Tag: agreed (page 1 of 4)

Endtime Madness Update

The coronavirus scare has manged to keep a large part of human population in fear and a large proportion of China under quarantine.Having so many people quarantined has enabled the Light Forces to completely clear all plasma Chimera spiders and all oth...

View Article Here Read More

An Encounter with Our Helpers

By Mercedes Kirkel   This past week I went on a hike with my good friend, Susan. We chose a trail by the San Francisco Bay that Susan used to frequent but hadn’t been on in a number of years. The weather was beautiful, the wildflowers bursting forth, birds gracing our path, and all seemed […]

View Article Here Read More

Why the Government Refuses to Turn Against Monsanto

Ready Or Not ... Here We Come! A Message From Archangel Michael/Ashtar Sheran

Dr. Mercola, GuestIn the video below, Funny or Die pokes fun at Monsanto’s “feeding the world” message by highlighting some of the most obvious features of genetically engineered (GE) foods, such as the unnatural crossing of genetic material between plant and animal kingdoms, the use of toxic chemicals and Monsanto’s ever-expanding monopoly.​“I own everything!” Mama Monsanto exclaims, and that’s pretty close to the truth. Monsanto [...]

View Article Here Read More

Dying With Dignity

 Excerpt from huffingtonpost.comBy Debbie FinkCo-authored by Karen Bloch MorseThere is nothing easy or natural about watching your 41-year-old friend (of 41 years) -- who, by all counts, looks healthy -- ...

View Article Here Read More

The Class-Domination Theory of Power

by G. William DomhoffNOTE: WhoRulesAmerica.net is largely based on my book,Who Rules America?, first published in 1967 and now in its7th edition. This on-line document is presented as a summary of some of the main ideas in that book.Who has predominant power in the United States? The short answer, from 1776 to the present, is: Those who have the money -- or more specifically, who own income-producing land and businesses -- have the power. George Washington was one of the biggest landowner [...]

View Article Here Read More

NASA Chief Scientist Ellen Stofan Predicts We’ll Find Signs Of Alien Life Within 10 Years

Excerpt from huffingtonpost.comNASA's top scientist predicts that we'll find signs of alien life by 2025, with even stronger evidence for extraterrestrials in the years that follow. "I think we're going to have strong indications of life beyond Ea...

View Article Here Read More

Top Secret Government Programs That Your Not Supposed To Know About

Originally Posted at in5d.com The following is the alleged result of the actions of one or more scientists creating a covert, unauthorized notebook documenting their involvement with an Above Top Secret government program. Government publications and information obtained by the use of public tax monies cannot be subject to copyright. This document is released into the public domain for all citizens of the United States of America. THE ‘MAJIC PROJECTS’ SIGMA is the project whic [...]

View Article Here Read More

Minnesota Twins Provide Intriguing Evidence of Incarnate Road Map


The Jim's.jpg
Minnesota Twins (not the baseball team) James & James, whose similar stories defy chance and coincidence.

Excerpt from people.com 
May 7th, 1979

One of science's so far uncrackable mysteries is the comparative impact of heredity vs. environment. An obvious experimental method would be to raise identical twins separately, but that could hardly be done with humans. So for the last 10 years University of Minnesota psychologist Thomas Bouchard, 41, has been studying twins under less than ideal, lab-controlled conditions—until, eureka, he ran into the stuff of social scientists' dreams. Identical twin males, who had been separated by adoption at three weeks, suddenly rediscovered each other in Ohio at age 39.

Within two weeks after reading about them in the press, Dr. Bouchard had the twins in his Minneapolis lab for tests. At the outset of his investigation the psychologist said, "I think there are going to be all kinds of differences that will surprise even the twins." But what was immediately apparent were eerie similarities that left even Bouchard "flabbergasted."

Curiously, both had been christened James by their adoptive parents, the Jess Lewises of Lima and the Ernest Springers of Piqua, 40 miles away. As schoolboys, both enjoyed math and carpentry—but hated spelling. Both pursued similar adult occupations: Lewis is a security guard at a steel mill, and Springer was a deputy sheriff (though he is now a clerk for a power company). Both married women named Linda, only to divorce and remarry—each a woman named Betty. Both have sons: James Alan Lewis and James Allan Springer.

The two men shared one other fact in common. As Jim Springer put it, "I always felt an emptiness." Neither the Springers nor the Lewises ever met the 15-year-old (unwed) mother of their sons, and both couples were told that their adoptive child had a twin who died at birth. Then one day, when Jim Lewis was 16 months old, his mother visited the Miami County courthouse to settle the adoption paperwork, and an official remarked offhandedly, "They named the other little boy 'Jim' too."

For 37 years that hint tugged at Mrs. Lewis, who occasionally urged her son to find out if it was true. Finally, last Thanksgiving, he agreed to search—though he says he doesn't know why. Jim Lewis wrote the probate court, which had a record of the adoption, and contacted the Springer parents in Piqua. "I came home one day," Lewis recounts, "and had this message to call 'Jim Springer.' " When he phoned Springer, Lewis blurted out: "Are you my brother?" "Yup," Springer replied. Four days later, last Feb. 9, Lewis drove to meet his twin for an emotional reunion.

Dr. Bouchard offered expenses and a small honorarium to get them to Minneapolis for a week of extensive physical and psychological tests. He wanted to begin as soon as possible to preclude their reminiscing together too long and thus "contaminating" the evidence. Though not the first such separated twins—the records show 19 previous sets in the U.S. among some 75 worldwide—Lewis and Springer were believed to have been apart by far the longest.

The detailed results of Bouchard's textbook case will be revealed to the twins themselves, but to protect their privacy will be buried among other data in the professor's book on differential psychology now in progress. There has been one development that may leave the twins still puzzling over heredity and environment. On Feb. 28 Jim Lewis, having divorced his second wife, Betty, married a woman named Sandy Jacobs. Betty and Jim Springer were present, with Jim serving as his newfound brother's best man.

View Article Here Read More

Should Humanity Try to Contact Alien Civilizations?



Some researchers want to use big radio dishes like the 305-meter Arecibo Observatory in Puerto Rico to announce our presence to intelligent aliens.



Excerpt from space.com
by Mike Wall

Is it time to take the search for intelligent aliens to the next level?
For more than half a century, scientists have been scanning the heavens for signals generated by intelligent alien life. They haven't found anything conclusive yet, so some researchers are advocating adding an element called "active SETI" (search for extraterrestrial intelligence) — not just listening, but also beaming out transmissions of our own designed to catch aliens' eyes.

Active SETI "may just be the approach that lets us make contact with life beyond Earth," Douglas Vakoch, director of interstellar message composition at the SETI Institute in Mountain View, California, said earlier this month during a panel discussion at the annual meeting of the American Association for the Advancement of Science (AAAS) in San Jose.

Seeking contact


Vakoch envisions using big radio dishes such as the Arecibo Observatory in Puerto Rico to blast powerful, information-laden transmissions at nearby stars, in a series of relatively cheap, small-scale projects.

"Whenever any of the planetary radar folks are doing their asteroid studies, and they have an extra half an hour before or after, there's always a target star readily available that they can shift to without a lot of extra slough time," he said.

The content of any potential active SETI message is a subject of considerable debate. If it were up to astronomer Seth Shostak, Vakoch's SETI Institute colleague, we'd beam the entire Internet out into space.

"It's like sending a lot of hieroglyphics to the 19th century — they [aliens] can figure it out based on the redundancy," Shostak said during the AAAS discussion. "So, I think in terms of messages, we should send everything."

While active SETI could help make humanity's presence known to extrasolar civilizations, the strategy could also aid the more traditional "passive" search for alien intelligence, Shostak added.
"If you're going to run SETI experiments, where you're trying to listen for a putative alien broadcast, it may be very instructive to have to construct a transmitting project," he said. "Because now, you walk a mile in the Klingons' shoes, assuming they have them."

Cause for concern?

But active SETI is a controversial topic. Humanity has been a truly technological civilization for only a few generations; we're less than 60 years removed from launching our first satellite to Earth orbit, for example. So the chances are that any extraterrestrials who pick up our signals would be far more advanced than we are. 

This likelihood makes some researchers nervous, including famed theoretical physicist Stephen Hawking.

"Such advanced aliens would perhaps become nomads, looking to conquer and colonize whatever planets they could reach," Hawking said in 2010 on an episode of "Into the Universe with Stephen Hawking," a TV show that aired on the Discovery Channel. "If so, it makes sense for them to exploit each new planet for material to build more spaceships so they could move on. Who knows what the limits would be?"

Astrophysicist and science fiction author David Brin voiced similar concerns during the AAAS event, saying there's no reason to assume that intelligent aliens would be altruistic.

"This is an area in which discussion is called for," Brin said. "What are the motivations of species that they might carry with them into their advanced forms, that might color their cultures?"

Brin stressed that active SETI shouldn't be done in a piecemeal, ad hoc fashion by small groups of astronomers.

"This is something that should be discussed worldwide, and it should involve our peers in many other specialties, such as history," he said. "The historians would tell us, 'Well, gee, we have some examples of first-contact scenarios between advanced technological civilizations and not-so-advanced technological civilizations.' Gee, how did all of those turn out? Even when they were handled with goodwill, there was still pain."

Out there already

Vakoch and Shostak agreed that international discussion and cooperation are desirable. But Shostak said that achieving any kind of consensus on the topic of active SETI may be difficult. For example, what if polling reveals that 60 percent of people on Earth are in favor of the strategy, while 40 percent are opposed?

"Do we then have license to go ahead and transmit?" Shostak said. "That's the problem, I think, with this whole 'let's have some international discussion' [idea], because I don't know what the decision metric is."

Vakoch and Shostak also said that active SETI isn't as big a leap as it may seem at first glance: Our civilization has been beaming signals out into the universe unintentionally for a century, since the radio was invented.

"The reality is that any civilization that has the ability to travel between the stars can already pick up our accidental radio and TV leakage," Vakoch said. "A civilization just 200 to 300 years more advanced than we are could pick up our leakage radiation at a distance of several hundred light-years. So there are no increased dangers of an alien invasion through active SETI."

But Brin disputed this assertion, saying the so-called "barn door excuse" is a myth.

"It is very difficult for advanced civilizations to have picked us up at our noisiest in the 1980s, when we had all these military radars and these big television antennas," he said.

Shostak countered that a fear of alien invasion, if taken too far, could hamper humanity's expansion throughout the solar system, an effort that will probably require the use of high-powered transmissions between farflung outposts.

"Do you want to hamstring all that activity — not for the weekend, not just shut down the radars next week, or active SETI this year, but shut down humanity forever?" Shostak said. "That's a price I'm not willing to pay."

So the discussion and debate continues — and may continue for quite some time.

"This is the only really important scientific field without any subject matter," Brin said. "It's an area in which opinion rules, and everybody has a very fierce opinion."

View Article Here Read More

Poll Reveals Public Skepticism of Government and Private Human Spaceflight

SpaceShipTwo powered test flight
A poll found 58 percent of people said private companies like Virgin Galactic should be allowed to send people to space, which it plans to do via its suborbital SpaceShipTwo vehicle (shown during a powered test flight). Credit: Virgin Galactic


Excerpt from spacenews.com

WASHINGTON — The American public is skeptical that private ventures will be able to launch “ordinary people” into space in the coming decades, and is split about spending money on government-led human space exploration, a new poll indicates. 

 The Monmouth University Poll results, released Feb. 16, showed that a majority of Americans believe private companies should be permitted to launch people into space, but also that they did not believe it likely those companies would be able to do so in next 20 to 30 years.  In the poll, 58 percent of people said private companies should be allowed to launch people in space, versus 37 percent who said that human spaceflight should be left to governments alone. 

However, 55 percent thought it was not likely that “ordinary people will be able to travel regularly” into space in the next 20 to 30 years, while 44 percent said such travel would be somewhat or very likely.  Most people also said they were unwilling to fly in space themselves: 69 percent said they would decline a free trip into space, while 28 percent said they would accept it. The poll did not specify what kind of trip — suborbital or orbital — was offered.  The poll revealed a sharp difference in gender, with men more willing than women to believe private ventures should be allowed to fly people in space. Men supported private over government-only human spaceflight by a margin of 71 to 26 percent. 

Women, though were, more evenly split, with 44 percent backing private human spaceflight and 49 percent supporting government-only efforts. MoonFifty percent of those polled said the U.S. government should not spend “billions of dollars to send astronauts to places like the moon, Mars, and asteroids.” 

The public is also divided about spending money on government human space exploration. Asked if the U.S. government should spend “billions of dollars to send astronauts to places like the moon, Mars, and asteroids,” 50 percent said no, while 42 percent said yes.  As with private spaceflight, there was a strong gender split, with 50 percent of men, but only 36 percent of women, supporting spending on human space exploration. There was, by contrast, little difference by party affiliation.  

The poll showed greater support for government spending on space in general. Asked if increased spending on the space program in general would be “a good investment for the country,” 51 percent agreed and 43 percent disagreed.  The poll is based on a telephone survey of 1,008 people in December, and has an overall margin of error of 3.1 percent.
WASHINGTON — The American public is skeptical that private ventures will be able to launch “ordinary people” into space in the coming decades, and is split about spending money on government-led human space exploration, a new poll indicates.
The Monmouth University Poll results, released Feb. 16, showed that a majority of Americans believe private companies should be permitted to launch people into space, but also that they did not believe it likely those companies would be able to do so in next 20 to 30 years.
In the poll, 58 percent of people said private companies should be allowed to launch people in space, versus 37 percent who said that human spaceflight should be left to governments alone. However, 55 percent thought it was not likely that “ordinary people will be able to travel regularly” into space in the next 20 to 30 years, while 44 percent said such travel would be somewhat or very likely.
Most people also said they were unwilling to fly in space themselves: 69 percent said they would decline a free trip into space, while 28 percent said they would accept it. The poll did not specify what kind of trip — suborbital or orbital — was offered.
The poll revealed a sharp difference in gender, with men more willing than women to believe private ventures should be allowed to fly people in space. Men supported private over government-only human spaceflight by a margin of 71 to 26 percent. Women, though were, more evenly split, with 44 percent backing private human spaceflight and 49 percent supporting government-only efforts.
Moon
Fifty percent of those polled said the U.S. government should not spend “billions of dollars to send astronauts to places like the moon, Mars, and asteroids.” Credit: NASA
The public is also divided about spending money on government human space exploration. Asked if the U.S. government should spend “billions of dollars to send astronauts to places like the moon, Mars, and asteroids,” 50 percent said no, while 42 percent said yes.
As with private spaceflight, there was a strong gender split, with 50 percent of men, but only 36 percent of women, supporting spending on human space exploration. There was, by contrast, little difference by party affiliation.
The poll showed greater support for government spending on space in general. Asked if increased spending on the space program in general would be “a good investment for the country,” 51 percent agreed and 43 percent disagreed.
The poll is based on a telephone survey of 1,008 people in December, and has an overall margin of error of 3.1 percent.
- See more at: http://spacenews.com/poll-reveals-public-skepticism-of-government-and-private-human-spaceflight/#sthash.6PxcrjTQ.dpuf

View Article Here Read More

New quantum theory says universe has ‘no end and no beginning’

Excerpt from inhabitat.com

by Cat DiStasio


Until now, scientists have generally agreed that the universe has celebrated about 13.8 billion birthdays, as calculated using Einstein’s theory of general relativity. The ‘Big Bang’ theory (no relation to the popular sitcom) relies on Einstein’s ideas to clearly explain what happens in the moments and years and eons following the expansion of the universe from a point of singularity, but it fails to offer an explanation for what happened prior to that event. For this reason, quantum theorists have long been brainstorming other possible explanations that don’t have such glaring inadequacies.

Ahmed Farag Ali, at Benha University and the Zewail City of Science and Technology (both in Egypt), and Saurya Das, at the University of Lethbridge in Alberta, Canada, believe they have the answer to this quandary, as well as a few others. The two co-authored the paper outlining their new model, in which the universe has no beginning and no end. Their new quantum model, which the scientists refer to as ‘quantum correction terms,’ resolves the problem of the Big Bang singularity.

Das participated in a separate study, with Rajat Bhaduri of McMaster University, Canada, which has takes this model one step further. They theorize a new gravity particle that was present in the universe at all epochs. Further analysis of their model will be the future focus, as they seek to explore the potential to account for dark matter and dark energy.

Essentially, these cosmologists believe their model will take much of what we think about the origin of our universe and throw it out the window.
Via Phys.org

View Article Here Read More

The Future of Technology in 2015?




Excerpt from
cnet.com


The year gone by brought us more robots, worries about artificial intelligence, and difficult lessons on space travel. The big question: where's it all taking us?

Every year, we capture a little bit more of the future -- and yet the future insists on staying ever out of reach.
Consider space travel. Humans have been traveling beyond the atmosphere for more than 50 years now -- but aside from a few overnights on the moon four decades ago, we have yet to venture beyond low Earth orbit.
Or robots. They help build our cars and clean our kitchen floors, but no one would mistake a Kuka or a Roomba for the replicants in "Blade Runner." Siri, Cortana and Alexa, meanwhile, are bringing some personality to the gadgets in our pockets and our houses. Still, that's a long way from HAL or that lad David from the movie "A.I. Artificial Intelligence."
Self-driving cars? Still in low gear, and carrying some bureaucratic baggage that prevents them from ditching certain technology of yesteryear, like steering wheels.
And even when these sci-fi things arrive, will we embrace them? A Pew study earlier this year found that Americans are decidedly undecided. Among the poll respondents, 48 percent said they would like to take a ride in a driverless car, but 50 percent would not. And only 3 percent said they would like to own one.
"Despite their general optimism about the long-term impact of technological change," Aaron Smith of the Pew Research Center wrote in the report, "Americans express significant reservations about some of these potentially short-term developments" such as US airspace being opened to personal drones, robot caregivers for the elderly or wearable or implantable computing devices that would feed them information.
Let's take a look at how much of the future we grasped in 2014 and what we could gain in 2015.

Space travel: 'Space flight is hard'

In 2014, earthlings scored an unprecedented achievement in space exploration when the European Space Agency landed a spacecraft on a speeding comet, with the potential to learn more about the origins of life. No, Bruce Willis wasn't aboard. Nobody was. But when the 220-pound Philae lander, carried to its destination by the Rosetta orbiter, touched down on comet 67P/Churyumov-Gerasimenko on November 12, some 300 million miles from Earth, the celebration was well-earned.
A shadow quickly fell on the jubilation, however. Philae could not stick its first landing, bouncing into a darker corner of the comet where its solar panels would not receive enough sunlight to charge the lander's batteries. After two days and just a handful of initial readings sent home, it shut down. For good? Backers have allowed for a ray of hope as the comet passes closer to the sun in 2015. "I think within the team there is no doubt that [Philae] will wake up," lead lander scientist Jean-Pierre Bibring said in December. "And the question is OK, in what shape? My suspicion is we'll be in good shape."
The trip for NASA's New Horizons spacecraft has been much longer: 3 billion miles, all the way to Pluto and the edge of the solar system. Almost nine years after it left Earth, New Horizons in early December came out of hibernation to begin its mission: to explore "a new class of planets we've never seen, in a place we've never been before," said project scientist Hal Weaver. In January, it will begin taking photos and readings of Pluto, and by mid-July, when it swoops closest to Pluto, it will have sent back detailed information about the dwarf planet and its moon, en route to even deeper space.


Also in December, NASA made a first test spaceflight of its Orion capsule on a quick morning jaunt out and back, to just over 3,600 miles above Earth (or approximately 15 times higher than the International Space Station). The distance was trivial compared to those those traveled by Rosetta and New Horizons, and crewed missions won't begin till 2021, but the ambitions are great -- in the 2030s, Orion is expected to carry humans to Mars.
In late March 2015, two humans will head to the ISS to take up residence for a full year, in what would be a record sleepover in orbit. "If a mission to Mars is going to take a three-year round trip," said NASA astronaut Scott Kelly, who will be joined in the effort by Russia's Mikhail Kornienko, "we need to know better how our body and our physiology performs over durations longer than what we've previously on the space station investigated, which is six months."
There were more sobering moments, too, in 2014. In October, Virgin Galactic's sleek, experimental SpaceShipTwo, designed to carry deep-pocketed tourists into space, crashed in the Mojave Desert during a test flight, killing one test pilot and injuring the other. Virgin founder Richard Branson had hoped his vessel would make its first commercial flight by the end of this year or in early 2015, and what comes next remains to be seen. Branson, though, expressed optimism: "Space flight is hard -- but worth it," he said in a blog post shortly after the crash, and in a press conference, he vowed "We'll learn from this, and move forward together." Virgin Galactic could begin testing its next spaceship as soon as early 2015.
The crash of SpaceShipTwo came just a few days after the explosion of an Orbital Sciences rocket lofting an unmanned spacecraft with supplies bound for the International Space Station. And in July, Elon Musk's SpaceX had suffered the loss of one of its Falcon 9 rockets during a test flight. Musk intoned, via Twitter, that "rockets are tricky..."
Still, it was on the whole a good year for SpaceX. In May, it unveiled its first manned spacecraft, the Dragon V2, intended for trips to and from the space station, and in September, it won a $2.6 billion contract from NASA to become one of the first private companies (the other being Boeing) to ferry astronauts to the ISS, beginning as early as 2017. Oh, and SpaceX also has plans to launch microsatellites to establish low-cost Internet service around the globe, saying in November to expect an announcement about that in two to three months -- that is, early in 2015.
One more thing to watch for next year: another launch of the super-secret X-37B space place to do whatever it does during its marathon trips into orbit. The third spaceflight of an X-37B -- a robotic vehicle that, at 29 feet in length, looks like a miniature space shuttle -- ended in October after an astonishing 22 months circling the Earth, conducting "on-orbit experiments."

Self-driving cars: Asleep at what wheel?

Spacecraft aren't the only vehicles capable of autonomous travel -- increasingly, cars are, too. Automakers are toiling toward self-driving cars, and Elon Musk -- whose name comes up again and again when we talk about the near horizon for sci-fi tech -- says we're less than a decade away from capturing that aspect of the future. In October, speaking in his guise as founder of Tesla Motors, Musk said: "Like maybe five or six years from now I think we'll be able to achieve true autonomous driving where you could literally get in the car, go to sleep and wake up at your destination." (He also allowed that we should tack on a few years after that before government regulators give that technology their blessing.)
Prototype, unbound: Google's ride of the future, as it looks today Google
That comment came as Musk unveiled a new autopilot feature -- characterizing it as a sort of super cruise control, rather than actual autonomy -- for Tesla's existing line of electric cars. Every Model S manufactured since late September includes new sensor hardware to enable those autopilot capabilities (such as adaptive cruise control, lane-keeping assistance and automated parking), to be followed by an over-the-air software update to enable those features.
Google has long been working on its own robo-cars, and until this year, that meant taking existing models -- a Prius here, a Lexus there -- and buckling on extraneous gear. Then in May, the tech titan took the wraps off a completely new prototype that it had built from scratch. (In December, it showed off the first fully functional prototype.) It looked rather like a cartoon car, but the real news was that there was no steering wheel, gas pedal or brake pedal -- no need for human controls when software and sensors are there to do the work.
Or not so fast. In August, California's Department of Motor Vehicles declared that Google's test vehicles will need those manual controls after all -- for safety's sake. The company agreed to comply with the state's rules, which went into effect in September, when it began testing the cars on private roads in October.
Regardless of who's making your future robo-car, the vehicle is going to have to be not just smart, but actually thoughtful. It's not enough for the car to know how far it is from nearby cars or what the road conditions are. The machine may well have to make no-win decisions, just as human drivers sometimes do in instantaneous, life-and-death emergencies. "The car is calculating a lot of consequences of its actions," Chris Gerdes, an associate professor of mechanical engineering, said at the Web Summit conference in Dublin, Ireland, in November. "Should it hit the person without a helmet? The larger car or the smaller car?"

Robots: Legging it out

So when do the robots finally become our overlords? Probably not in 2015, but there's sure to be more hand-wringing about both the machines and the artificial intelligence that could -- someday -- make them a match for homo sapiens. At the moment, the threat seems more mundane: when do we lose our jobs to a robot?
The inquisitive folks at Pew took that very topic to nearly 1,900 experts, including Vint Cerf, vice president at Google; Web guru Tim Bray; Justin Reich of Harvard University's Berkman Center for Internet & Society; and Jonathan Grudin, principal researcher at Microsoft. According to the resulting report, published in August, the group was almost evenly split -- 48 percent thought it likely that, by 2025, robots and digital agents will have displaced significant numbers of blue- and white-collar workers, perhaps even to the point of breakdowns in the social order, while 52 percent "have faith that human ingenuity will create new jobs, industries, and ways to make a living, just as it has been doing since the dawn of the Industrial Revolution."


Still, for all of the startling skills that robots have acquired so far, they're often not all there yet. Here's some of what we saw from the robot world in 2014:
Teamwork: Researchers at the École Polytechnique Fédérale De Lausanne in May showed off their "Roombots," cog-like robotic balls that can join forces to, say, help a table move across a room or change its height.
A sense of balance: We don't know if Boston Dynamics' humanoid Atlas is ready to trim bonsai trees, but it has learned this much from "The Karate Kid" (the original from the 1980s) -- it can stand on cinder blocks and hold its balance in a crane stance while moving its arms up and down.
Catlike jumps: MIT's cheetah-bot gets higher marks for locomotion. Fed a new algorithm, it can run across a lawn and bound like a cat. And quietly, too. "Our robot can be silent and as efficient as animals. The only things you hear are the feet hitting the ground," MIT's Sangbae Kim, a professor of mechanical engineering, told MIT News. "This is kind of a new paradigm where we're controlling force in a highly dynamic situation. Any legged robot should be able to do this in the future."
Sign language: Toshiba's humanoid Aiko Chihira communicated in Japanese sign language at the CEATEC show in October. Her rudimentary skills, limited for the moment to simple messages such as signed greetings, are expected to blossom by 2020 into areas such as speech synthesis and speech recognition.
Dance skills: Robotic pole dancers? Tobit Software brought a pair, controllable by an Android smartphone, to the Cebit trade show in Germany in March. More lifelike was the animatronic sculpture at a gallery in New York that same month -- but what was up with that witch mask?
Emotional ambition: Eventually, we'll all have humanoid companions -- at least, that's always been one school of thought on our robotic future. One early candidate for that honor could be Pepper, from Softbank and Aldebaran Robotics, which say the 4-foot-tall Pepper is the first robot to read emotions. This emo-bot is expected to go on sale in Japan in February.

Ray guns: Ship shape

Damn the photon torpedoes, and full speed ahead. That could be the motto for the US Navy, which in 2014 deployed a prototype laser weapon -- just one -- aboard a vessel in the Persian Gulf. Through some three months of testing, the device "locked on and destroyed the targets we designated with near-instantaneous lethality," Rear Adm. Matthew L. Klunder, chief of naval research, said in a statement. Those targets were rather modest -- small objects mounted aboard a speeding small boat, a diminutive Scan Eagle unmanned aerial vehicle, and so on -- but the point was made: the laser weapon, operated by a controller like those used for video games, held up well, even in adverse conditions.

Artificial intelligence: Danger, Will Robinson?

What happens when robots and other smart machines can not only do, but also think? Will they appreciate us for all our quirky human high and low points, and learn to live with us? Or do they take a hard look at a species that's run its course and either turn us into natural resources, "Matrix"-style, or rain down destruction?
laser-weapon-system-on-uss-ponce.jpg
When the machines take over, will they be packing laser weapons like this one the US Navy just tried out? John F. Williams/US Navy
As we look ahead to the reboot of the "Terminator" film franchise in 2015, we can't help but recall some of the dire thoughts about artificial intelligence from two people high in the tech pantheon, the very busy Musk and the theoretically inclined Stephen Hawking.
Musk himself more than once in 2014 invoked the likes of the "Terminator" movies and the "scary outcomes" that make them such thrilling popcorn fare. Except that he sees a potentially scary reality evolving. In an interview with CNBC in June, he spoke of his investment in AI-minded companies like Vicarious and Deep Mind, saying: "I like to just keep an eye on what's going on with artificial intelligence. I think there is potentially a dangerous outcome."
He has put his anxieties into some particularly colorful phrases. In August, for instance, Musk tweeted that AI is "potentially more dangerous than nukes." And in October, he said this at a symposium at MIT: "With artificial intelligence, we are summoning the demon. ... You know all those stories where there's the guy with the pentagram and the holy water and he's like... yeah, he's sure he can control the demon, [but] it doesn't work out."
Musk has a kindred spirit in Stephen Hawking. The physicist allowed in May that AI could be the "biggest event in human history," and not necessarily in a good way. A month later, he was telling John Oliver, on HBO's "Last Week Tonight," that "artificial intelligence could be a real danger in the not too distant future." How so? "It could design improvements to itself and outsmart us all."
But Google's Eric Schmidt, is having none of that pessimism. At a summit on innovation in December, the executive chairman of the far-thinking tech titan -- which in October teamed up with Oxford University to speed up research on artificial intelligence -- said that while our worries may be natural, "they're also misguided."

View Article Here Read More

Cosmic dust may have distorted cosmic inflation breakthrough


The 10-meter South Pole Telescope and the BICEP (Background Imaging of Cosmic Extragalactic Polarization) Telescope at Amundsen-Scott South Pole Station, which detected evidence of gravitational waves, is seen against the night sky with the Milky Way in this National Science Foundation picture taken in August 2008.

By Ben P. Stein, Inside Science

Harvard researchers rocked the science community last March with an apparent discovery of gravitational ripples that gave credence to cosmic inflation theory – a finding that met as much skepticism as enthusiasm. Now, further analysis raises more doubts.


"Extraordinary claims require extraordinary evidence." This phrase, popularized by the late Carl Sagan, kept going through my head on March 17, the day that researchers involved with BICEP2, a telescope in Antarctica, made a big announcement at the Harvard-Smithsonian Center for Astrophysics in Cambridge, Massachusetts.

The researchers reported that BICEP2 detected gravitational waves from the first moments after the big bang, a feat, which if confirmed, would open up a new field of study and would surely be recognized in a future Nobel Prize.

Gravitational waves are ripples in space and time. They're created when any object with mass accelerates. However, they're extremely weak, making them very hard to detect directly. Even for the most massive and cataclysmic events, such as the collision of two black holes, their effects, observed from Earth, are very hard to detect.

If you're looking for a detectable gravitational wave signal, what bigger event can there be than cosmic inflation? According to inflation theory, the universe multiplied its size by as much as 10 trillion trillion trillion times in the first fractions of a second after the big bang.  Inflation would have generated lots of gravitational waves. In turn, gravitational waves can subtly change the properties of light that they pass through. Specifically, they can slightly affect the polarization of light, the direction in which light's electric fields vibrate. The universe's rapid expansion during inflation would have amplified the waves' imprint on the early light in the universe.

The state-of-the-art BICEP2 experiment, which uses super-sensitive superconducting sensors, could detect tiny changes in polarization in the cosmic microwave background, the very first light released in the universe, which is still reaching us today. The BICEP2 researchers reported a very high polarization signal, known as B-mode polarization after its characteristics, in the cosmic microwave background, which they interpreted as a strong gravitational wave signal in the early universe.

Detecting this polarization signal was a striking result, announced in a series of scientific talks and a press conference shortly after a preprint of the paper was posted online. Notice these last two points: announced at a press conference, and a preprint posted online. A preprint is a written paper that has not been formally reviewed by independent peers or published in a scientific journal.

Nonetheless, scientists and reporters alike reported excitement over the results. If true, they would provide the greatest experimental support yet of cosmic inflation, and the first direct detection of gravitational waves. Previously, gravitational waves have been detected indirectly, such as in observations of pairs of stars falling towards each other: they were losing energy in the form of gravitational waves.

On the day of the BICEP2 announcement, and for many days afterward, people were largely accepting the results as correct and already jumping to the implications of the BICEP2 results for what appeared to be a new era of gravitational-wave cosmology.
In writing my story for Inside Science News Service, I was fortunate to get an early voice of skepticism from David Spergel, a theoretical cosmologist at Princeton University in New Jersey. He commented:

"Given the importance of this result, my starting point is to be skeptical. Most importantly, there are several independent experimental groups that will test this result in the next year."
Spergel explained that the new gravitational wave measurements did not appear to agree with those of previous experiments, known as WMAP and Planck, unless the simplest models of inflation were replaced by more complicated ones. On the first day and week of coverage, I became very disappointed with the many commentators who disregarded or underemphasized that the earlier measurements from instruments on WMAP and Planck, which had been reported and covered for years.

Sure enough, in the weeks that followed, other researchers pointed out that the signal that BICEP2 detected may have been attributable to the polarization of light caused by dust in our galaxy. The BICEP2 team certainly knew that dust could also polarize light in a similar way to gravitational waves, but they used a model, based on the data that was available from the Planck satellite, that, the other researchers pointed out, may have underestimated the amount of dust in the part of the sky they were studying.

The BICEP2 paper underwent peer review and was published in Physical Review Letters. As a result of the peer-review process, the researchers made revisions, including removing the model that contained the lower estimates of dust based on the earlier Planck data, and thereby reducing the certainty with which they could state that they accounted for signals from interstellar dust.

During the summer, the BICEP2 and Planck collaborations agreed to work together to analyze their data, to help determine if gravitational waves had really been detected.

This week, the Planck team issued a preprint, based on an analysis of much additional data, showing a comprehensive map of dust in the sky. According to their analysis, the signal in the part of sky that BICEP2 analyzed could be completely attributable to dust and not to gravitational waves.

But, the story is not over. For starters, keep in mind the new preprint, like all newly posted publications, still needs to undergo formal peer review.

And the latest data do not completely rule out the possibility that the BICEP2 group detected a gravitational wave signal. If the evidence holds up at all, it would likely be a weaker signal, after accounting for the dust. Or, the gravitational-wave signal may completely turn to dust.

It may be possible to detect primordial gravitational waves in a different, less dusty part of the sky, or with new measurements by BICEP2, Planck or the many other experiments that are looking for them.  Just as the first reported detections of exoplanets turned out to be false, perhaps this is a prelude to an actual detection of gravitational waves.

"You cannot ignore dust," he quotes from Planck scientist Charles Lawrence of NASA’s Jet Propulsion Laboratory in Pasadena, California.

The biggest lesson, to me, is that no one should rush to make announcements and pronouncements, whether big or small, even in the face of intense competition and the alluring prospects of launching a new field of study and winning a Nobel Prize. 

Scientists, and the rest of the public, should follow the time-tested scientific practice of subjecting claims to sufficient levels of scrutiny, and waiting for other groups to validate results, before making bold statements. At the very least, there have been major caveats and qualifiers in announcing new data with potentially huge implications.

View Article Here Read More
Older posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑