Date: January 20, 2015

Supernova Mystery Found at the Bottom of the Sea


Cassiopeia: A supernova remnant


Excerpt from news.discovery.com

One of the least likely places you might think astronomers would learn about ancient supernovae is at the bottom of the ocean, but in new research scientists have done just that.

Through the careful analysis of ocean sediment, tiny particles that originated from deep space have settled on the seabed, locking the chemical secrets to supernova processes that would have otherwise remained a mystery.

“Small amounts of debris from these distant explosions fall on the earth as it travels through the galaxy,” said lead researcher Anton Wallner, of the Australian National University. “We’ve analyzed galactic dust from the last 25 million years that has settled on the ocean and found there is much less of the heavy elements such as plutonium and uranium than we expected.”

Supernovae are powerful explosions triggered when massive stars reach the ends of their lives. During these powerful events, many elements are forged, including elements that are essential for life to thrive — such as iron, potassium and iodine.


Wallner and his team studied samples of sediment from the bottom of a stable area at the bottom of the Pacific Ocean. But when measuring the quantities of plutonium-244, a radioisotope that is produced by supernovae, they found something strange in their results — there was 100 time less plutonium-244 than predicted.

Plutonium-244 has a half-life of 81 million years, making it an excellent indicator of the number of supernovae that have exploded nearby in recent galactic history. “So any plutonium-244 that we find on earth must have been created in explosive events that have occurred more recently, in the last few hundred million years,” said Wallner.

But the fact that there is less recent deposition of the heaviest of elements, despite the fact that we know supernovae have erupted nearby, suggests a different formation mechanism may be responsible for plutonium-244 and elements like it.

“It seems that these heaviest elements may not be formed in standard supernovae after all,” concludes Wallner. “It may require rarer and more explosive events such as the merging of two neutron stars to make them.”

View Article Here Read More

Liftoff! SpaceX Gets $1 Billion From Google and Fidelity

 Excerpt from  nbcnews.com SpaceX, the California-based rocket company that now has its sights set on a globe-spanning satellite constellation, says it has received a $1 billion investment from Google and Fidelity that values the c...

View Article Here Read More

Using X-rays, scientists read 2,000 year old scrolls charred by Mount Vesuvius


Mount Vesuvius today



By Amina Khan 
Excerpt from latimes.com

Talk about reading between the lines! Scientists wielding X-rays say they can, for the first time, read words inside the charred, rolled-up scrolls that survived the catastrophic eruption of Mt. Vesuvius nearly two millenniums ago.
Testing the scroll
Researchers Daniel Delattre, left, and Emmanuel Brun observe the scroll before X-ray phase contrast imaging begins. (J. Delattre)
The findings, described in the journal Nature Communications, give hope to researchers who have until now been unable to read these delicate scrolls without serious risk of destroying them.
The scrolls come from a library in Herculaneum, one of several Roman towns that, along with Pompeii, was destroyed when Mt. Vesuvius erupted in AD 79. This library, a small room in a large villa, held hundreds of handwritten papyrus scrolls that had been carbonized from a furnace-like blast of 608-degree-Fahrenheit gas produced by the volcano.

“This rich book collection, consisting principally of Epicurean philosophical texts, is a unique cultural treasure, as it is the only ancient library to survive together with its books,” the study authors wrote. “The texts preserved in these papyri, now mainly stored in the Officina dei Papiri in the National Library of Naples, had been unknown to scholars before the discovery of the Herculaneum library, since they had not been copied and recopied in late Antiquity, the middle ages and Renaissance.”
So researchers have tried every which way to read these rare and valuable scrolls, which could open a singular window into a lost literary past. The problem is, these scrolls are so delicate that it’s nearly impossible to unroll them without harming them. That hasn’t kept other researchers from trying, however – sometimes successfully, and sometimes not.

“Different opening techniques, all less effective, have been tried over the years until the so-called ‘Oslo method’ was applied in the 1980s on two Herculaneum scrolls now in Paris with problematic results, since the method required the rolls to be picked apart into small pieces,” the study authors wrote. (Yikes.)

Any further attempts to physically open these scrolls were called off since then, they said, “because an excessive percentage of these ancient texts was irretrievably lost by the application of such methods.”
This is where a technique like X-ray computed tomography, which could penetrate the rolled scrolls, would come in handy. The problem is, the ancient writers used ink made of carbon pulled from smoke residue. And because the papyrus had been carbonized from the blazing heat, both paper and ink are made of roughly the same stuff. Because the soot-based ink and baked paper have about the same density, until now it’s been practically impossible to tell ink and paper apart.

But a team led by Vito Mocella of the Institute for Microelectronics and Microsystems in Naples, Italy, realized they could use a different technique called X-ray phase-contrast tomography. Unlike the standard X-ray CT scans, X-ray phase-contrast tomography examines phase shifts in the X-ray light as it passes through different structures.
Using the technique, the scientists were able to make out a few words and letters from two scrolls, one of them still rolled.

Reading these scrolls is difficult; computer reconstructions of the rolled scroll reveal that the blast of volcanic material so damaged its once-perfect whorls that its cross section looks like a half-melted tree-ring pattern. The paper inside has been thoroughly warped, and some of the letters on the paper probably distorted almost beyond recognition.
Nonetheless, the researchers were able to read a number of words and letters, which were about 2 to 3 millimeters in size. On an unrolled fragment of a scroll called “PHerc.Paris. 1,” they were able to make up the words for “would fall” and “would say.” In the twisted, distorted layers of the rolled-up papyrus called “PHerc.Paris. 4,” they could pick out individual letters: alpha, nu, eta, epsilon and others.

The letters in “PHerc.Paris. 4” are also written in a distinctive style with certain decorative flourishes that seemed very similar to a scroll called “PHerc. 1471,” which holds a text written by the Epicurean philosopher Philodemus. The researchers think they were written in the second quarter of the first century BC.


Ultimately, the researchers wrote, this work was a proofof concept to give other researchers a safe and reliable way to explore ancient philosophical works that were until now off-limits to them.

View Article Here Read More

Richard C. Hoagland: ‘Extraterrestrial Spacecraft Docked on Comet 67P’

al Comet 67P

View Article Here Read More

Creative Commons License
This work is licensed under a
Creative Commons Attribution 4.0
International License
.
unless otherwise marked.

Terms of Use | Privacy Policy



Up ↑