Tag: assume (page 1 of 3)

Why the Government Refuses to Turn Against Monsanto

Ready Or Not ... Here We Come! A Message From Archangel Michael/Ashtar Sheran

Dr. Mercola, GuestIn the video below, Funny or Die pokes fun at Monsanto’s “feeding the world” message by highlighting some of the most obvious features of genetically engineered (GE) foods, such as the unnatural crossing of genetic material between plant and animal kingdoms, the use of toxic chemicals and Monsanto’s ever-expanding monopoly.​“I own everything!” Mama Monsanto exclaims, and that’s pretty close to the truth. Monsanto [...]

View Article Here Read More

5 Ascension Insights Most People Aren’t Talking About: Insight #3

By Mercedes Kirkel INSIGHT #3: DON’T ASSUME YOUR PROCESS WILL LOOK LIKE ANYONE ELSE’S   Most, if not all, of the difficult symptoms people experience in the ascension process are signs of purification. As our energy system opens to stronger and higher frequencies, any blocks we have in our energy circuits are getting blasted with […]

View Article Here Read More

Chronic Illness Begins With Breakdown In Your Gut

Dr. Ben Kim, GuestGood overall health begins with a healthy gut. Chronic illness begins with breakdown in the gut.This is where I typically start with clients looking to address any health challenge.If you’re looking for lasting improvement in any area of your health, it’s best not to think of your body parts as being independent compartments. Every cell communicates with every other cell, not always directly, but via the fluids, hormones, and neurotransmitters that trave [...]

View Article Here Read More

11 Common Symptoms of the Global Depopulation Slow Kill

Sigmund Fraud, Staff Writer“Maintain humanity under 500,000,000 in perpetual balance with nature.” – The Georgia GuidestonesThe full-spectrum global attack on human health is quite obvious to see for anyone who is paying attention and in search of wellness. So many of the factors that are negatively influencing public heath could easily be prevented or removed from society, yet the decisions of the ruling class continue to ensure that our food supply [...]

View Article Here Read More

Super Alien Civilizations: What Do They Really Want?

Excerpt from huffingtonpost.comHighly advanced aliens seem MIA, according to a recent study by astronomers at Penn State University. These researchers checked out a huge gob of cosmic real estate -- roughly 100,000 galaxies -- and failed to find cl...

View Article Here Read More

What astronomers learned when Messenger space probe crashed into Mercury



Excerpt from statecolumn.com


On April 30, NASA concluded an historic voyage known as the Mercury Surface, Space Environment, Geochemistry and Ranging mission. The mission came to an end when the spacecraft carrying analytical instruments, Messenger, crashed into the planet’s surface after consuming all of its fuel.
The mission was far from a waste, however, as NASA rarely expects to see the majority of the spacecraft they launch ever again. According to Discovery, The probe sent back a spectacular photo of the surface of Mercury, using the craft’s Narrow Angle Camera in tandem with the Mercury Dual Imaging System. The photo shows a mile-wide view of the nearby planet’s surface in 2.1 meters per pixel resolution.
Right after the probe delivered the photo to NASA’s Deep Space Network, which is a collection of global radio antennae that tracks data on the agency’s robotic missions around the solar system, the signal was lost in what scientists assume was the craft’s final contact with the closest planet to the sun.
The four-year mission came to an end when the craft could no longer maintain its orbit around the solar system’s innermost planet due to lack of fuel. Mercury is just 36 miles from the sun, compared to Earth, which is 93 million miles away from the center of the solar system. Mercury is a peculiar world, with both frigid and extremely hot temperatures. Messenger also revealed that Mercury has a magnetic field similar to that of Earth’s, created by the motion of metallic fluids within the planet’s core.
The main challenge the Messenger mission faced was getting the space probe into orbit around Mercury. Due to the planet’s proximity to the sun, it was extremely difficult for flight engineers to avoid its gravitational pull. In addition to the challenge of catching Mercury’s comparatively weak gravitational force, high temperatures also made things tricky. Messenger was equipped with a sunshield designed to protect the spaceship cool on the side that faced the sun. NASA engineers also attempted to chart a long, elliptical orbit around Mercury, giving Messenger time to cool off as it rounded the backside of the planet.
Messenger made over 4,000 orbits around Mercury between 2011 and 2015, many more than the originally planned one-year mission would allow.
With the close-up shots of Mercury’s surface provided by Messenger, NASA scientists were able to detect trace signals of magnetic activity in Mercury’s crust. Using clues from the number of impact craters on the surface, scientists figured that Mercury’s magnetized regions could be as old as 3.7 billion years. Astronomers count the craters on a planet in order to estimate its age – the logic being that younger surfaces should have fewer impact sites than older surfaces.
The data sent back by Messenger has caused astronomers to reconsider their understanding of Mercury’s magnetic history. They now date the beginning of magnetism on Mercury to about 700 million years after the planet was formed. They cannot say for sure, however, if the magnetic field has been consistently active over this timeframe.
According to Messenger guest investigator Catherine Johnson, geophysicist at the University of British Columbia in Vancouver, that it was possible the magnetic field has been active under constant conditions, though she suspects it might also oscillate over time, like Earth’s. Information for the time period between 4 billion years ago and present day is sparse, though Johnson added that additional research is in the pipeline.
Johnson was pleased, however, with the insight offered into Mercury’s formation provided by these new magnetic clues. Magnetism on a planetary scale typically indicates a liquid metal interior. Since Mercury is so tiny, scientists originally believed that its center would be solid, due to the rate of cooling. The presence of liquid in the planet’s center suggests other materials’ presence, which would lower the freezing point. This suggests that a totally solid core would be unlikely.
Mercury’s magnetic field offers valuable insight into the formation of the planet, the solar system, and even the universe. Magnetism on Mercury indicates that it has a liquid iron core, according to Messenger lead scientist Sean Solomon of Columbia University.

View Article Here Read More

Aliens Might Weigh As Much As Polar Bears And Be Taller Than The Tallest Man Who Ever Lived





Excerpt from huffingtonpost.com

No one really knows whether we're alone or if the universe is brimming with brainy extraterrestrials. But that hasn't stopped scientists from trying to figure out what form intelligent aliens might take. 

And as University of Barcelona cosmologist Dr. Fergus Simpson argues in a new paper, most intelligent alien species would likely exceed 300 kilograms (661 pounds)--with the median body mass "similar to that of a polar bear."

If such a being had human proportions, Simpson told The Huffington Post in an email, it would be taller than Robert Wadlow, who at 8 feet, 11 inches is believed to have been the tallest human who ever lived.

robert wadlowRobert Wadlow (1918-1940), the tallest man who ever lived.


Simpson's paper, which is posted on the online research repository arXiv.org, is chockablock with formidable-looking mathematical equations. But as he explained in the email, his starting point was to consider the relationship between the number of individuals in a population on Earth and the body mass of those individuals:
"Ants easily outnumber us because they are small. Our larger bodies require a much greater energy supply from the local resources, so it would be impossible for us to match the ant population. Now apply this concept to intelligent life across the universe. On average, we should expect physically larger species to have fewer individuals than the smaller species. And, just like with countries, we should expect to be in one of the bigger populations. In other words, we are much more likely to find ourselves to be the ants among intelligent species."

Or, as Newsweek explained Simpson's argument, there are probably more planets with relatively small animals than planets with relatively large animals. It makes sense to assume that Earth is in the former category, so we can assume that humans are probably among the smaller intelligent beings.


What do other scientists make of Simpson's paper?

“I think the average size calculation is reasonable,” Dr. Duncan Forgan, an astrobiologist at the University of St. Andrews in Scotland who wasn't involved in the research, told Newsweek.
But to Dr. Seth Shostak, senior astronomer at the SETI Institute in Mountain View, Calif., the argument is suspect.

"There is an assumption here that intelligence can come in all (reasonable) sizes, and does so with more or less equal likelihood," Shostak told The Huffington Post in an email. "That may be true, but on Earth bigger has not always been better, at least in the brains department. Dolphins have higher IQs than whales, and crows are smarter than eagles. Octopuses are cleverer than giant squids, and obviously we’re smarter than polar bears."

Ultimately, Shostak said, we can’t know whether "little green men are actually big green men" before we actually make contact.
Until then!

View Article Here Read More

Did natural selection make the Dutch the tallest people on the planet?

Dutch national women's field hockey team



Excerpt from news.sciencemag.org
ByMartin Enserink

AMSTERDAM—Insecure about your height? You may want to avoid this tiny country by the North Sea, whose population has gained an impressive 20 centimeters in the past 150 years and is now officially the tallest on the planet. Scientists chalk up most of that increase to rising wealth, a rich diet, and good health care, but a new study suggests something else is going on as well: The Dutch growth spurt may be an example of human evolution in action.
The study, published online today in the Proceedings of the Royal Society B, shows that tall Dutch men on average have more children than their shorter counterparts, and that more of their children survive. That suggests genes that help make people tall are becoming more frequent among the Dutch, says behavioral biologist and lead author Gert Stulp of the London School of Hygiene & Tropical Medicine.

"This study drives home the message that the human population is still subject to natural selection," says Stephen Stearns, an evolutionary biologist at Yale University who wasn't involved in the study. "It strikes at the core of our understanding of human nature, and how malleable it is." It also confirms what Stearns knows from personal experience about the population in the northern Netherlands, where the study took place: "Boy, they are tall."

For many years, the U.S. population was the tallest in the world. In the 18th century, American men were 5 to 8 centimeters taller than those in the Netherlands. Today, Americans are the fattest, but they lost the race for height to northern Europeans—including Danes, Norwegians, Swedes, and Estonians—sometime in the 20th century.

Just how these peoples became so tall isn't clear, however. Genetics has an important effect on body height: Scientists have found at least 180 genes that influence how tall you become. Each one has only a small effect, but together, they may explain up to 80% of the variation in height within a population. Yet environmental factors play a huge role as well. The children of Japanese immigrants to Hawaii, for instance, grew much taller than their parents. Scientists assume that a diet rich in milk and meat played a major role.

The Dutch have become so much taller in such a short period that scientists chalk most of it up to their changing environment. As the Netherlands developed, it became one of the world's largest producers and consumers of cheese and milk. An increasingly egalitarian distribution of wealth and universal access to health care may also have helped.

Still, scientists wonder whether natural selection has played a role as well. For men, being tall is associated with better health, attractiveness to the opposite sex, a better education, and higher income—all of which could lead to more reproductive success, Stulp says.
Yet studies in the United States don't show this. Stulp's own research among Wisconsinites born between 1937 and 1940, for instance, showed that average-sized men had more children than shorter and taller men, and shorter women had more children than those of average height. Taken together, Stulp says, this suggests natural selection in the United States pulls in the opposite direction of environmental factors like diet, making people shorter instead of taller. That may explain why the growth in average American height has leveled off.

Stulp—who says his towering 2-meter frame did not influence his research interest—wondered if the same was true in his native country. To find out, he and his colleagues turned to a database tracking key life data for almost 100,000 people in the country's three northern provinces. The researchers included only people over 45 who were born in the Netherlands to Dutch-born parents. This way, they had a relatively accurate number of total children per subject (most people stop having children after 45) and they also avoided the effects of immigration.

In the remaining sample of 42,616 people, taller men had more children on average, despite the fact that they had their first child at a higher age. The effect was small—an extra 0.24 children at most for taller men—but highly significant. (Taller men also had a smaller chance of remaining childless, and a higher chance of having a partner.)  The same effect wasn't seen in women, who had the highest reproductive success when they were of average height.  The study suggests this may be because taller women had a smaller chance of finding a mate, while shorter women were at higher risk of losing a child.

Because tall men are likely to pass on the genes that made them tall, the outcome suggests that—in contrast to Americans—the Dutch population is evolving to become taller, Stulp says. "This is not what we've seen in other studies—that's what makes it exciting," says evolutionary biologist Simon Verhulst of the University of Groningen in the Netherlands, who was Stulp's Ph.D. adviser but wasn't involved in the current study. Verhulst points out that the team can't be certain that genes involved in height are actually becoming more frequent, however, as the authors acknowledge.

The study suggests that sexual selection is at work in the Dutch population, Stearns says: Dutch women may prefer taller men because they expect them to have more resources to invest in their children. But there are also other possibilities. It could be that taller men are more resistant to disease, Stearns says, or that they are more likely to divorce and start a second family. "It will be a difficult question to answer.”

Another question is why tall men in Holland are at a reproductive advantage but those in the United States are not. Stulp says he can only speculate. One reason may be that humans often choose a partner who's not much shorter or taller than they are themselves. Because shorter women in the United States have more children, tall men may do worse than those of average height because they're less likely to partner with a short woman.

In the end, Stearns says, the advantage of tall Dutchmen may be only temporary. Often in evolution, natural selection will favor one trend for a number of generations, followed by a stabilization or even a return to the opposite trend. In the United States, selection for height appears to have occurred several centuries ago, leading to taller men, and then it stopped. "Perhaps the Dutch caught up and actually overshot the American men," he says.

View Article Here Read More

Why the U.S. Gave Up on the Moon

Moon nearside



Excerpt from spacenews.com


Recently, several space advocacy groups joined forces to form the Alliance for Space Development. Their published objectives include a mention of obvious near-term goals such as supporting the commercial crew program, transitioning from use of the International Space Station to future private space stations and finding ways to reduce the cost of access to space.  What is notably missing from these objectives and those of many other space agencies, companies and advocacy groups is any mention of building a permanent settlement on the moon. It’s as if the lunar surface has become our crazy uncle that we all acknowledge exists but we’d prefer not to mention (or visit).  What made the next logical step in mankind’s progression beyond the bounds of Earth such a taboo subject?  If, as the Alliance for Space Development suggests, our nation wishes to move toward a path of permanent space settlements, the most logical step is our own planet’s satellite.

Lunar base conception
A 2006 NASA conception of a lunar base. Credit: NASA


A base on the lunar surface is a better place to study space settlement than a space station or Mars for many reasons. Unlike a space station, the base does not have to contend with aerodynamic drag, attitude control issues or contamination and impingement from its own thrusters. Unlike a space station, which exists in a total vacuum and resource void, a lunar base has access to at least some surface resources in the forms of minerals, albeit fewer than might be available on Mars.  Many people naturally want to go directly to Mars as our next step. Even SpaceX has publicly stated this as its ultimate goal, with SpaceX President Gwynne Shotwell noting that “we’re not moon people.” However, Mars makes sense only if we think the technology is ready to safely support humans on another surface for long periods of time. Furthermore, budget restrictions make an ambitious goal like going immediately to Mars an unlikely prospect. Why are we afraid to take the seemingly necessary baby steps of developing the technology for a long-term base on a surface that can be reached in mere days instead of months?  The tendency to want to skip a lunar settlement is not a new phenomenon. Even before the first landing on the moon, U.S. and NASA political leadership was contemplating the future of manned space, and few of the visions involved a lunar base. The early space program was driven by Cold War competition with Moscow, and the kinds of ideas that circulated at the time involved milestones that seemed novel such as reusable spaceplanes, nuclear-powered rockets, space stations and missions to Mars. 

When the United States was on the verge of a series of landings on the moon, building a permanent base just didn’t seem like much of a new giant leap. NASA's ConstellationNASA’s Constellation program, featuring the Orion manned capsule set atop the Ares 1 launch vehicle, was meant to send astronauts back to the moon. Credit: NASA  The idea of a lunar landing mission was not reintroduced seriously until the George W. Bush administration and the introduction of the Constellation program. This program came at a complex time for NASA: The space shuttle was recovering from the Columbia disaster, the space station was in the midst of construction and the United States found itself with large budget deficits. However, despite its budgetary and schedule problems, which are common in any serious aerospace development project from space programs to jumbo-jet development, it provided NASA with a vision and a goal that were reasonable and sensible as next steps toward a long-term future of exploration beyond Earth. 

Constellation was nevertheless canceled, and we have since returned to a most uncommon sense.  The decision to avoid any sort of lunar activity in current space policy may have been biased by the Obama administration’s desire to move as far away as possible from the policies of the previous administration. 

Regardless of the cause, discussion of returning to the moon is no longer on the table.  Without the moon, the only feasible mission that NASA could come up with that is within reach given the current technology and budget is the Asteroid Redirect Mission.  
Even planetary scientists have spoken out against the mission, finding that it will provide little scientific value. It will also provide limited engineering and technology value, if we assume that our long-term goal is to permanently settle space. The experience gained from this sort of flight has little applicability to planetary resource utilization, long-term life support or other technologies needed for settlement.  

If we are to have a program of manned space exploration, we must decide what the long-term goals of such a program should be, and we should align our actions with those goals. When resources such as funding are limited, space agencies and political leaders should not squander these limited resources on missions that make no sense. Instead, the limited funding should be used to continue toward our long-term goals, accepting a slower pace or slight scale-back in mission scope.  Establishing a permanent human settlement in space is a noble goal, one that will eventually redefine humanity. Like explorers before us, it is also not a goal that will be achieved in a short period of time. We would be wise to keep our eyes on that goal and the road needed to get us there. And the next likely stop on that road is a permanent home just above our heads, on the surface of the brightest light in the night sky.  

Paul Brower is an aerospace systems engineer on the operations team for the O3b Networks satellite fleet. He previously worked in mission control at NASA for 10 years.
Recently, several space advocacy groups joined forces to form the Alliance for Space Development. Their published objectives include a mention of obvious near-term goals such as supporting the commercial crew program, transitioning from use of the International Space Station to future private space stations and finding ways to reduce the cost of access to space.
What is notably missing from these objectives and those of many other space agencies, companies and advocacy groups is any mention of building a permanent settlement on the moon. It’s as if the lunar surface has become our crazy uncle that we all acknowledge exists but we’d prefer not to mention (or visit).
What made the next logical step in mankind’s progression beyond the bounds of Earth such a taboo subject?
If, as the Alliance for Space Development suggests, our nation wishes to move toward a path of permanent space settlements, the most logical step is our own planet’s satellite.
Lunar base conception
A 2006 NASA conception of a lunar base. Credit: NASA
A base on the lunar surface is a better place to study space settlement than a space station or Mars for many reasons. Unlike a space station, the base does not have to contend with aerodynamic drag, attitude control issues or contamination and impingement from its own thrusters. Unlike a space station, which exists in a total vacuum and resource void, a lunar base has access to at least some surface resources in the forms of minerals, albeit fewer than might be available on Mars.
Many people naturally want to go directly to Mars as our next step. Even SpaceX has publicly stated this as its ultimate goal, with SpaceX President Gwynne Shotwell noting that “we’re not moon people.” However, Mars makes sense only if we think the technology is ready to safely support humans on another surface for long periods of time. Furthermore, budget restrictions make an ambitious goal like going immediately to Mars an unlikely prospect. Why are we afraid to take the seemingly necessary baby steps of developing the technology for a long-term base on a surface that can be reached in mere days instead of months?
The tendency to want to skip a lunar settlement is not a new phenomenon. Even before the first landing on the moon, U.S. and NASA political leadership was contemplating the future of manned space, and few of the visions involved a lunar base. The early space program was driven by Cold War competition with Moscow, and the kinds of ideas that circulated at the time involved milestones that seemed novel such as reusable spaceplanes, nuclear-powered rockets, space stations and missions to Mars. When the United States was on the verge of a series of landings on the moon, building a permanent base just didn’t seem like much of a new giant leap.
NASA's Constellation
NASA’s Constellation program, featuring the Orion manned capsule set atop the Ares 1 launch vehicle, was meant to send astronauts back to the moon. Credit: NASA
The idea of a lunar landing mission was not reintroduced seriously until the George W. Bush administration and the introduction of the Constellation program. This program came at a complex time for NASA: The space shuttle was recovering from the Columbia disaster, the space station was in the midst of construction and the United States found itself with large budget deficits. However, despite its budgetary and schedule problems, which are common in any serious aerospace development project from space programs to jumbo-jet development, it provided NASA with a vision and a goal that were reasonable and sensible as next steps toward a long-term future of exploration beyond Earth.
Constellation was nevertheless canceled, and we have since returned to a most uncommon sense.
The decision to avoid any sort of lunar activity in current space policy may have been biased by the Obama administration’s desire to move as far away as possible from the policies of the previous administration. Regardless of the cause, discussion of returning to the moon is no longer on the table.
Without the moon, the only feasible mission that NASA could come up with that is within reach given the current technology and budget is the Asteroid Redirect Mission.
Even planetary scientists have spoken out against the mission, finding that it will provide little scientific value. It will also provide limited engineering and technology value, if we assume that our long-term goal is to permanently settle space. The experience gained from this sort of flight has little applicability to planetary resource utilization, long-term life support or other technologies needed for settlement.
Advertisement
If we are to have a program of manned space exploration, we must decide what the long-term goals of such a program should be, and we should align our actions with those goals. When resources such as funding are limited, space agencies and political leaders should not squander these limited resources on missions that make no sense. Instead, the limited funding should be used to continue toward our long-term goals, accepting a slower pace or slight scale-back in mission scope.
Establishing a permanent human settlement in space is a noble goal, one that will eventually redefine humanity. Like explorers before us, it is also not a goal that will be achieved in a short period of time. We would be wise to keep our eyes on that goal and the road needed to get us there. And the next likely stop on that road is a permanent home just above our heads, on the surface of the brightest light in the night sky.

Paul Brower is an aerospace systems engineer on the operations team for the O3b Networks satellite fleet. He previously worked in mission control at NASA for 10 years.
- See more at: http://spacenews.com/op-ed-why-the-u-s-gave-up-on-the-moon/#sthash.czfTscvg.dpuf

View Article Here Read More

Top Secret Government Programs That Your Not Supposed To Know About

Originally Posted at in5d.com The following is the alleged result of the actions of one or more scientists creating a covert, unauthorized notebook documenting their involvement with an Above Top Secret government program. Government publications and information obtained by the use of public tax monies cannot be subject to copyright. This document is released into the public domain for all citizens of the United States of America. THE ‘MAJIC PROJECTS’ SIGMA is the project whic [...]

View Article Here Read More

New research shows billions of habitable planets exist in our galaxy



CGI of how the Milky Way galaxy may appear from deep space


Excerpt from thespacereporter.com


Analysis of data collected by NASA’s Kepler space telescope has led researchers at the Australian National University and the Niels Bohr Institute to conclude that Earth is only one of billions of potentially life-sustaining planets in our galaxy.

In order for a planet to sustain life, it must orbit its star at just the right distance to provide sufficient light and warmth to maintain liquid water without too much radiation. This perfect orbital distance is considered to be the habitable zone.

According to a Weather Channel report, there are an average of two planets per star in the Milky Way Galaxy orbiting within their habitable zones. That brings the total number of planets with the potential for holding liquid water to 100 billion.

Scientists assume that water would be an essential ingredient for life to evolve on other planets, but it is not a certainty.

“If you have liquid water, then you should have better conditions for life, we think,” said Steffen Jacobsen of Niels Bohr. “Of course, we don’t know this yet. We can’t say for certain.”

To reach their conclusion, the researchers studied 151 planetary systems and focused on those with four or more planets. They used a concept called the Titus-Bode law to calculate where unseen planets might be located in a system based on the placements of other planets around the star. The Titus-Bode law suggested the existence of Uranus before it was actually seen.

The data will require further analysis and the sky will require further searching to yield a more accurate number of potentially life-harboring planets.
“Some of these planets are so small the Kepler team will probably have missed them in the first attempt because the signals we get are so weak. They may be hidden in the noise,” Jacobsen said.

The initial analysis, however, is extremely promising in the possibility of finding habitable planets. “Our research indicates that there are a lot of planets in the habitable zone and we know there are a lot of stars like the one we’re looking at. We know that means we’re going to have many billions of planets in the habitable zone,” said Jacobsen, who considers that “very good news for the search for life.”

View Article Here Read More

Are We An Alien Experiment?

Although its possible those responsible for our Earthen experiment may possess a far different form then we, I feel it more probable we were created in our family's image. Greg  Excerpt from rense.com  Even the most hardened skeptic mus...

View Article Here Read More

Should Humanity Try to Contact Alien Civilizations?



Some researchers want to use big radio dishes like the 305-meter Arecibo Observatory in Puerto Rico to announce our presence to intelligent aliens.



Excerpt from space.com
by Mike Wall

Is it time to take the search for intelligent aliens to the next level?
For more than half a century, scientists have been scanning the heavens for signals generated by intelligent alien life. They haven't found anything conclusive yet, so some researchers are advocating adding an element called "active SETI" (search for extraterrestrial intelligence) — not just listening, but also beaming out transmissions of our own designed to catch aliens' eyes.

Active SETI "may just be the approach that lets us make contact with life beyond Earth," Douglas Vakoch, director of interstellar message composition at the SETI Institute in Mountain View, California, said earlier this month during a panel discussion at the annual meeting of the American Association for the Advancement of Science (AAAS) in San Jose.

Seeking contact


Vakoch envisions using big radio dishes such as the Arecibo Observatory in Puerto Rico to blast powerful, information-laden transmissions at nearby stars, in a series of relatively cheap, small-scale projects.

"Whenever any of the planetary radar folks are doing their asteroid studies, and they have an extra half an hour before or after, there's always a target star readily available that they can shift to without a lot of extra slough time," he said.

The content of any potential active SETI message is a subject of considerable debate. If it were up to astronomer Seth Shostak, Vakoch's SETI Institute colleague, we'd beam the entire Internet out into space.

"It's like sending a lot of hieroglyphics to the 19th century — they [aliens] can figure it out based on the redundancy," Shostak said during the AAAS discussion. "So, I think in terms of messages, we should send everything."

While active SETI could help make humanity's presence known to extrasolar civilizations, the strategy could also aid the more traditional "passive" search for alien intelligence, Shostak added.
"If you're going to run SETI experiments, where you're trying to listen for a putative alien broadcast, it may be very instructive to have to construct a transmitting project," he said. "Because now, you walk a mile in the Klingons' shoes, assuming they have them."

Cause for concern?

But active SETI is a controversial topic. Humanity has been a truly technological civilization for only a few generations; we're less than 60 years removed from launching our first satellite to Earth orbit, for example. So the chances are that any extraterrestrials who pick up our signals would be far more advanced than we are. 

This likelihood makes some researchers nervous, including famed theoretical physicist Stephen Hawking.

"Such advanced aliens would perhaps become nomads, looking to conquer and colonize whatever planets they could reach," Hawking said in 2010 on an episode of "Into the Universe with Stephen Hawking," a TV show that aired on the Discovery Channel. "If so, it makes sense for them to exploit each new planet for material to build more spaceships so they could move on. Who knows what the limits would be?"

Astrophysicist and science fiction author David Brin voiced similar concerns during the AAAS event, saying there's no reason to assume that intelligent aliens would be altruistic.

"This is an area in which discussion is called for," Brin said. "What are the motivations of species that they might carry with them into their advanced forms, that might color their cultures?"

Brin stressed that active SETI shouldn't be done in a piecemeal, ad hoc fashion by small groups of astronomers.

"This is something that should be discussed worldwide, and it should involve our peers in many other specialties, such as history," he said. "The historians would tell us, 'Well, gee, we have some examples of first-contact scenarios between advanced technological civilizations and not-so-advanced technological civilizations.' Gee, how did all of those turn out? Even when they were handled with goodwill, there was still pain."

Out there already

Vakoch and Shostak agreed that international discussion and cooperation are desirable. But Shostak said that achieving any kind of consensus on the topic of active SETI may be difficult. For example, what if polling reveals that 60 percent of people on Earth are in favor of the strategy, while 40 percent are opposed?

"Do we then have license to go ahead and transmit?" Shostak said. "That's the problem, I think, with this whole 'let's have some international discussion' [idea], because I don't know what the decision metric is."

Vakoch and Shostak also said that active SETI isn't as big a leap as it may seem at first glance: Our civilization has been beaming signals out into the universe unintentionally for a century, since the radio was invented.

"The reality is that any civilization that has the ability to travel between the stars can already pick up our accidental radio and TV leakage," Vakoch said. "A civilization just 200 to 300 years more advanced than we are could pick up our leakage radiation at a distance of several hundred light-years. So there are no increased dangers of an alien invasion through active SETI."

But Brin disputed this assertion, saying the so-called "barn door excuse" is a myth.

"It is very difficult for advanced civilizations to have picked us up at our noisiest in the 1980s, when we had all these military radars and these big television antennas," he said.

Shostak countered that a fear of alien invasion, if taken too far, could hamper humanity's expansion throughout the solar system, an effort that will probably require the use of high-powered transmissions between farflung outposts.

"Do you want to hamstring all that activity — not for the weekend, not just shut down the radars next week, or active SETI this year, but shut down humanity forever?" Shostak said. "That's a price I'm not willing to pay."

So the discussion and debate continues — and may continue for quite some time.

"This is the only really important scientific field without any subject matter," Brin said. "It's an area in which opinion rules, and everybody has a very fierce opinion."

View Article Here Read More
Older posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑