, the commercial space firm founded by Elon Musk, to use a Falcon 9 for an inaugural delivery trip in 2015, just in time to claim the Google Lunar X Prize. Thornton says most of the technology is in place for the mission, and that the biggest remaining hurdle is figuring out how to engineer a soft, automated moon landing.

Astrobotic is charging $1.2 million per kilogram—you can, in fact, place an order on its website—and Thornton says the company has five customers so far. They include the entities you might expect, like NASA, but also less obvious ones, like a company that wants to deliver human ashes for permanent internment and a Japanese soft drink manufacturer that wants to place its signature beverage, Pocari Sweat, on the moon as a publicity stunt. Astrobotic is joined in this small sci-fi economy by Moon Express out of Mountain View, Calif., another company competing for the Google Lunar X Prize.
Plans like these are the low-hanging fruit of the lunar economy, the easiest ideas to imagine and execute. Longer-scale thinkers are envisioning ways that the moon will play a larger role in human affairs—and that, says Crotts, is where “serious resource exploitation” comes in.
If this triggers fears of a mined-out moon, be reassured: “Apollo went there and found nothing we wanted. Had we found anything we really wanted, we would have gone back and there would have been a new gold rush,” says Roger Launius, the former chief historian of NASA and now a curator at the National Air and Space Museum.

There is one possible exception: helium-3, an isotope used in nuclear fusion research. It is rare on Earth but thought to be abundant on the surface of the moon, which could make the moon an important energy source if we ever figure out how to harness fusion energy. More immediately intriguing is the billion tons of water ice the scientific community increasingly believes is stored at the poles. If it’s there, that opens the possibility of sustained lunar settlement—the water could be consumed as a liquid, or split into oxygen for breathing and hydrogen for fuel.

The presence of water could also open a potentially ripe market providing services to the multibillion dollar geosynchronous satellite industry. “We lose billions of dollars a year of geosynchronous satellites because they drift out of orbit,” says Crotts. In a new book, “The New Moon: Water, Exploration, and Future Habitation,” he outlines plans for what he calls a “cislunar tug”: a space tugboat of sorts that would commute between the moon and orbiting satellites, resupplying them with propellant, derived from the hydrogen in water, and nudging them back into the correct orbital position.

In the long term, the truly irreplaceable value of the moon may lie elsewhere, as a staging area for expeditions deeper into space. The most expensive and dangerous part of space travel is lifting cargo out of and back into the Earth’s atmosphere, and some people imagine cutting out those steps by establishing a permanent base on the moon. In this scenario, we’d build lunar colonies deep in natural caves in order to escape the micrometeorites and toxic doses of solar radiation that bombard the moon, all the while preparing for trips to more distant points.
gical hurdles is long, and there’s also a legal one, at least where commerce is concerned. The moon falls under the purview of the Outer Space Treaty, which the United States signed in 1967, and which prohibits countries from claiming any territory on the moon—or anywhere else in space—as their own.
“It is totally unclear whether a private sector entity can extract resources from the moon and gain title or property rights to it,” says Joanne Gabrynowicz, an expert on space law and currently a visiting professor at Beijing Institute of Technology School of Law. She adds that a later document, the 1979 Moon Treaty, which the United States has not signed, anticipates mining on the moon, but leaves open the question of how property rights would be determined.

There are lots of reasons the moon may never realize its potential to mint the world’s first trillionaires, as some space enthusiasts have predicted. But to the most dedicated space entrepreneurs, the economic and legal arguments reflect short-sighted thinking. They point out that when European explorers set sail in the 15th and 16th centuries, they assumed they’d find a fortune in gold waiting for them on the other side of the Atlantic. The real prizes ended up being very different—and slow to materialize.
“When we settled the New World, we didn’t bring a whole lot back to Europe [at first],” Thornton says. “You have to create infrastructure to enable that kind of transfer of goods.” He believes that in the case of the moon, we’ll figure out how to do that eventually.
Roger Handberg is as clear-eyed as anyone about the reasons why the moon may never become more than an object of wonder, but he also understands why we can’t turn away from it completely. That challenge, in the end, may finally be what lures us back.

View Article Here Read More

Siberian crater mystery one step closer to being solved ~ Scientists Capture first images inside crater

Vladimir Pushkarev/Russian Centre of Arctic ExplorationExcerpt from nbcnews.com The mystery of the Siberian craters is one step closer to being solved. Earlier this week, Russian scientists descended into one of the massive craters that was dis...

View Article Here Read More

Google to lease former Nasa airfield for space research


Hangar One
Google will restore Hangar One which has become a landmark in Silicon Valley

Excerpt from

bbc.com



Google latest "moonshot" is an apt one - it is investing in a Nasa-owned airfield to expand research into space exploration and robotics.

Planetary Ventures, an offshoot of Google, will take over management of the Moffett Federal Airfield.

The airfield is already regularly used as a landing strip for the private jets of the firm's billionaire executives.

Google has not divulged exactly how the site will be used.
But, according to a Nasa press release, the site will be used for "research, development, assembly and testing in the areas of space exploration, aviation, rover/robotics and other emerging technologies".

For Nasa, the sale offers rich pickings - the agreement will provide it with $1.16bn (£731m) in rent over the initial 60-year lease term.

"As Nasa expands its presence in space, we are making strides to reduce our footprint here on Earth," said Nasa administrator Charles Bolden. 

And for Google, the investment represents an opportunity to restore an iconic building.

Part of the deal includes the restoration of Hangar One, an important landmark in Silicon Valley. Built in 1933, it is one of the world's largest free-standing structures.


Moffett Federal Airfield golf courseThere is also a golf course on the site


Planetary Ventures plans to invest more than $200m in rebuilding Hangar One and two other hangars on the site.

It will create an educational facility where the public can explore the site's legacy and the role of technology on it.


Very little is known about Planetary Ventures, the firm behind the deal. Press reports describe it as shell organisation for real estate deals although the name hints at something more. 

The base, previously maintained by Nasa's Ames Research Center, is located four miles from Google's Mountain View headquarters.


Space Projects

It is not the first time Google has invested in unusual purchases. Two mysterious barges that appeared on the coasts of San Francisco and Portland, Maine, last year turned out to be Google-owned.

It emerged that Google intended to use them as floating showcases for new products such as Google Glass and its self-driving cars. The project was later abandoned after coastguard officials deemed them to be a fire risk.

(It is not) the first time that Google has worked with Nasa. Back in 2005, Google built an office at Nasa's research facility in order to co-operate on a range of projects.

More recently, the two teamed up to launch a new laboratory, focused on advancing machine learning, also based at Nasa's research centre.

View Article Here Read More

The New American Dream ~ The Case for Colonizing Mars




Excerpt from Ad Astra

by Robert Zubrin


Mars Is The New World

Among extraterrestrial bodies in our solar system, Mars is singular in that it possesses all the raw materials required to support not only life, but a new branch of human civilization. This uniqueness is illustrated most clearly if we contrast Mars with the Earth's Moon, the most frequently cited alternative location for extraterrestrial human colonization.

In contrast to the Moon, Mars is rich in carbon, nitrogen, hydrogen and oxygen, all in biologically readily accessible forms such as carbon dioxide gas, nitrogen gas, and water ice and permafrost. Carbon, nitrogen, and hydrogen are only present on the Moon in parts per million quantities, much like gold in seawater. Oxygen is abundant on the Moon, but only in tightly bound oxides such as silicon dioxide (SiO2), ferrous oxide (Fe2O3), magnesium oxide (MgO), and aluminum oxide (Al2O3), which require very high energy processes to reduce.

The Moon is also deficient in about half the metals of interest to industrial society (copper, for example), as well as many other elements of interest such as sulfur and phosphorus. Mars has every required element in abundance. Moreover, on Mars, as on Earth, hydrologic and volcanic processes have occurred that are likely to have consolidated various elements into local concentrations of high-grade mineral ore. Indeed, the geologic history of Mars has been compared to that of Africa, with very optimistic inferences as to its mineral wealth implied as a corollary. In contrast, the Moon has had virtually no history of water or volcanic action, with the result that it is basically composed of trash rocks with very little differentiation into ores that represent useful concentrations of anything interesting.

You can generate power on either the Moon or Mars with solar panels, and here the advantages of the Moon's clearer skies and closer proximity to the Sun than Mars roughly balances the disadvantage of large energy storage requirements created by the Moon's 28-day light-dark cycle. But if you wish to manufacture solar panels, so as to create a self-expanding power base, Mars holds an enormous advantage, as only Mars possesses the large supplies of carbon and hydrogen needed to produce the pure silicon required for producing photovoltaic panels and other electronics. In addition, Mars has the potential for wind-generated power while the Moon clearly does not. But both solar and wind offer relatively modest power potential — tens or at most hundreds of kilowatts here or there. To create a vibrant civilization you need a richer power base, and this Mars has both in the short and medium term in the form of its geothermal power resources, which offer potential for large numbers of locally created electricity generating stations in the 10 MW (10,000 kilowatt) class. In the long-term, Mars will enjoy a power-rich economy based upon exploitation of its large domestic resources of deuterium fuel for fusion reactors. Deuterium is five times more common on Mars than it is on Earth, and tens of thousands of times more common on Mars than on the Moon.

But the biggest problem with the Moon, as with all other airless planetary bodies and proposed artificial free-space colonies, is that sunlight is not available in a form useful for growing crops. A single acre of plants on Earth requires four megawatts of sunlight power, a square kilometer needs 1,000 MW. The entire world put together does not produce enough electrical power to illuminate the farms of the state of Rhode Island, that agricultural giant. Growing crops with electrically generated light is just economically hopeless. But you can't use natural sunlight on the Moon or any other airless body in space unless you put walls on the greenhouse thick enough to shield out solar flares, a requirement that enormously increases the expense of creating cropland. Even if you did that, it wouldn't do you any good on the Moon, because plants won't grow in a light/dark cycle lasting 28 days.

But on Mars there is an atmosphere thick enough to protect crops grown on the surface from solar flare. Therefore, thin-walled inflatable plastic greenhouses protected by unpressurized UV-resistant hard-plastic shield domes can be used to rapidly create cropland on the surface. Even without the problems of solar flares and month-long diurnal cycle, such simple greenhouses would be impractical on the Moon as they would create unbearably high temperatures. On Mars, in contrast, the strong greenhouse effect created by such domes would be precisely what is necessary to produce a temperate climate inside. Such domes up to 50 meters in diameter are light enough to be transported from Earth initially, and later on they can be manufactured on Mars out of indigenous materials. Because all the resources to make plastics exist on Mars, networks of such 50- to 100-meter domes could be rapidly manufactured and deployed, opening up large areas of the surface to both shirtsleeve human habitation and agriculture. That's just the beginning, because it will eventually be possible for humans to substantially thicken Mars' atmosphere by forcing the regolith to outgas its contents through a deliberate program of artificially induced global warming. Once that has been accomplished, the habitation domes could be virtually any size, as they would not have to sustain a pressure differential between their interior and exterior. In fact, once that has been done, it will be possible to raise specially bred crops outside the domes.

The point to be made is that unlike colonists on any known extraterrestrial body, Martian colonists will be able to live on the surface, not in tunnels, and move about freely and grow crops in the light of day. Mars is a place where humans can live and multiply to large numbers, supporting themselves with products of every description made out of indigenous materials. Mars is thus a place where an actual civilization, not just a mining or scientific outpost, can be developed. And significantly for interplanetary commerce, Mars and Earth are the only two locations in the solar system where humans will be able to grow crops for export.

Interplanetary Commerce

Mars is the best target for colonization in the solar system because it has by far the greatest potential for self-sufficiency. Nevertheless, even with optimistic extrapolation of robotic manufacturing techniques, Mars will not have the division of labor required to make it fully self-sufficient until its population numbers in the millions. Thus, for decades and perhaps longer, it will be necessary, and forever desirable, for Mars to be able to import specialized manufactured goods from Earth. These goods can be fairly limited in mass, as only small portions (by weight) of even very high-tech goods are actually complex. Nevertheless, these smaller sophisticated items will have to be paid for, and the high costs of Earth-launch and interplanetary transport will greatly increase their price. What can Mars possibly export back to Earth in return?
It is this question that has caused many to incorrectly deem Mars colonization intractable, or at least inferior in prospect to the Moon.

For example, much has been made of the fact that the Moon has indigenous supplies of helium-3, an isotope not found on Earth and which could be of considerable value as a fuel for second generation thermonuclear fusion reactors. Mars has no known helium-3 resources. On the other hand, because of its complex geologic history, Mars may have concentrated mineral ores, with much greater concentrations of precious metal ores readily available than is currently the case on Earth — because the terrestrial ores have been heavily scavenged by humans for the past 5,000 years. If concentrated supplies of metals of equal or greater value than silver (such as germanium, hafnium, lanthanum, cerium, rhenium, samarium, gallium, gadolinium, gold, palladium, iridium, rubidium, platinum, rhodium, europium, and a host of others) were available on Mars, they could potentially be transported back to Earth for a substantial profit. Reusable Mars-surface based single-stage-to-orbit vehicles would haul cargoes to Mars orbit for transportation to Earth via either cheap expendable chemical stages manufactured on Mars or reusable cycling solar or magnetic sail-powered interplanetary spacecraft. The existence of such Martian precious metal ores, however, is still hypothetical.

But there is one commercial resource that is known to exist ubiquitously on Mars in large amount — deuterium. Deuterium, the heavy isotope of hydrogen, occurs as 166 out of every million hydrogen atoms on Earth, but comprises 833 out of every million hydrogen atoms on Mars. Deuterium is the key fuel not only for both first and second generation fusion reactors, but it is also an essential material needed by the nuclear power industry today. Even with cheap power, deuterium is very expensive; its current market value on Earth is about $10,000 per kilogram, roughly fifty times as valuable as silver or 70% as valuable as gold. This is in today's pre-fusion economy. Once fusion reactors go into widespread use deuterium prices will increase. All the in-situ chemical processes required to produce the fuel, oxygen, and plastics necessary to run a Mars settlement require water electrolysis as an intermediate step. As a by product of these operations, millions, perhaps billions, of dollars worth of deuterium will be produced.

Ideas may be another possible export for Martian colonists. Just as the labor shortage prevalent in colonial and nineteenth century America drove the creation of "Yankee ingenuity's" flood of inventions, so the conditions of extreme labor shortage combined with a technological culture that shuns impractical legislative constraints against innovation will tend to drive Martian ingenuity to produce wave after wave of invention in energy production, automation and robotics, biotechnology, and other areas. These inventions, licensed on Earth, could finance Mars even as they revolutionize and advance terrestrial living standards as forcefully as nineteenth century American invention changed Europe and ultimately the rest of the world as well.

Inventions produced as a matter of necessity by a practical intellectual culture stressed by frontier conditions can make Mars rich, but invention and direct export to Earth are not the only ways that Martians will be able to make a fortune. The other route is via trade to the asteroid belt, the band of small, mineral-rich bodies lying between the orbits of Mars and Jupiter. There are about 5,000 asteroids known today, of which about 98% are in the "Main Belt" lying between Mars and Jupiter, with an average distance from the Sun of about 2.7 astronomical units, or AU. (The Earth is 1.0 AU from the Sun.) Of the remaining two percent known as the near-Earth asteroids, about 90% orbit closer to Mars than to the Earth. Collectively, these asteroids represent an enormous stockpile of mineral wealth in the form of platinum group and other valuable metals.


Historical Analogies

The primary analogy I wish to draw is that Mars is to the new age of exploration as North America was to the last. The Earth's Moon, close to the metropolitan planet but impoverished in resources, compares to Greenland. Other destinations, such as the Main Belt asteroids, may be rich in potential future exports to Earth but lack the preconditions for the creation of a fully developed indigenous society; these compare to the West Indies. Only Mars has the full set of resources required to develop a native civilization, and only Mars is a viable target for true colonization. Like America in its relationship to Britain and the West Indies, Mars has a positional advantage that will allow it to participate in a useful way to support extractive activities on behalf of Earth in the asteroid belt and elsewhere.

But despite the shortsighted calculations of eighteenth-century European statesmen and financiers, the true value of America never was as a logistical support base for West Indies sugar and spice trade, inland fur trade, or as a potential market for manufactured goods. The true value of America was as the future home for a new branch of human civilization, one that as a combined result of its humanistic antecedents and its frontier conditions was able to develop into the most powerful engine for human progress and economic growth the world had ever seen. The wealth of America was in fact that she could support people, and that the right kind of people chose to go to her. People create wealth. People are wealth and power. Every feature of Frontier American life that acted to create a practical can-do culture of innovating people will apply to Mars a hundred-fold.

Mars is a harsher place than any on Earth. But provided one can survive the regimen, it is the toughest schools that are the best. The Martians shall do well.



Robert Zubrin is former Chairman of the National Space Society, President of the Mars Society, and author of The Case For Mars: The Plan to Settle the Red Planet and Why We Must.

View Article Here Read More

Images Released of the Virgin Galactic Spaceship Breaking Apart in Mid-Air ~ Survivor Peter Siebold tells his story


The Virgin Galactic Two Spaceship

news.com.au

THE pilot who miraculously survived the Virgin spaceship disaster has revealed how he was blasted from the wreckage of the disintegrating rocket ship and plummeted nearly ten miles back to Earth. 

Having suffered serious injuries, the experienced test pilot only regained consciousness halfway into his fall but was composed enough to give a thumbs-up to colleagues in a passing aircraft to show he was alive.

Peter Siebold spoke for the first time about the tragedy that killed his close friend, copilot Mike Alsbury, revealing he blacked out as the craft broke up around him at 50,000ft but was saved by his emergency parachute.

Siebold, 43, a married father of two, said: “I must have lost consciousness at first. I can’t remember anything about what happened but I must have come to during the fall. I remember waving to the chase plane and giving them the thumbs-up to tell them I was OK. I know it’s a miracle I survived.”


Perished ... Mike Alsbury was a close friend and colleague of Peter Siebold.
Perished ... Mike Alsbury was a close friend and colleague of Peter Siebold. Source: AP

Survivor ... Peter Siebold can’t remember much of what happened that day. 
Survivor ... Peter Siebold can’t remember much of what happened that day.  Source: AP


Explosion ... These three images show the space craft’s demise.
Explosion ... These three images show the space craft’s demise. Source: AP
The craft’s rocket was ignited at 50,000ft (15.24km). The pilots, wearing oxygen masks, were pinned against their seats by gravitational forces as the craft accelerated at more than 1500km/h.
Then disaster occurred. Preliminary investigations suggest that the rocket ship’s folding wings — designed to slow it down and achieve safe speeds during landing — deployed early, causing the ship to break up due to the tremendous turbulence around the craft.

Alsbury was trapped in the cockpit but Siebold was thrown clear of the wreckage or somehow unbuckled his seatbelt. He then plunged towards Earth at speeds topping 193km/h. Witnesses reported seeing Siebold descending with part of the base of his seat still attached. It is likely that his oxygen mask, attached to a portable tank, remained in place. But at that altitude, the sudden decompression and extreme G-forces would have caused him to black out in seconds.

His emergency parachute deployed t about 20,000ft. It is not known if he pulled the cord or if it unfurled automatically. Both pilots were wearing parachutes calibrated to open automatically at a certain height in the event they became unconscious during an emergency.

Incredible ... Siebold has no idea how he managed to exit the space ship, given it has no
Incredible ... Siebold has no idea how he managed to exit the space ship, given it has no ejection seat. Source: AFP

The body of Alsbury, 39, was found still strapped into his seat on a desert road by construction workers. His parachute did not deploy. His wife Michelle said she had “lost the love of my life”.


Mike, second from right, was a friend and neighbour of Siebold.
Mike, second from right, was a friend and neighbour of Siebold. Source: Supplied

Big sky dreaming ... Sir Richard Branson vowed to become an astronaut by the end of the y
Big sky dreaming ... Sir Richard Branson vowed to become an astronaut by the end of the year. Source: AP

The investigation into this month’s crash is now likely to delay any commercial flight for at least another year. But Branson has vowed to press ahead with the project, while acknowledging the risks taken by his test pilots. Last night, Mr Whitesides paid tribute to Siebold, saying: “It will be regarded as one of the most amazing test flight survival stories of all time.”
Additional reporting by Peter Sheridan

View Article Here Read More

Former Lockheed Martin engineer said he spoke with aliens — and has pictures to prove it ~ Video


Former Lockheed Martin engineer Boyd Bushman



Boyd Bushman, who passed away in August, said it takes 45 years for aliens from the planet Quintumnia to reach Earth — and they are divided into 'wranglers' and 'rustlers.'
A former Lockheed Martin engineer showed off his pictures of aliens this summer that he claims to have obtained through conversations with extraterrestrial life.

Boyd Bushman, who died in August at the age of 78, claimed some of the aliens were 230 years old and that there are “American citizens who are working on UFOs 24 hours a day.”

He spoke with independent aerospace engineer Mark Q. Patterson shortly before his death, and Patterson posted the interview to YouTube in October.

Bushman reportedly served as a senior research engineer for Lockheed Martin Skunk Works, Texas Instruments and Hughes Aircraft and talked about his experience at Area 51, the U.S. Air Force base in southern Nevada that’s been the subject of alien folklore.
Bushman describes the aliens as being 4 1/2-to-5-feet tall and have long fingers, webbed feet and come from a planet known as Quintumnia. It takes only 45 years for them to travel to Earth, he said.

The former engineer even gave them an assignment: photograph the planets as they make the voyage to Earth — and he claimed to have those photos. He said they travel using UFOs that are 38 feet in diameter while 18 of the aliens now work with facilities in the United States.

“There are two groups of aliens,” he said, adding that they exist in a kind of “cattle ranch” on the planet. “They divide them into two groups. One group are wranglers, and the others are rustlers – the ones who are stealers of cattle. The two groups act differently. The ones that are wranglers are much more friendly, and have a better relationship with us."


Click to zoom

View Article Here Read More
Older posts Newer posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑