Mike Snyder (right) and Jason Dunn of Made In Space get the company's 3D printer ready for its September 2014 launch toward the International Space Station. The machine printed its first part in orbit on Nov. 24, 2014.
Mike Snyder (right) and Jason Dunn of Made In Space get the company’s 3D printer ready for its September 2014 launch toward the International Space Station. The machine pri
Excerpt from space.com


Mike Snyder, lead engineer for the company Made In Space, which designed and built the 3D printer currently aboard the International Space Station, contributed this article to Space.com’s Expert Voices: Op-Ed & Insights.

Human spaceflight reached an important milestone this week. An additive manufacturing device or 3D printer, was turned on, and initiated the first official 3D print on the International Space Station (ISS). 

The print took slightly more than an hour, and once it finished, the world changed. At the Made In Space Operations Center in Moffett Field, California, the rest of the team and I had the ability to command the printer and see inside it as the machine received and executed our commands. For the first time, humans demonstrated the ability to manufacture while in space. At this moment, if the space station absolutely needs a part that the 3D printer can build, I can start producing the part onboard the ISS within minutes — from my chair in California. 

The ability to deliver components on demand without the need of a launch vehicle can redefine how space-mission strategies work. Before last week, every object that humans have ever put in space was launched there and not made in space. Of course, many experiments and efforts have been able to form items such as crystalline structures and latex spheres, as well as assembly-type construction. 3D printing is completely different. This capability does more than just build predetermined articles that were designed months or years before launch. The 3D printer can build files that are created after launch and sent to orbit when needed.