Category: complexity (page 2 of 9)

NASA student balloon captures mysterious sounds 23 miles above the Earth

NASA-launched student balloonExcerpt from chron.comFor the first time in 50 years, microphones attached to a NASA-launched student balloon have captured strange hisses, crackling sounds and faint whistling.Researchers aren't sure what the sounds are ...

View Article Here Read More

IBM advances bring quantum computing closer to reality



ibm research jerry chow
 
Research scientist Jerry Chow performs a quantum computing experiment at IBM's Thomas J. Watson Research Center in Yorktown Heights, N.Y. Jon Simon/IBM


Excerpt from computerworld.com
By Sharon Gaudin

IBM scientists say they have made two critical advances in an industrywide effort to build a practical quantum computer, shaving years off the time expected to have a working system.

"This is critical," said Jay Gambetta, IBM's manager of theory of quantum computing. "The field has got a lot more competitive. You could say the [quantum computing] race is just starting to begin… This is a small step on the journey but it's an important one."

Gambetta told Computerworld that IBM's scientists have created a square quantum bit circuit design, which could be scaled to much larger dimensions. This new two-dimensional design also helped the researchers figure out a way to detect and measure errors.
Quantum computing is a fragile process and can be easily thrown off by vibrations, light and temperature variations. Computer scientists doubt they'll ever get the error rate down to that in a classical computer.


Because of the complexity and sensitivity of quantum computing, scientists need to be able to detect errors, figure out where and why they're happening and prevent them from recurring.

IBM says its advancement takes the first step in that process.
"It tells us what errors are happening," Gambetta said. "As you make the square [circuit design] bigger, you'll get more information so you can see where the error was and you can correct for it. We're showing now that we have the ability to detect, and we're working toward the next step, which would allow you to see where and why the problem is happening so you can stop it from happening."

Quantum computing is widely thought to be the next great step in the field of computing, potentially surpassing classical supercomputers in large-scale, complex calculations. 

Quantum computing would be used to cull big data, searching for patterns. It's hoped that these computers will take on questions that would lead to finding cures for cancer or discovering distant planets – jobs that might take today's supercomputers hundreds of years to calculate.

IBM's announcement is significant in the worlds of both computing and physics, where quantum theory first found a foothold.

Quantum computing, still a rather mysterious technology, combines both computing and quantum mechanics, which is one of the most complex, and baffling, areas of physics. This branch of physics evolved out of an effort to explain things that traditional physics is unable to.

With quantum mechanics, something can be in two states at the same time. It can be simultaneously positive and negative, which isn't possible in the world as we commonly know it. 

For instance, each bit, also known as a qubit, in a quantum machine can be a one and a zero at the same time. When a qubit is built, it can't be predicted whether it will be a one or a zero. A qubit has the possibility of being positive in one calculation and negative in another. Each qubit changes based on its interaction with other qubits.

Because of all of these possibilities, quantum computers don't work like classical computers, which are linear in their calculations. A classical computer performs one step and then another. A quantum machine can calculate all of the possibilities at one time, dramatically speeding up the calculation.

However, that speed will be irrelevant if users can't be sure that the calculations are accurate.

That's where IBM's advances come into play.

"This is absolutely key," said Jim Tully, an analyst with Gartner. "You do the computation but then you need to read the results and know they're accurate. If you can't do that, it's kind of meaningless. Without being able to detect errors, they have no way of knowing if the calculations have any validity."

If scientists can first detect and then correct these errors, it's a major step in the right direction to building a working quantum computing system capable of doing enormous calculations. 

"Quantum computing is a hard concept for most to understand, but it holds great promise," said Dan Olds, an analyst with The Gabriel Consulting Group. "If we can tame it, it can compute certain problems orders of magnitude more quickly than existing computers. The more organizations that are working on unlocking the potential of quantum computing, the better. It means that we'll see something real that much sooner."
However, there's still debate over whether a quantum computer already exists.

A year ago, D-Wave Systems Inc. announced that it had built a quantum system, and that NASA, Google and Lockheed Martin had been testing them.

Many in the computer and physics communities doubt that D-Wave has built a real quantum computer. Vern Brownell, CEO of the company, avows that they have.

"I think that quantum computing shows promise, but it's going to be quite a while before we see systems for sale," said Olds.
IBM's Gambetta declined to speculate on whether D-Wave has built a quantum computing but said the industry is still years away from building a viable quantum system.

"Quantum computing could be potentially transformative, enabling us to solve problems that are impossible or impractical to solve today," said Arvind Krishna, senior vice president and director of IBM Research, in a statement.

IBM's research was published in Wednesday's issue of the journal Nature Communications.

quantum computing infographics ibm

View Article Here Read More

The Deliberate Trashing of Planet Earth

Zen Gardner, GuestUltimately those who awaken invariably come up against a very big question; why would the so-called “elite” self-appointed rulers of this planet bring the house down around their own ears? Don’t they get irradiated, chemtrailed and ultimately modified like the rest of us? Aren’t their children in peril just like ours?Underground bunkers or not, the rapid deterioration of our environment is leading toward a dead planet if their machinations ar [...]

View Article Here Read More

Day of the Reset (March 17th, 2015)

  As we are getting ready for the Event, we need to do the inner Reset.The inner Reset means forgiveness of all debts, physical, energetic, emotional and spiritual. It means forgiveness to yourself and others. It will consequentially mean financia...

View Article Here Read More

Astronomers Discover Ancient Dust Filled Galaxy ~ Debunks earlier theories that earliest galaxies had no dust only gas


2262451851_21c1c74069


Excerpt from voicechronicle.com


Astronomers have discovered a dust-filled ancient galaxy from the very early universe, which debunks earlier theories that earliest galaxies had no dust but gas. Astronomers from the University of Copenhagen used the Very Large Telescope’s X-shooter instrument along with the Atacama Large Millimeter/submillimeter Array and discovered a galaxy, named Galaxy A1689-zD1, which is an ancient galaxy and far from Earth.
The astronomers stated that the galaxy which
they were surprised to discover is far more evolved system than expected. It had a fraction of dust similar to a very mature galaxy, such as the Milky Way. Such dust is vital to life, because it helps form planets, complex molecules and normal stars. 

According to the astronomers A1689-zD1 is only observable by virtue of its brightness being amplified more than nine times by a gravitational lens in the form of the spectacular galaxy cluster. Without the gravitational boost, the glow from this very faint galaxy would have been too weak to detect.

The astronomers stated that they are viewing A1689-zD1 when the Universe was only about 700 million years old, which is 5% of its present age. According to them, it is a relatively modest system — much less massive and luminous than many other objects that have been studied before at this stage in the early universe and hence a more typical example of a galaxy at that time.

A1689-zD1 is being observed as it was during the period of reionization, when the earliest stars brought with them a cosmic dawn, illuminating for the first time an immense and transparent universe and ending the extended stagnation of the Dark Ages. Expected to look like a newly formed system, the galaxy surprised the observers with its rich chemical complexity and abundance of interstellar dust.

Dust plays an extremely important role in the universe – both in the formation of planets and new stars.

Darach Watson, Associate Professor at Dark Cosmology Centre, University of Copenhagen, and the lead author of the study, said, “After confirming the galaxy’s distance using the VLT we realized it had previously been observed with ALMA. We didn’t expect to find much, but I can tell you we were all quite excited when we realized that not only had ALMA observed it, but that there was a clear detection. One of the main goals of the ALMA Observatory was to find galaxies in the early Universe from their cold gas and dust emissions — and here we had it!”

The researchers hope that future observations of a large number of distant galaxies could help unravel how frequently such evolved galaxies occur in this very early epoch of the history of the universe.

View Article Here Read More

How Small Lies Obscure Objective Truth and Simplicity

Imagine you are at a crime scene. A person has been murdered. A suspect is caught running away from the scene of the crime. Weapon found, motive established, relationship found between the victim and the suspect. As the prosecuting attorney you present your case outlining all the details. You present witnesses, forensic evidence and other pieces of evidence.Then imagine if the defense attorney announces that he wishes to introduce a new rule to control the trial. He declares that from now [...]

View Article Here Read More

Can human DNA be used to make animals smarter?

Excerpt from natmonitor.co

In a major breakthrough in evolutionary research, scientists have identified for the first time the gene responsible for humans’ large brain size. While it has long been accepted that higher bran function in humans developed from neurological differences, this is the first time that scientists have been able to pinpoint a specific genetic cause.

Researchers recently identified the human-accelerated regulatory enhancer – or HARE5 for short – by inserting fragments of human DNA into mice. There are 16 major differences in the genetic sequence between humans and our closest genetic relatives, chimpanzees, making it extremely difficult to identify which genetic sequence controls the growth and complexity of the brain (human brains are, on average, about three times heavier than that of a chimp, and its interconnections much more intricate). Mice, however, possess a completely different gene sequence, allowing researchers to isolate the purposes of individual sequences when human DNA is introduced.






The research revealed that the brains of mice implanted with the human DNA grew larger and developed more quickly than those of untreated mice. The gene worked by regulating the number of neural stem cells produced by the mouse embryo, ultimately increasing the number of neurons produced in the brain.

Study author Debra Silver, an assistant professor of molecular genetics & microbiology at the Duke University Medical School, said that the research findings could be crucial to understanding how human evolution has differed from that of other animals, and the roles that various parts of our DNA played in that change.

View Article Here Read More

From the Big Bang to the Internet ~ The history of our universe in 18 minutes

Backed by stunning illustrations, David Christian narrates a complete history of the universe, from the Big Bang to the Internet, in a riveting 18 minutes. This is "Big History": an enlightening, wide-angle look at complexity, life and humanity, set...

View Article Here Read More

Top 6 tips for using ordinary binoculars for stargazing




Excerpt from earthsky.org


Admit it.  You’ve probably got a pair of binoculars lying around your house somewhere. They may be perfect – that’s right, perfect – for beginning stargazing. Follow the links below to learn more about the best deal around for people who want to get acquainted with the night sky: a pair of ordinary binoculars.
1. Binoculars are a better place to start than telescopes
2. Start with a small, easy-to-use size
3. First, view the moon with binoculars.
4. Move on to viewing planets with binoculars.
5. Use your binoculars to explore inside our Milky Way.
6. Use your binoculars to peer beyond the Milky Way.

1. Binoculars are a better place to start than telescopes. The fact is that most people who think they want to buy a telescope would be better off using binoculars for a year or so instead.  That’s because first-time telescope users often find themselves completely confused – and ultimately put off – by the dual tasks of learning the use a complicated piece of equipment (the ‘scope) while at the same time learning to navigate an unknown realm (the night sky).
Beginning stargazers often find that an ordinary pair of binoculars – available from any discount store – can give them the experience they’re looking for.  After all, in astronomy, magnification and light-gathering power let you see more of what’s up there.  Even a moderate form of power, like those provided by a pair of 7×50 binoculars, reveals 7 times as much information as the unaided eye can see.

You also need to know where to look. Many people start with a planisphere as they begin their journey making friends with the stars. You can purchase a planisphere at the EarthSky store. Also consider our Astronomy Kit, which has a booklet on what you can see with your binoculars.

2. Start with a small, easy-to-use size.  Don’t buy a huge pair of binoculars to start with! Unless you mount them on a tripod, they’ll shake and make your view of the heavens shakey, too. The video above – from ExpertVillage – does a good job summing up what you want. And in case you don’t want to watch the video, the answer is that 7X50 binoculars are optimum for budding astronomers.  You can see a lot, and you can hold them steadily enough that jitters don’t spoil your view of the sky.  Plus they’re very useful for daylight pursuits, like birdwatching. If 7X50s are too big for you – or if you want binoculars for a child – try 7X35s.

February 24, 2014 moon with earthshine by Greg Diesel Landscape Photography.
February 24, 2014 moon with earthshine by Greg Diesel Landscape Photography.

3. First, view the moon with binoculars. When you start to stargaze, you’ll want to watch the phase of the moon carefully. If you want to see deep-sky objects inside our Milky Way galaxy – or outside the galaxy – you’ll want to avoid the moon. But the moon itself is a perfect target for beginning astronomers, armed with binoculars. Hint: the best time to observe the moon is in twilight. Then the glare of the moon is not so great, and you’ll see more detail.

You’ll want to start your moon-gazing when the moon is just past new – and visible as a waxing crescent in the western sky after sunset. At such times, you’ll have a beautiful view of earthshine on the moon.  This eerie glow on the moon’s darkened portion is really light reflected from Earth onto the moon’s surface.  Be sure to turn your binoculars on the moon at these times to enhance the view. 
Each month, as the moon goes through its regular phases, you can see the line of sunrise and sunset on the moon progress across the moon’s face. That’s just the line between light and dark on the moon. This line between the day and night sides of the moon is called the terminator line.  The best place to look at the moon from Earth – using your binoculars – is along the terminator line. The sun angle is very low in this twilight zone, just as the sun is low in our sky around earthly twilight.  So, along the terminator on the moon, lunar features cast long shadows in sharp relief.

You can also look in on the gray blotches on the moon called maria, named when early astronomers thought these lunar features were seas.  The maria are not seas, of course, and instead they’re now thought to have formed 3.5 billion years ago when asteroid-sized rocks hit the moon so hard that lava percolated up through cracks in the lunar crust and flooded the impact basins. These lava plains cooled and eventually formed the gray seas we see today.

The white highlands, nestled between the maria, are older terrain pockmarked by thousands of craters that formed over the eons. Some of the larger craters are visible in binoculars. One of them, Tycho, at the six o’clock position on the moon, emanates long swatches of white rays for hundreds of miles over the adjacent highlands. This is material kicked out during the Tycho impact 2.5 million years ago.

View Larger. Photo of Jupiter's moons by Carl Galloway. Thank you Carl! The four major moons of Jupiter - Io, Europa, Ganymede and Callisto - are easily seen through a low-powered telescope. Click here for a chart of Jupiter's moons
Photo of Jupiter’s moons by Earthsky Facebook friend Carl Galloway. Thank you Carl! The four major moons of Jupiter are called Io, Europa, Ganymede and Callisto. This is a telescopic view, but you can glimpse one, two or more moons through your binoculars, too.


4. Move on to viewing planets with binoculars. Here’s the deal about planets.  They move around, apart from the fixed stars.  They are wanderers, right?

You can use our EarthSky Tonight page to locate planets visible around now.  Notice if any planets are mentioned in the calendar on the Tonight page, and if so click on that day’s link.  On our Tonight page, we feature planets on days when they’re easily identifiable for some reason – for example, when a planet is near the moon.  So our Tonight page calendar can help you come to know the planets, and, as you’re learning to identify them, keep your binoculars very handy. Binoculars will enhance your view of a planet near the moon, for example, or two planets near each other in the twilight sky. They add a lot to the fun!

Below, you’ll find some more simple ideas on how to view planets with your binoculars.

Mercury and Venus. These are both inner planets.  They orbit the sun closer than Earth’s orbit.  And for that reason, both Mercury and Venus show phases as seen from Earth at certain times in their orbit – a few days before or after the planet passes between the sun and Earth.  At such times,  turn your binoculars on Mercury or Venus. Good optical quality helps here, but you should be able to see them in a crescent phase. Tip: Venus is so bright that its glare will overwhelm the view. Try looking in twilight instead of true darkness.

Mars. Mars – the Red Planet – really does look red, and using binoculars will intensify the color of this object (or of any colored star). Mars also moves rapidly in front of the stars, and it’s fun to aim your binoculars in its direction when it’s passing near another bright star or planet.

Jupiter. Now on to the real action!  Jupiter is a great binocular target, even for beginners.   If you are sure to hold your binoculars steadily as you peer at this bright planet,  you should see four bright points of light near it.  These are the Galilean Satellites – four moons gleaned through one of the first telescopes ever made, by the Italian astronomer Galileo. Note how their relative positions change from night to night as each moon moves around Jupiter in its own orbit.

Saturn.Although a small telescope is needed to see Saturn’s rings, you can use your binoculars to see Saturn’s beautiful golden color.  Experienced observers sometimes glimpse Saturn’s largest moon Titan with binoculars.  Also, good-quality high-powered binoculars – mounted on a tripod – will show you that Saturn is not round.  The rings give it an elliptical shape.

Uranus and Neptune. Some planets are squarely binocular and telescope targets. If you’re armed with a finder chart, two of them, Uranus and Neptune, are easy to spot in binoculars. Uranus might even look greenish, thanks to methane in the planet’s atmosphere. Once a year, Uranus is barely bright enough to glimpse with the unaided eye . . . use binoculars to find it first. Distant Neptune will always look like a star, even though it has an atmosphere practically identical to Uranus.

There are still other denizens of the solar system you can capture through binocs. Look for the occasional comet, which appears as a fuzzy blob of light. Then there are the asteroids – fully 12 of them can be followed with binoculars when they are at their brightest. Because an asteroid looks star-like, the secret to confirming its presence is to sketch a star field through which it’s passing. Do this over subsequent nights; the star that changes position relative to the others is our solar system interloper.

Milky Way Galaxy arching over a Joshua tree

Pleiades star cluster, also known as the Seven Sisters
Pleiades star cluster, also known as the Seven Sisters





5. Use your binoculars to explore inside our Milky Way.  Binoculars can introduce you to many members of our home galaxy. A good place to start is with star clusters that are close to Earth. They cover a larger area of the sky than other, more distant clusters usually glimpsed through a telescope.

Beginning each autumn and into the spring, look for a tiny dipper-like cluster of stars called the Pleiades.  The cluster – sometimes also called the Seven Sisters – is noticeable for being small yet distinctively dipper-like. While most people say they see only six stars here with the unaided eye, binoculars reveal many more stars, plus a dainty chain of stars extending off to one side. The Pleiades star cluster is looks big and distinctive because it’s relatively close – about 400 light years from Earth. This dipper-shaped cluster is a true cluster of stars in space.  Its members were born around the same time and are still bound by gravity.  These stars are very young, on the order of 20 million years old, in contrast to the roughly five billion years for our sun.

Stars in a cluster all formed from the same gas cloud. You can also see what the Pleiades might have like in a primordial state, by shifting your gaze to the prominent constellation Orion the Hunter. Look for Orion’s sword stars, just below his prominent belt stars. If the night is crisp and clear, and you’re away from urban streetlight glare, unaided eyes will show that the sword isn’t entirely composed of stars. Binoculars show a steady patch of glowing gas where, right at this moment, a star cluster is being born. It’s called the Orion Nebula. A summertime counterpart is the Lagoon Nebula, in Sagittarius the Archer.

With star factories like the Orion Nebula, we aren’t really seeing the young stars themselves. They are buried deep within the nebula, bathing the gas cloud with ultraviolet radiation and making it glow. In a few tens of thousands of years, stellar winds from these young, energetic stars will blow away their gaseous cocoons to reveal a newly minted star cluster.

Scan along the Milky Way to see still more sights that hint at our home galaxy’s complexity. First, there’s the Milky Way glow itself; just a casual glance through binoculars will reveal that it is still more stars we can’t resolve with our eyes . . . hundreds of thousands of them. Periodically, while scanning, you might sweep past what appears to be blob-like, black voids in the stellar sheen. These are dark, non-glowing pockets of gas and dust that we see silhouetted against the stellar backdrop. This is the stuff of future star and solar systems, just waiting around to coalesce into new suns.

Andromeda Galaxy from Chris Levitan Photography.
Andromeda Galaxy from Chris Levitan Photography.

Many people use the M- or W-shaped constellation Cassiopeia to find the Andromeda Galaxy.  See how the star Schedar points to the galaxy?  Click here to expand image.
Many people use the M- or W-shaped constellation Cassiopeia to find the Andromeda Galaxy. See how the star Schedar points to the galaxy?


6. Use your binoculars to view beyond the Milky Way.  Let’s leap out of our galaxy for the final stop in our binocular tour. Throughout fall and winter, she reigns high in the sky during northern hemisphere autumns and winters: Andromeda the Maiden. Centered in the star pattern is an oval patch of light, readily visible to the unaided eye away from urban lights. Binoculars will show it even better.

It’s a whole other galaxy like our own, shining across the vastness of intergalactic space. Light from the Andromeda Galaxy has traveled so far that it’s taken more than 2 million years to reach us.
Two smaller companions visible through binoculars on a dark, transparent night are the Andromeda Galaxy’s version of our Milky Way’s Magellanic Clouds. These small, orbiting, irregularly-shaped galaxies that will eventually be torn apart by their parent galaxy’s gravity.

Such sights, from lunar wastelands to the glow of a nearby island universe, are all within reach of a pair of handheld optics, really small telescopes in their own right: your binoculars.

John Shibley wrote the original draft of this article, years ago, and we’ve been expanding it and updating it ever since. Thanks, John!
Bottom line: For beginning stargazers, there’s no better tool than an ordinary pair of binoculars. This post tells you why, explains what size to get, and gives you a rundown on some of the coolest binoculars sights out there: the moon, the planets, inside the Milky Way, and beyond. Have fun!

View Article Here Read More

Is Death Even Real?

This mind-blowing video by Kurzgesagt asks the big questions, what is life? Is death real?““If everything in the universe is made of the same stuff,” the video’s narrator asks, “does this mean everything in the universe is dead or that everything in the universe is alive? That it’s just a question of complexity? Does this mean we can never die, because we were never alive in the first place? Is life and death an irrelevant question and we just [...]

View Article Here Read More

World’s Oldest Art Identified in Half-Million-Year-Old Zigzag

A jagged line etched on a fossil mussel shell may be the oldest evidence of geometric art.Photograph by Wim Lustenhouwer, VU University Amsterdam(Reuters) - It's a simple zigzag design scratched onto the surface of a freshwater mussel shell on t...

View Article Here Read More

Researchers make 32 differently-shaped DNA crystals – is this the future of nanotech?



Researchers have achieved 32 different–shaped crystal structures using the DNA–brick self–assembly method. (Photo : Harvard’s Wyss Institute)

Excerpt from
zmescience.com 

A team at Harvard’s Wyss Institute for Biologically Inspired Engineering demonstrated the latest advances in programmable DNA self-assembly by crystallizing 32 structures with precisely prescribed depths and complex 3D features. The DNA crystals could potentially be used as the basis of a programmable material platform that would allow scientists to build extremely precise and complex structures rivaling the complexity of many molecular machines we see in nature – all from the bottom up!

Nanotechnology like Lego

For the past twenty years or so, there’s been a lot of interest shown into designing large DNA crystals of various desired shapes by exploiting DNA’s inherent ability to self-assemble. We’re recently beginning to see the fruits of this labor, first in 2012 when the same team described their “DNA-brick self-assembly” method that allowed them to build more than 100 3D complex nanostructures about the size of viruses. The 32 designs reported in this latest research are 1000 times larger, close to the size of a speck of dust, which makes them closer to applicable scale where they can be used practically.

With conventional methods of DNA assembly, the resulting design tends to become more and more imperfect as you scale the design because at each step there’s a risk of error. The technique developed at Harvard is different because since it uses short, synthetic strands of DNA that work like interlocking Lego® bricks to build complex structures – it’s a modular design. Each structure first starts off as a computer model of a molecular cube (the master canvas), then individual DNA bricks are removed or added independently until a desired shape is met. These bricks bind to as many as four neighboring strands or bricks. Thus, two bricks connect to one another at a 90-degree angle to form a 3D shape, just like a pair of two-stud Lego bricks. Each individual brick is coded in such a way that they self-assemble in a desired 3-D shape. What’s fantastic is that this method allows for intricate shapes to built on an extremely tiny scale opening up a slew of applications. For instance, a cube built up from 1,000 such bricks (10 by 10 by 10) measures just 25 nanometers in width – thousands of times smaller than the width of a human hair!
“Therein lies the key distinguishing feature of our design strategy—its modularity,” said co-lead author Yonggang Ke, Ph.D., formerly a Wyss Institute Postdoctoral Fellow and now an assistant professor at the Georgia Institute of Technology and Emory University. “The ability to simply add or remove pieces from the master canvas makes it easy to create virtually any design.”

Precision controlled DNA

Most importantly, this modularity allows precision control of the structure’s depth. This is the first time that anyone has been able to design crystal depth with nanometer precision, up to 80 nm, as opposed to  two-dimensional DNA lattices which are typically single-layer structures with only 2 nm depth.
“DNA crystals are attractive for nanotechnology applications because they are comprised of repeating structural units that provide an ideal template for scalable design features”, said co-lead author graduate student Luvena Ong.

 “Peng’s team is using the DNA-brick self-assembly method to build the foundation for the new landscape of DNA nanotechnology at an impressive pace,” said Wyss Institute Founding Director Don Ingber, M.D., Ph.D. “What have been mere visions of how the DNA molecule could be used to advance everything from the semiconductor industry to biophysics are fast becoming realities.”

View Article Here Read More

Why Are the Farmers Depressed and Suicidal?

Heather Callaghan, ContributorIs the same thing that’s destroying the bees also crippling our farmers?When Ginnie Peters’ farmer husband took his own life after a sudden mood shift, she really hit the nail on the head when she said:These chemicals that farmers use, look what they do to an insect. It ruins their nervous system. What is it doing to the farmer?No one can deny that farming is drastically different than it was in the 1950s, and today it requires extra demand, [...]

View Article Here Read More
Older posts Newer posts

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑