Tag: April (page 4 of 17)

Secretive X-37B Military Space Plane Preps for Another Mystery Mission


X-37B Space Plane in Orbit: Artist’s Concept
Artist's illustration of the U.S. Air Force's X-37B space plane in orbit. The mysterious spacecraft is scheduled to launch on its fourth mission on May 20, 2015.
Credit: NASA Marshall Space Flight Center




Excerpt from space.com


The United States Air Force's X-37B space plane will launch on its fourth mystery mission next month.
The unmanned X-37B space plane, which looks like a miniature version of NASA's now-retired space shuttle orbiter, is scheduled to blast off atop a United Launch Alliance Atlas V rocket from Florida's Cape Canaveral Air Force Station on May 20.

"We are excited about our fourth X-37B mission," Randy Walden, director of the Air Force Rapid Capabilities Office, said in a statement. "With the demonstrated success of the first three missions, we’re able to shift our focus from initial checkouts of the vehicle to testing of experimental payloads." 

The X-37B's payloads and specific activities are classified, so it's unclear exactly what the spacecraft does while zipping around the Earth. But Air Force officials have revealed a few clues about the upcoming mission.

"The Air Force Research Laboratory (AFRL), Space and Missile Systems Center (SMC) and the Air Force Rapid Capabilities Office (AFRCO) are investigating an experimental propulsion system on the X-37B on Mission 4," Capt. Chris Hoyler, an Air Force spokesman, told Space.com via email.  

"AFRCO will also host a number of advance materials onboard the X-37B for the National Aeronautics and Space Administration (NASA) to study the durability of various materials in the space environment," Hoyler added.

The Air Force owns two X-37B space planes, both of which were built by Boeing's Phantom Works division. The solar-powered spacecraft are about 29 feet long by 9.5 feet tall (8.8 by 2.9 meters), with a wingspan of 15 feet (4.6 m) and a payload bay the size of a pickup-truck bed. The X-37B launches vertically atop a rocket and lands horizontally on a runway, like the space shuttle did.

One of the two X-37B vehicles flew the program's first and third missions, which were known as OTV-1 and OTV-3, respectively. ("OTV" is short for "Orbital Test Vehicle.") The other spacecraft flew OTV-2. Air Force officials have not revealed which space plane will be going to orbit on the upcoming mission.

OTV-1 launched in April 2010 and landed in December of that year, staying in orbit for 225 days. OTV-2 blasted off in March 2011 and circled Earth for 469 days, coming down in June 2012. OTV-3 launched in December 2012 and stayed aloft for a record-breaking 675 days, finally landing in October 2014.

Recovery Crew Processes X-37B Space Plane
A recovery team processes the U.S. Air Force's X-37B space plane after the robotic spacecraft's successful landing at Vandenberg Air Force Base in California on Oct. 17, 2014. The touchdown marked the end of the X-37B’s third space mission.
Credit: Boeing

If Air Force officials know how long OTV-4 is going to last, they're not saying.

"The X-37B is designed for an on-orbit duration of 270 days," Hoyler said. "Longer missions have been demonstrated. As with previous missions, the actual duration will depend on test objectives, on-orbit vehicle performance and conditions at the landing facility."

The secrecy surrounding the X-37B and its payloads has fueled speculation in some quarters that the vehicle could be a space weapon of some sort. But Air Force officials have repeatedly refuted that notion.

"The primary objectives of the X-37B are twofold: reusable spacecraft technologies for America's future in space, and operating experiments which can be returned to, and examined, on Earth," Air Force officials wrote in on online X-37B fact sheet. 

"Technologies being tested in the program include advanced guidance, navigation and control; thermal protection systems; avionics; high-temperature structures and seals; conformal reusable insulation, lightweight electromechanical flight systems; and autonomous orbital flight, re-entry and landing."

View Article Here Read More

Explosive Culprit? Russian Fireball’s Origins Found


A photograph of the Annama meteorite fireball over Russia's Kola Peninsula.



Excerpt from space.com

A crackling fireball that exploded over Russia last year appears to share an orbit with a huge asteroid discovered in October 2014, a new study reports.

The Kola fireball was spotted on April 19, 2014, as it lit up the night sky above the Kola Peninsula near the Finnish-Russian border. Its orbit is "disturbingly similar" to the asteroid 2014 UR116, slated to pass by the moon in 2017, the study authors said.
Camera observations by the Finnish Fireball Network, which monitors the sky for meteors and fireballs, and video from eyewitnesses helped scientists recreate the meteoroid's trajectory and hunt down meteorite fragments on the ground. 


Josep Maria Trigo-Rodríguez, a researcher at the Institute of Space Sciences in Barcelona, Spain, led the international team of scientists who analyzed the meteorite's orbit. They calculated the fireball's size and path through Earth's atmosphere by examining its flight and the meteorite's final impact site. A computer model based on these figures was used to estimate the space rock's orbital path. 

The 1,100-pound (500 kilogram) meteorite is an ordinary H5 chondrite, a type of stony meteorite responsible for 31 percent of Earth's impacts. The fragments are called the "Annama meteorite" because the meteorite fell near the Annama River in Russia.

Annama meteorite

The precise detective works suggests the fireball escaped from the innermost region of the asteroid belt, the study researchers reported. The rock has an elliptical orbit that is typical of the Apollo family of near-Earth orbiting asteroids, and it likely came from the same broad source region as the Lost City, Peekskill and Buzzard Coulee meteorites, the researchers said.

The researchers compared the Annama meteorite's orbit with known near-Earth asteroids (there are more than 1,500). Of 12 potential matches, by far the closest match was with the asteroid 2014 UR116, they said.

The findings were published April 7 in the journal Monthly Notices of the Royal Astronomical Society.

The new report does not suggest that asteroid 2014 UR116 flung the Annama meteorite directly at Earth. However, the two bodies could be related. Scientists think that streams of asteroid fragments — such as the remnants of interstellar collisions — can sail on nearly identical orbits. Tidal forces may stretch out these rocky debris patches over time. Asteroids may also fragment from the stress of passing near the planets, the researchers noted.

"The tidal effect on an asteroid, which rapidly rotates under the gravitational field of a planet, can fragment these objects or release large rocks from its surface, which could then become dangerous projectiles at a local scale, such as the one that fell in Chelyabinsk, Russia," Trigo-Rodríguez said in a statement.

Asteroid 2014 UR116, discovered by Russian scientists on Oct. 27, 2014, measures 1,312 feet (400 meters) across, but does not pose an impact danger to Earth, according to NASA.

View Article Here Read More

Source of puzzling cosmic signals found — in the kitchen






Parkes radio telescope
WHAT’S FOR DINNER? Signals detected by the Parkes radio telescope (pictured) suggest that intelligent life in the universe has a penchant for leftovers.



Excerpt from sciencenews.org

Mysterious radio signals detected by the Parkes telescope appear to come from an advanced civilization in the Milky Way. 

Unfortunately, it’s the one civilization we already know about.
Microwave ovens opened before they’re done cooking have been muddling the hunt for far more distant radio signals, researchers report online April 9 at arXiv.org. Astronomers have had to contend with enigmatic flares dubbed “perytons” ever since discovering equally puzzling fast radio bursts, or FRBs (SN: 8/9/14, p. 22), in 2007. Perytons and FRBs are quite similar, except that astronomers realized that perytons originate on Earth, possibly from some meteorological phenomenon, while FRBs come from other galaxies.

Three perytons in January coincided with independently detected blasts of 2.4 gigahertz radio waves — the same frequency that microwave ovens use to heat food. So researchers at the Parkes telescope in Australia spent weeks heating mugs of water while moving the massive radio dish around the sky, trying to re-create the phenomenon. Finally, researchers tried opening the oven door mid-cooking instead of letting the timer run out. Suddenly, perytons started showing up in the data.

The source of the galactic FRBs remain an intriguing mystery. Astronomers suspect they have something to do with imploding neutron stars or eruptions on magnetars. At this point, however, they might want to consider extraterrestrials nuking frozen pizzas.

View Article Here Read More

Mystery Methane Hotspot Over Four Corners — What Is It?

 Excerpt from eaglecurrent.com NASA is joining in an effort to have an understanding of the presence of a methane hotspot over the 4 corners area of the United States. How severe is the atmospheric feature?A methane hotspot hovering over t...

View Article Here Read More

Our sun is five billion years younger than most other stars in our galaxy






Excerpt from stgist.com



The sun, or the nearest star from Earth, was formed around 5 billion years after the Milky Way galaxy’s peak production of stars, a new research published in the Astrophysical Journal. 

Using multiple ground based, and space telescopes, including the Magellan Telescopes located at Las Campanas Observatory in South America, a new study was able to confirm that the closest star from us, the Sun, was formed after the so-called stellar “baby boom” of the Milky Way galaxy.

It’s like traveling back in time. Researchers from Texas A&M University in College Station, headed by astronomer Casey Papovich, were able to see the undepicted past of our own galaxy by observing similar regions located billions of light years away from us.

The “baby boom” happened around 10 billion years ago, the new study published in Astrophysical Journal revealed. At that time, the Milky Way galaxy was producing 30 times more stars than today. If so, then our solar system’s 4.6 billion years old Sun was formed more than 5 billion years after the production peak.

Sun’s late formation allowed the solar system we know today to produce planets with heavier elements. Scientists say elements heavier than hydrogen and helium became more abundant in “late to the game systems”, and the death of massive stars that were formed before the Sun had provided materials needed to form planets, including Earth and its complex life forms.

Scientists scanned through a collection of more than 24,000 galaxies, and took at least 2,000 snapshots of galaxies that closely resemble our own. The census has provided the most complete picture yet of how spiral galaxies similar to Milky Way form in the universe.

According to Mr. Papovich, the lead author of the study who also serves as an associate professor in the Department of Physics and Astronomy at A&M University in Texas, they know where to find traces by analyzing how galaxies like our own were formed.

Papovich said his team has provided a data that clearly show the rapid phase of growth around 9 to 10 billion years ago, or at least more than 5 billion years after our Sun formed. They also found the connection between the size of the galaxy, and the formation of stars.

Surprisingly, the robust collection of distant galaxies confirmed that stars formed inside the Milky Way, instead of forming in other smaller baby galaxies that later merged to join the system.

In separate studies, scientists were able to confirm that our own solar system is wetter than thought. Beyond Earth, celestial objects like Jupiter’s Galilean moons Europa and Ganymede, Saturn’s Enceladus, and even the dwarf planet Ceres in the asteroid belt, are hosting fluid slightly similar to Earth’s — and it is highly possible that the Sun’s late formation allowed this setup to exist.

Papovich who worked alongside Texas A&M postdoctoral researchers Vithal Tilvi and Ryan Quadri, were joined by at least two dozen astronomers from other countries. The research is published April 9th entitled “ZFOURGE/CANDELS: ON THE EVOLUTION OF M* GALAXY PROGENITORS FROM z = 3 TO 0.5*.” The research was funded by NASA

View Article Here Read More

Shortest Total Lunar Eclipse of the Century Visible Early Saturday


 


Excerpt from space.com 
By Calia Cofield 

Don't forget to look skyward in the early hours of Saturday morning (April 4), to catch a glimpse of the shortest total lunar eclipse of the century.

The moon will be completely swallowed by Earth's shadow for just 4 minutes and 43 seconds on Saturday morning, according to NASA officials. During that time, the moon may change from its normal grayish hue to a deep, blood red. The total eclipse begins at 6:16 a.m. EDT (1016 GMT). You can watch a live webcast of the eclipse on the Slooh Observatory website, Slooh.com, or here at Space.com courtesy of Slooh, starting at 6 a.m. EDT (1000 GMT).
That color change can make for a dramatic display, especially for humans in the distant past, NASA officials said. 


"For early humans, [a lunar eclipse] was a time when they were concerned that life might end, because the moon became blood red and the light that the moon provided at night might have been taken away permanently," Mitzi Adams, an astronomer at NASA's Marshall Space Flight Center in Huntsville, Alabama, said during a news conference today (April 3). "But fortunately, [the light] always returned." 

The April 4 eclipse is the third in a series of four total lunar eclipses — known as a lunar tetrad — visible in the United States. Each of the eclipses is separated by about 6 months. The final installment of this four-eclipse series will occur on Sept. 28. Saturday's lunar eclipse follows closely behind the total solar eclipse that took place on March 20.

Earth's shadow has an outer ring, called the penumbra, and an inner core, called the umbra. Where the moon passes into the penumbra, it appears dark, as if a bite had been taken out of it. When the moon passes though the umbra, it turns a deep, red color.

A total lunar eclipse occurs when the moon is totally submerged in the umbra. On Saturday, the moon will begin to enter the umbra at about 6:16 a.m. EDT (1016 GMT) but will not be completely covered by the shadow until about 7:57 EDT (1157 GMT), after the moon has set in most locations east of the Mississippi River.

While the total eclipse will last less than five minutes, the moon will be partially submerged in the umbra for about one hour and 40 minutes. The dark shadow of the penumbra will first be visible on the moon's surface starting at about 5:35 a.m. EDT (0935 GMT), according to Sky and Telescope magazine.

Viewers west of the Mississippi River will be able to see the total lunar eclipse, starting at about 4:57 a.m. PDT (1157 GMT). Skywatchers in Hawaii and western Alaska will be able to watch the entire eclipse, from the moon's entrance to its exit from the penumbra.

Viewing Guide for Total Lunar Eclipse, April 4, 2015
This world maps shows the regions where the April 4 total lunar eclipse will be visible. The best viewing locations are in the Pacific Ocean.

This weekend's eclipse is extremely short because the moon is only passing through the outskirts of the umbra. (The shortest total lunar eclipse in recorded history, according to Adams, was in 1529 and lasted only 1 minute and 41 seconds).

The eclipse will not be visible in Europe or most of Africa. The partial eclipse will be visible in all except the easternmost parts of South America. The best viewing locations for the total eclipse will be in the Pacific region, including eastern Australia, New Zealand and other parts of Oceania.

View Article Here Read More

If the Moon Landings Were Real, Then Why is NASA Stumped by This?

Buck Rogers, Staff WriterWaking TimesDuring the cold war era the Soviet Union and the United States were locked in an arms and technology race, each nation wanting to prove their dominance over the other, each striving to be the next reigning superpower in a world still shattered by the second world war. The Soviet’s took the lead when in April of 1961, cosmonaut Yuri Gagarin successfully orbited the earth and returned home safely. In May, president John F. Kennedy ma [...]

View Article Here Read More

Incredible pictures show best views of Mercury’s scorched surface and ice-filled craters




A heat map of Mercury's surface
In this heat map red represents the areas of Mercury's surface where temperatures are up to 126C





Excerpt from express.co.uk


The detailed shots were taken by Nasa's Mercury Messenger spacecraft which is orbiting close to the planet and will crash into it once it runs out of fuel.

The spacecraft will hit into Mercury's surface on April 30 after almost four years exploring the planet closest to the Sun.

The images were revealed at the 46th Lunar and Planetary Science Conference (LPSC) in Texas.

Dr Nancy Chabot, the instrument scientist for Messenger's Mercury Dual Imaging System, said: "We're seeing into these craters that don't see the Sun, at higher resolution than was ever possible before."

One shot taken by Messenger shows deep craters on the face of Mercury.

The planet's lack of atmosphere means any space debris that hits the planet leaves large craters.

The Fuller crater on MercuryNASA
The 16mile-wide Fuller crater is among those seen in much more detail on Mercury

We're seeing into these craters that don't see the Sun, at higher resolution than was ever possible before
Dr Nancy Chabot
These are so deep that sunlight does not penetrate all the way down.

Researchers have suggested that would allow ice carried by asteroids to remain there without melting.

While another image taken from Mercury's north polar region shows a heat map of the surface where red represents temperatures up to 126C.

In the shot the vast majority of the planet's surface is red which shows its scorchingly hot surface temperatures.

Sean Solomon, a principal investigator for the mission, added: "We’re able to see at close range portions of the planet we haven’t seen in such detail before."

View Article Here Read More

A Complete Guide to the March 20th Total Solar Eclipse


Credit
Totality! The 2012 total solar eclipse as seen from Australia. Credit and copyright: www.hughca.com.



Excerpt from universetoday.com



The first of two eclipse seasons for the year is upon us this month, and kicks off with the only total solar eclipse for 2015 on Friday, March 20th.

And what a bizarre eclipse it is. Not only does this eclipse begin just 15 hours prior to the March equinox marking the beginning of astronomical spring in the northern hemisphere, but the shadow of totality also beats path through the high Arctic and ends over the North Pole.


Credit:
An animation of the March 20th eclipse. Credit: NASA/GSFC/AT Sinclair.


Already, umbraphiles — those who chase eclipses — are converging on the two small tracts of terra firma where the umbra of the Moon makes landfall: the Faroe and Svalbard islands. All of Europe, the northern swath of the African continent, north-central Asia and the Middle East will see a partial solar eclipse, and the eclipse will be deeper percentage-wise the farther north you are .
2015 features four eclipses in all: two total lunars and two solars, with one total solar and one partial solar eclipse. Four is the minimum number of eclipses that can occur in a calendar year, and although North America misses out on the solar eclipse action this time ’round, most of the continent gets a front row seat to the two final total lunar eclipses of the ongoing tetrad on April 4th and September 28th.

How rare is a total solar eclipse on the vernal equinox? Well, the last total solar eclipse on the March equinox occurred back in 1662 on March 20th. There was also a hybrid eclipse — an eclipse which was annular along a portion of the track, and total along another — on March 20th, 1681. But you won’t have to wait that long for the next, as another eclipse falls on the northward equinox on March 20th, 2034.


Credit
The path of the March 20th eclipse across Europe, including start times for the partial phases, and the path of totality, click to enlarge. For more maps showing the percentage of occlusion, elevation, and more, click here. Credit: Michael Zeiler/GreatAmercianEclipse.com.


Note that in the 21st century, the March equinox falls on March 20th, and will start occasionally falling on March 19th in 2044. We’re also in that wacky time of year where North America has shifted back to ye ‘ole Daylight Saving (or Summer) Time, while Europe makes the change after the eclipse on March 29th. It really can wreak havoc with those cross-time zone plans, we know…
The March 20th eclipse also occurs only a day after lunar perigee, which falls on March 19th at 19:39 UT. This is also one of the closer lunar perigees for 2015 at 357,583 kilometres distant, though the maximum duration of totality for this eclipse is only 2 minutes and 47 seconds just northeast of the Faroe Islands.


Credit:
Views from selected locales in Europe and Africa. Credit: Stellarium.



This eclipse is number 61 of 71 in solar saros series 120, which runs from 933 to 2754 AD. It’s also the second to last total in the series, with the final total solar eclipse for the saros cycle occurring one saros later on March 30th, 2033.



What would it look like to sit at the North Pole and watch a total solar eclipse on the first day of Spring? It would be a remarkable sight, as the disk of the Sun skims just above the horizon for the first time since the September 2014 equinox. Does this eclipse occur at sunrise or sunset as seen from the pole? It would be a rare spectacle indeed!


Credit
An equinoctal eclipse as simulated from the North Pole. Credit: Stellarium.






Credit
Practicing eclipse safety in Africa. Credit: Michael Zeiler/GreatAmericanEclipse.com


Safety is paramount when observing the Sun and a solar eclipse. Eye protection is mandatory during all partial phases across Europe, northern Asia, North Africa and the Middle East. A proper solar filter mask constructed of Baader safety film is easy to construct, and should fit snugly over the front aperture of a telescope. No. 14 welder’s goggles are also dense enough to look at the Sun, as are safety glasses specifically designed for eclipse viewing. Observing the Sun via projection or by using a pinhole projector is safe and easy to do.


Credit
A solar filtered scope ready to go in Tucson, Arizona. Credit: photo by author.

Weather is always the big variable in the days leading up to any eclipse. Unfortunately, March in the North Atlantic typically hosts stormy skies, and the low elevation of the eclipse in the sky may hamper observations as well. From the Faroe Islands, the Sun sits 18 degrees above the horizon during totality, while from the Svalbard Islands it’s even lower at 12 degrees in elevation. Much of Svalbard is also mountainous, making for sunless pockets of terrain that will be masked in shadow on eclipse day. Mean cloud amounts for both locales run in the 70% range, and the Eclipser website hosts a great in-depth climatology discussion for this and every eclipse.


Credit
The view of totality and the planets as seen from the Faroe Islands. Credit: Starry Night.


But don’t despair: you only need a clear view of the Sun to witness an eclipse!

Solar activity is also another big variable. Witnesses to the October 23rd, 2014 partial solar eclipse over the U.S. southwest will recall that we had a massive and very photogenic sunspot turned Earthward at the time. The Sun has been remarkably calm as of late, though active sunspot region 2297 is developing nicely. It will have rotated to the solar limb come eclipse day, and we should have a good grasp on what solar activity during the eclipse will look like come early next week.

And speaking of which: could an auroral display be in the cards for those brief few minutes of totality? It’s not out of the question, assuming the Sun cooperates.  Of course, the pearly white corona of the Sun still gives off a considerable amount of light during totality, equal to about half the brightness of a Full Moon. Still, witnessing two of nature’s grandest spectacles — a total solar eclipse and the aurora borealis — simultaneously would be an unforgettable sight, and to our knowledge, has never been documented!

We also put together some simulations of the eclipse as seen from Earth and space:




Note that an area of southern Spain may witness a transit of the International Space Station during the partial phase of the eclipse. This projection is tentative, as the orbit of the ISS evolves over time. Be sure to check CALSky for accurate predictions in the days leading up to the eclipse.


Credit
The ISS transits the Sun during the eclipse around 9:05 UT as seen from southern Spain. Credit: Starry Night.


Can’t make it to the eclipse? Live in the wrong hemisphere? There are already a few planned webcasts for the March 20th eclipse:


View Article Here Read More

Surface of Venus revealed by new radio telescope data


https://i0.wp.com/www.smnweekly.com/wp-content/uploads/2015/03/Surface-of-Venus-revealed-by-new-radio-telescope-data.jpg?resize=605%2C608



Excerpt from smnweekly.com
By David M. DeMar

New radio telescope data from the National Radio Astronomy Observatory has revealed for the first time ever just what Venus has under its thick veil of clouds that otherwise occlude its surface from view.
25 million miles distant from us, Venus looks to the naked eye – or through a light telescope – much like a cloudy marble, thanks to the thick cloudbanks of carbon dioxide ringing the planet. However, the surface underneath, long a mystery to planetary scientists, has been laid bare thanks to the work of Puerto Rico’s Arecibo Observatory radio transmitter and the Green Bank Telescope, a radio telescope located in West Virginia and operated by the National Science Foundation.
The two facilities worked together with the NRAO in order to uncover the hidden surface of Mars. Arecibo sent radar signals to Venus, where they penetrated the thick atmosphere and bounced off the ground. The returning radio signals were picked up by the GBT in West Virginia in a process known as bistatic radar; the result is a radar image that shows craters and mountains strewn across the surface of Venus at a surprisingly high resolution.
The image is bisected by a dark line, representing areas where it’s particularly difficult to receive useful image data through the use of bistatic radar. However, scientists are intending to compare multiple images as time goes by in order to identify any active geologic processes on the surface of Venus such as volcanic activity.
It’s no particularly easy task to compare radar images in search of evidence of any change in this manner says Smithsonian senior scientist Bruce Campbell, but the work will continue. Campbell, who works at the National Air and Space Museum in the nation’s capital and is associated with the center for Earth and Planetary Studies, added that combining images from the latest NRAO endeavor and others will yield large amounts of data on how the surface of Venus might be altered by other processes.
The radar data, and a scientific paper based on it, will be published in April in Icarus, the scientific journal dedicated to studies of the solar system.

View Article Here Read More

Dawn Enters Orbit Around Dwarf Planet Ceres ~ Video

Ceres Dawn




Dwarf Planet Ceres

Excerpt from spacenews.com

NASA’s Dawn spacecraft arrived in orbit around the dwarf planet Ceres March 6, completing a journey of nearly seven and a half years and five billion kilometers.  In a statement, NASA’s Jet Propulsion Laboratory said Dawn entered orbit about 61,000 kilometers above Ceres at 7:39 am EST March 6, sending a signal to Earth about an hour later confirming it was in orbit and in good health.  “We feel exhilarated,” Dawn principal investigator Chris Russell said in the statement. “We have much to do over the next year and a half, but we are now on station with ample reserves, and a robust plan to obtain our science objectives.”

Dawn will gradually spiral down to its initial science orbit, 13,500 kilometers above Ceres, by April. Later in its mission Dawn will move gradually closer to the surface, eventually moving into an orbit of 375 kilometers.  The Dawn spacecraft, built by Orbital ATK, launched on a United Launch Alliance Delta 2 rocket in September 2007. After making a gravity assist flyby of Mars in February 2009, it entered orbit around the large main-belt asteroid Vesta in July 2011. It remained there for more than a year, using its ion thrusters to leave orbit in September 2012 to head to Ceres. 

Ceres, the largest object in the main asteroid belt between the orbits of Mars and Jupiter, was the first asteroid discovered by astronomers, in 1801. The International Astronomical Union designated Ceres a “dwarf planet” in 2006, a new category of objects that also includes the former planet Pluto.


Click to zoom
Dawn will gradually spiral down to its initial science orbit, 13,500 kilometers above Ceres, by April. Later in its mission Dawn will move gradually closer to the surface, eventually moving into an orbit of 375 kilometers.
The Dawn spacecraft, built by Orbital ATK, launched on a United Launch Alliance Delta 2 rocket in September 2007. After making a gravity assist flyby of Mars in February 2009, it entered orbit around the large main-belt asteroid Vesta in July 2011. It remained there for more than a year, using its ion thrusters to leave orbit in September 2012 to head to Ceres.
Ceres, the largest object in the main asteroid belt between the orbits of Mars and Jupiter, was the first asteroid discovered by astronomers, in 1801. The International Astronomical Union designated Ceres a “dwarf planet” in 2006, a new category of objects that also includes the former planet Pluto.
- See more at: http://spacenews.com/dawn-enters-orbit-around-ceres/#sthash.yoclEQI4.dpuf
WASINGTON — NASA’s Dawn spacecraft arrived in orbit around the dwarf planet Ceres March 6, completing a journey of nearly seven and a half years and five billion kilometers.
In a statement, NASA’s Jet Propulsion Laboratory said Dawn entered orbit about 61,000 kilometers above Ceres at 7:39 am EST March 6, sending a signal to Earth about an hour later confirming it was in orbit and in good health.
“We feel exhilarated,” Dawn principal investigator Chris Russell said in the statement. “We have much to do over the next year and a half, but we are now on station with ample reserves, and a robust plan to obtain our science objectives.”
- See more at: http://spacenews.com/dawn-enters-orbit-around-ceres/#sthash.yoclEQI4.dpuf

View Article Here Read More

8 possible explanations for those bright spots on dwarf planet Ceres

Ceres  Excerpt from cnet.com It's a real-life mystery cliffhanger. We've come up with a list of possible reasons a large crater on the biggest object in the asteroid belt looks lit up like a Christmas tree.  We could be approachin...

View Article Here Read More

Recent Disappearances & Strangeness in the Bermuda Triangle

Excerpt from paranormal.lovetoknow.com By Michelle Radcliff The Bermuda Triangle is an area of mostly open ocean located between Bermuda, Miami, Florida and San Juan, Puerto Rico. The unexplained disappearances of hundreds of ships and air...

View Article Here Read More
Older posts Newer posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑